
NoC Architectures for Silicon Interposer Systems
Why pay for more wires when you can get them (from your interposer) for free?

Natalie Enright Jerger, Ajaykumar Kannan, Zimo Li
Edward S. Rogers Department of Electrical and Computer Engineering

University of Toronto
{enright, kannanaj, lizimo}@ece.utoronto.ca

Gabriel H. Loh
AMD Research

Advanced Micro Devices, Inc.
gabriel.loh@amd.com

Abstract—Silicon interposer technology (“2.5D” stacking)
enables the integration of multiple memory stacks with a
processor chip, thereby greatly increasing in-package memory
capacity while largely avoiding the thermal challenges of 3D
stacking DRAM on the processor. Systems employing inter-
posers for memory integration use the interposer to provide
point-to-point interconnects between chips. However, these
interconnects only utilize a fraction of the interposer’s overall
routing capacity, and in this work we explore how to take
advantage of this otherwise unused resource.

We describe a general approach for extending the architec-
ture of a network-on-chip (NoC) to better exploit the additional
routing resources of the silicon interposer. We propose an
asymmetric organization that distributes the NoC across both
a multi-core chip and the interposer, where each sub-network
is different from the other in terms of the traffic types, topolo-
gies, the use or non-use of concentration, direct vs. indirect
network organizations, and other network attributes. Through
experimental evaluation, we show that exploiting the otherwise
unutilized routing resources of the interposer can lead to
significantly better performance.

I. INTRODUCTION

Die-stacking technology enables the combination of multiple
distinct silicon chips within a single package. In the past
several years, the industrial adoption of die-stacking technolo-
gies has been accelerating [9]. Vertical or 3D stacking takes
multiple silicon die and places one on top of the other with
through-silicon vias (TSVs) providing inter-layer connectivity.
Another die-stacking approach takes multiple silicon die, and
“stacks” them side-by-side on a silicon interposer carrier, for
example as shown in Fig. 1. Known as “2.5D stacking” [15],
this technology is already supported by design tools [22],
planned for future GPU designs [18], and is already in
some commercially-available products [45], [46]. Section II
provides more details and a comparison of the approaches.

A likely and promising application of die-stacking technol-
ogy is the integration of memory (DRAM) with a multi-core
processor [10], [25], [37]–[39]. The increasing core counts of
multi-core (and many-core) processors demand more memory
bandwidth to keep all of the cores fed. Die stacking can
address the bandwidth problem while reducing the energy-
per-bit cost of accessing memory. We target systems similar to
that shown in Fig. 1, where a multi-core chip is 2.5D-stacked
on a silicon interposer alongside multiple vertically-stacked
DRAMs [16]. Additional memory outside of the package
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Fig. 1. Baseline system organization consisting of a multi-core chip
horizontally stacked with four 3D DRAM stacks on a silicon interposer.

may also be used (but is not shown in the figure).
The performance of a multi-core processor is limited not

only by the memory bandwidth, but also by the bandwidth
and latency of its network-on-chip (NoC). The inclusion of
in-package DRAM must be accompanied by a corresponding
increase in the processor’s NoC capabilities, but increasing
the network size, link widths, and clock speed all come with
significant power, area, and/or cost for additional metal layers.
In this work, we make the observation that the underlying
silicon interposer presents significant under-utilized routing
resources that can be exploited. We propose a general
hybrid NoC approach matched to the attributes of the silicon
interposer and individual chips, and we present a specific
example implementation with the following attributes:

• A multi-network topology that blends direct and indirect
network approaches, where any-to-any cache-coherence
traffic is supported on a subset of the NoC implementing
a direct-network topology, while the any-to-few core-
to-memory traffic is routed across a subset of the NoC
with an indirect topology.

• The physical implementation of the network spans both
the multi-core processor die as well as the silicon
interposer, with shorter core-to-core links routed across
the multi-core processor die and the longer-distance
indirect network links routed across the interposer.

• The functional partitioning of NoC traffic is not strict;
depending on application needs and actual NoC usage,
we load balance traffic to, for example, exploit under-
utilized links in the interposer to route cache coherence
messages. In some cases, packets can effectively use the
longer indirect links on the interposer layer as “express



channels” [13] to reach their destinations in fewer hops.
• Selective concentration is employed to limit the area

overheads of vertical connections (i.e., micro-bumps)
between the multi-core processor and interposer layers.

• The general approach is applicable to current passive
interposers as well as future active interposers.

II. SILICON INTERPOSER SYSTEMS

A. 2.5D Stacking Overview

Horizontal or 2.5D stacking [15] enables the integration
of multiple chips similar to vertical or 3D stacking [50].
Using Fig. 1 as a reference, a 2.5D system consists of a
base silicon interposer with multiple other chips stacked
on top. The interposer consists of a regular (but larger)
silicon chip, with conventional metal layers facing upward.
Current interposer implementations are “passive” and do
not provide any transistors on the interposer silicon layer:
only metal routing between chips and TSVs for signals
entering/leaving the chip [45]. Future generations of “active”
interposers could potentially integrate some devices (possibly
in an older technology); the approach espoused in this paper
is compatible with either type of interposer.

With 2.5D stacking, chips are typically mounted face
down on the interposer with an array of micro-bumps
(µbumps). Current µbump pitches are 40-50µm, and 20µm-
pitch technology is under development [19]. The µbumps
provide electrical connectivity from the stacked chips to the
metal routing layers of the interposer. Die-thinning is used
on the interposer for TSVs to route I/O, power, and ground
to the C4 bumps.

The interposer’s metal layers are manufactured with the
same back-end-of-line process used for metal interconnects
on regular “2D” standalone chips. As such, the intrinsic
metal density and physical characteristics (resistance, capaci-
tance) are the same as other on-chip wires. Chips stacked
horizontally on an interposer can communicate with each
other with point-to-point electrical connections from a source
chip’s top-level metal, through a µbump, across a metal layer
on the interposer, back through another µbump, and finally
to the destination chip’s top-level metal. Apart from the
extra impedance of the two µbumps, the path from one
chip to the other looks largely like a conventional on-chip
route of similar length. As such, unlike conventional off-chip
I/O, chip-to-chip communication across an interposer does
not require large I/O pads, self-training clocks, advanced
signaling schemes, etc.

B. 2.5D vs. 3D Stacking

A limitation of vertical (3D) stacking is that the size of the
processor chip limits how much DRAM can be integrated
into the package. With 2.5D stacking, the capacity of the
integrated DRAM is limited by the size of the interposer
rather than the processor. For example, Fig. 1 shows a
2.5D-integrated system with four DRAM stacks on the

interposer. Using the chip dimensions assumed in this work
(see Fig. 2), the same processor chip with 3D stacking could
only support two DRAM stacks (i.e., half of the integrated
DRAM capacity). Furthermore, directly stacking DRAM
on the CPU chip could increase the engineering costs of
in-package thermal management [12], [20], [44].

3D stacking potentially provides more bandwidth be-
tween chips. In particular, the bandwidth between two 3D-
stacked chips is a function of the chips’ common surface
area, whereas the bandwidth between 2.5D-stacked chips is
bounded by their perimeters. However, 3D stacking incurs
additional area overhead for TSVs, often requiring large
“keep-out” regions [2], [42], where a 2.5D-stacked chip
is flipped face down so that the top-layer metal directly
interfaces with the µbumps. However, compared to the
conventional approach of going off package for all memory
accesses, both stacking options provide a substantial increase
in bandwidth at lower energy [9].

C. Opportunities on the Interposer

The interposer simply provides a mechanical and electrical
substrate for the integration of multiple disparate chips.
Current 2.5D stacking primarily uses the interposer for
edge-to-edge communication between adjacent chips (e.g.,
processor to stacked DRAM). Apart from this limited
routing, the vast majority of the interposer’s area and routing
resources are unutilized. Given the assumption that high-
performance systems will use interposers to integrate memory
and processors, we consider what else can we do with the
interposer? In this work, we propose a general approach
to interposer-based NoC architectures that spans both the
multi-core processor and interposer layers, exploiting the
otherwise wasted routing resources of the interposer.

III. NOCS FOR INTERPOSER-BASED MULTI-CORES

In this section, we first motivate why the NoC should be
extended to span across both the CPU die and the interposer.
We then address interposer-related implementation challenges.
This leads to our overall approach for interposer-based NoCs.

A. Baseline System and NoC

While the approach we propose in this paper is general
and broadly applicable to a wide range of interposer-based
systems, we will use a working example throughout this
paper to make the proposal more concrete. We assume a
2.5D system with a 64-core die with four DRAM stacks
as shown in Fig. 2(a). This baseline uses a relatively large
interposer, but this still fits within an assumed reticle limit
of 24mm×36mm (8.6cm2). Each of the four memory stacks
is assumed to have a size similar to a JEDEC Wide-IO
DRAM [23], [27], and we assume four channels per stack.
The chip-to-chip and chip-to-interposer edge spacing is
assumed to be 0.5mm.
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Fig. 2. (a) Top view of the evaluated 2.5D multi-core system with a 64-core CPU chip in the center of the interposer with four DRAM stacks placed on
either side of the multi-core die. (b) Side view of a simple interconnect implementation minimizing usage of the interposer. (c) The multi-core NoC slice
uses a mesh topology. (d) Side view of a NoC logically partitioned across both the multi-core die and an interposer. (e) Core-layer mesh with concentrated
connections to interposer. (f,g) Two different topologies for the interposer NoC slice: concentrated mesh and double butterfly.

B. Physical Implementation Concerns

Current design approaches only utilize the interposer for
chip-to-chip routing and vertical connections to the package
substrate for power, ground, and I/O [46]. Fig. 2(b) shows a
side/cross-sectional view of a system using such an approach;
the interposer-layer routing only connects the edges of the
multi-core chip with the DRAM stacks. This figure also helps
to highlight how little of the interposer’s routing resources
are utilized with such a minimal design.

In this work, we propose to make use of the abundant and
otherwise unused routing resources on the interposer layer
to implement a system-level NoC (as opposed to a NoC
primarily limited to the multi-core chip). Fig. 2(d) illustrates
the basic concept applied to the baseline interposer. The NoC
now effectively uses a 3D topology that spans both the multi-
core die and the interposer. If an active interposer is used,
then the interposer implements both the router logic and wires
for the portion of the NoC that resides on the interposer layer.
For a passive interposer, the logic to implement the routers
remains on the CPU layer, but the wiring goes through the
interposer (explained in the following section).

Dealing with a Passive Interposer: To implement the NoC
on an active interposer, we simply place both the NoC links
(wires) and the routers (transistors) on the interposer layer.
Fig. 3(a) shows a small example NoC with the interposer
layer’s partition of the NoC completely implemented on
the interposer. For the near future, however, it is expected

that only passive, device-less interposers will be commonly
used. Fig. 3(b) shows an implementation where the active
components of the router (e.g., buffers, arbiters) are placed on
the CPU die, but the wide NoC links (e.g., 128 bits/direction)
still utilize the interposer’s routing resources. This approach
enables the utilization of the interposer’s metal layers for
NoC routing at the cost of some area on the CPU die to
implement the NoC’s logic components.1 Both NoCs in
Fig. 3 are topologically and functionally identical, but have
different physical organizations to match the capabilities (or
lack thereof) of their respective interposers.

We assume a µbump pitch of 45µm [46]. For a 128-bit bi-
directional NoC link, we would need 270 signals (128 bits for
data and 7 bits of sideband control signals in each direction)
taking up 0.55mm2 of area. For a passive interposer, if the
interposer layer were used to implement a mesh of the same
size as the CPU-layer (i.e., 8×8), each node would need
to have four such links (for each N/S/E/W direction). The
total area overhead for the µbumps assuming a 64-core chip
would be 140mm2, or nearly half (47%) of our assumed
16.5mm×18mm multi-core processor die.

To reduce the µbump area overheads for a passive-
interposer implementation, we use concentration [5]. Every

1If the “interposer links” are too long and would otherwise require repeaters, the
wires can “resurface” back to the active CPU die to be repeated. This requires some
additional area on the CPU die for the repeaters as well as any corresponding µbump
area, but this is not significantly different than long conventional wires that also need
to be broken up into multiple repeated segments.
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Fig. 3. (a) Implementation of a NoC with routers on both the CPU die
and an active interposer, and (b) an implementation where all routing logic
is on the CPU die, and a passive interposer only provides the interconnect
wiring for the interposer’s portion of the NoC.

four nodes in the CPU layer’s basic mesh are concentrated
into a single node of the interposer-layer NoC. Fig. 2(d)
and Fig. 2(e) show different views of this. The side view
illustrates the interposer nodes as logically being on the
interposer layer (for the passive interposer case, the logic
and routing are split between the CPU die and the interposer
as described earlier). Usage of a concentrated topology for the
interposer layer provides a reduction of the µbump overheads
by a factor of four, down to 35mm2 (or a little less than
12% of the CPU chip area). The area reserved for µbumps is
represented by the white boxes in Fig. 2(a). The µbump area
overhead is the same for both passive and active interposer
cases.

Alternatives: If a passive interposer is only being used
to implement the wiring of the second layer of the NoC, a
fair question to ask is why not simply route all of the NoC
links on the CPU die? A chip is typically not implemented
with any more metal layers than necessary. As such, a given
die will have a ceiling on its bisection bandwidth that is a
function of its metal layer count and density. We assume that
the baseline core-layer NoC is already interconnect limited
(otherwise remove metal layers to reduce cost until it is
interconnect limited again). Therefore, our options are to
(1) do nothing and accept the bandwidth of the baseline
topology of Fig. 2(b), (2) increase the metal layers in the
CPU die to support the desired additional bandwidth at a
higher cost, or (3) make use of the otherwise available metal
layers in the interposer. In effect, to increase NoC bandwidth
in an interposer-based system without enduring the cost of
additional metal layers in the CPU die, one must make use
of the interposer. This argument for using the interposer’s
metal layers also applies to active interposers.

It is important to note that even in our baseline, we assume
that an interposer is already being used for the purposes of
massively increasing in-package integration of memory. In
effect, the additional metal resources on the interposer are
already “paid for,” and we are proposing to exploit these
paid-for but underutilized resources to design a better NoC.

C. A Tale of Two NoCs

The distribution of the NoC over two separate layers of
silicon, along with the area constraints of the µbumps used
to connect these layers, has guided our example interposer-
based NoC to employ a conventional mesh-like topology on
the CPU die with a concentrated network organization on
the interposer layer. At a high level, asymmetry in a NoC
could be viewed as undesirable because it makes the overall
network less regular, more difficult to route, and potentially
introduces unbalanced or unfair levels of service between
different parts of the network. Below, we explain that the
asymmetry, when properly utilized, can be advantageous; we
exploit asymmetry between the CPU and interposer layers
in a variety of ways.

Differentiating Coherence and Memory Traffic: Differ-
entiating between traffic classes in the network can have
numerous benefits. Coherence traffic must be divided across
multiple virtual or physical networks [49], [52] in order to
avoid protocol-level deadlock. This separation also provides
opportunities to tailor the network to particular aspects of
the coherence traffic [48]. The core-to-core cache coherence
traffic and the core-to-memory traffic exhibit different charac-
teristics [4]. Coherence traffic is characterized by any-to-any
communication patterns that over long intervals can resemble
uniform random traffic. However, memory traffic produces a
many-to-few traffic pattern [1], as memory requests originate
from cores and always target memory nodes, never other
cores. With memory positioned at the edge of the system,
the average hop count for memory traffic on a conventional
mesh is substantially larger than the average hop count
for cache traffic. Furthermore, cache coherence traffic can
often interfere with main memory traffic, and likewise main
memory traffic can get in the way of coherence traffic. Given
a NoC topology that is distributed across both the multi-core
die and the interposer, we propose to functionally partition
the NoC so that core-to-core coherence traffic is routed on the
multi-core die’s portion of the NoC, and the main memory
traffic is transported on the interposer’s portion of the NoC.

While past work has proposed various ways to partition a
NoC based on request types [40], [48], the key difference here
is that an interposer-based system can implement a physically
separate partition or slice of the NoC without incurring the
cost of additional metal layers, while avoiding the contention
penalties associated with multiplexing the same physical
network across a larger number of functionally-partitioned
virtual channels.

Concentrated/Unconcentrated Networks: Due to µbump
area constraints, we propose the usage of a concentrated
sub-network in the interposer layer. This creates an overall
organization where part of the NoC is concentrated (the
interposer portion) and part of it is not (the CPU layer), but
this asymmetry turns out to be advantageous when coupled
with the functional separation of coherence and main-memory



traffic. The concentration results in a smaller diameter for
the interposer’s network that reduces the average hop count
for memory-bound requests to reach their destinations.

Hybrid Direct/Indirect Networks: Each of the individual
cores has a link to one of the corresponding routers of the
CPU-layer mesh. As such, the portion of the NoC on the
CPU layer implements a direct network (i.e., every node
of the mesh can source or sink traffic from/to the cores).
However, for the interposer’s portion of the NoC, only the
end points along the left and right edges interface to the die-
stacked memory channels, and all other intermediate nodes
simply forward packets across the interposer or back up to
the CPU layer’s mesh. That is, the portion of the NoC on
the interposer is an indirect network.

Different Topological Choices: Once we observe that the
interposer layer implements an indirect network, it is natural
to consider other indirect topologies. Fig. 2(f) shows the
straight-forward extension of the original mesh approach to a
concentrated, indirect, mesh topology on the interposer layer.
We also consider a butterfly-based topology for the interposer
layer as shown in Fig. 2(g), which consists of two reflected
copies of a classic butterfly network with additional cross
links in the middle column (the figure shows diagonal links
for ease of illustration, but our evaluations assume standard
Manhattan routing of all wires).

Both the concentrated mesh and this double-butterfly have
four interposer-layer links per router (and the same number
of vertical links back to the CPU die), and so the router
costs for both will be very similar. However, using the
double-butterfly topology for memory-bound traffic reduces
the average number of hops to get to the memory channels.
For the example in Fig. 2(g), the longest route from any
internal node to one of the exit nodes (left and right columns)
is four hops (e.g., A→B). Contrast this to the concentrated
mesh in Fig. 2(f) with a worst-case path length of seven hops.
As this butterfly has twice the bisection bandwidth compared
to the concentrated mesh, we also compare against a non-
concentrated mesh with the same bisection bandwidth (but
would otherwise be unimplementable in a passive interposer
due to the µbump overheads discussed earlier).

From the perspective of a conventional core-to-core NoC
design, this double-butterfly would not be desirable because
path lengths between nodes internal to the network (i.e.,
those corresponding to the cores) are sometimes longer
than they would be compared to the concentrated mesh.
For example, the path A→C requires three hops, whereas the
equivalent route in the concentrated mesh would only be two.
Furthermore, the routing decisions become more complex,
as paths need to “double back” (e.g., a path for A→C goes
east from A, then south-east, and then back west to reach
C). However, these sub-optimal paths are not a concern for
our system, because the interposer layer’s primary purpose
is to route memory requests, not core-to-core traffic.

The concentrated mesh and butterfly-based topologies are

only two possible organizations for the interposer layer’s
portion of the NoC. Our general approach is not limited
to these topologies, but we chose these for our studies
because the concentrated mesh follows naturally from the
baseline mesh used on the CPU layer, and the butterfly
approach provides an effective and illustrative example for
how an indirect topology with longer links can be better
suited to the memory traffic. Other topologies such as
MECS [17], flattened butterflies [28], [29], fat trees [35], Clos
or Beneš networks [6], [11], [30], etc., could all be employed
depending on the number of cores, the number and layout
of the DRAM stacks, etc. The selection of another topology
would not fundamentally impact our overall approach nor
change any of our conclusions. We provide a comparison
with some other topologies in Section VI-D.

D. Routing

Basic Routing: We leverage standard dimension order
routing in the mesh and concentrated mesh networks. For the
double-butterfly network, we develop a variant of destination-
tag routing. In a standard butterfly, the bits of the destination
can be used at each stage to select the output port for that
stage. Three bits are used to encode the destination memory
channel with an additional bit to indicate if the request is
destined for a memory channel on the right or left side of the
system. There are three cases to consider for routing in the
butterfly network; looking at the example in Fig. 2(g), case
one is illustrated by routing from node C to the left-hand
memory stacks; case 2 is illustrated by routing node C to the
right-hand memory stacks and case 3 is illustrated by routing
node A to the lower left memory stack. Case 1 uses standard
destination tag routing. Each bit that encodes the destination
memory channel is used to select the output port at each hop.
In case 2, an extra bit of routing information is required for
each hop traversed prior to crossing the bisection (one bit
in the case of node C). This bit gives the first output port
needed to cross the bisection. Once a packet has crossed the
bisection, destination tag routing is employed. The routing
table supplies the required extra bits based on the destination.
In case 3, routes must divert to the previous stage to reach
the lower half of the memory channels on the left side. These
packets require an extra bit of routing information to route
backwards one stage. At this point, destination tag routing
is employed.

Our baseline implementation of a NoC spanning both the
CPU die and the interposer uses a straightforward traffic
partitioning scheme. All core-to-core coherence traffic is
routed on the CPU die’s portion of the NoC, and all traffic
to/from memory goes across the interposer. For requests
going to memory, the NoC forwards the packet vertically
down to the interposer layer at the first chance possible.

Load-balanced Routing: Some workloads have a larger
quantity of core-to-core coherence traffic, while other work-
loads exhibit higher demands on main memory. If a workload



tends to have a strong bias toward one type of traffic over
the other, this may cause underutilization on one of the two
layers of the NoC. We also consider routing schemes that
dynamically load balance across the two layers. Our load-
balancing algorithm will by default attempt to route traffic
on its preferred layer (coherence on the CPU layer, memory
on the interposer layer). However, if the CPU layer has too
much traffic, as measured by tracking the latency of recent
messages received by the sending node, and the interposer
layer has spare capacity, then coherence requests may be
routed to the interposer layer to help alleviate contention
in the CPU layer. Tracking observed latency at each node
gives a general picture of the state of the network; it does
not perfectly reflect congestion on the path of a particular
message and may be out of date as network status can
change rapidly. However, it is simple to track and provides
a reasonable approximation.

Express Routing: The interposer’s double-butterfly topol-
ogy was selected to quickly route memory requests to their
destination DRAM stacks. There exists some pairs of cores
where the double butterfly offers a shorter path via its longer
diagonal links. For requests between such pairs of cores, we
consider using some of the double butterfly’s connections
as express links [13] to enable longer-distance core-to-core
messages to cross the chip in fewer hops. If a core-to-core
request can be routed through the interposer with fewer hops
than through the core network, it will be sent to the interposer
regardless of network load. Certain restrictions are placed on
which source-destination pairs can take advantage of express
links to prevent deadlock (discussed next).

E. Implementation Concerns

Deadlock Avoidance: Many conventional NoCs leverage
turn-model routing to achieve routing-level deadlock freedom.
Dimension-order routing (DOR) is the most common example
of a turn-model routing algorithm. To avoid routing cycles,
turns from the Y to X dimension are prohibited. To provide
deadlock freedom in the load-balanced double butterfly, we
apply a similar strategy. Routing coherence traffic in the
double-butterfly network that would require turns that double-
back are forbidden. These routes can quickly form network
cycles and lead to deadlock. As a result, only a subset of
source-destination pairs are eligible for load balanced routing.
Multiple VCs are used to avoid protocol-level deadlock from
developing between request-response pairs.

Generality to Other Layouts: Our assumed system organi-
zation places the DRAM stacks on the left- and right-hand
sides of the interposer. However, it is feasible for other
system designs to, for example, surround the multi-core
die with DRAM stacks on all four sides. Our butterfly-
based topology is designed for “east-west” traffic, and it
may not be as well suited to a system with a “four-sided”
memory layout. However, the key attributes of our overall
approach (i.e., functional partitioning of traffic between the

CPU die and the interposer, load balancing between layers,
choosing an interposer-layer topology that contains longer
links to shortcut memory requests to the chip’s edges, and
reusing long interposer links for express channels) are directly
applicable to other interposer-based system configurations
and layouts.

IV. METHODOLOGY

We use a cycle-level network simulator [24]. All configu-
rations use an 8×8 mesh for the multi-core die. For the
interposer’s NoC slice, we compare the double-butterfly
(DB) topology against a concentrated mesh (CMesh) and a
non-concentrated mesh (Mesh). Most comparisons will be
focused on the CMesh, as it and the DB have the same router
complexity and µbump area overheads. Because the CMesh
has only half of the bisection bandwidth compared to the
DB, we also make some comparisons to the Mesh, which
has the same bisection bandwidth as DB, but requires an
impractically large number of µbumps for passive interposer
implementations. There are two DRAM stacks on each of the
two sides of the interposer. Each DRAM stack provides four
independent memory channels, for a system-wide total of
16 channels. The configuration parameters for each topology
are listed in Table I. The interposer network dimensions
include the end-nodes that interface with the DRAM memory
channels (grey circles in Fig. 2).

Our load-balancing design compares recently observed
network latencies for the interposer and CPU die networks to
determine if some traffic should be offloaded. If the latency
in the core die exceeds the latency in the interposer die
by a certain threshold, traffic is routed via the interposer
die. A lower observed latency is used as a proxy for spare
capacity. Empirically, we select a threshold of 10 cycles.
This is meant as a proof of concept for inter-layer load
balancing; a more complex balancing scheme could be
employed. Recent work [14] proposed various metrics to
determine when network load should be offloaded to a second
network; these techniques could be adapted to interposer-
based systems.

To evaluate the baseline and proposed NoC designs,
we consider several traffic workloads to cover a wide
range of network utilization scenarios. These include many
combinations of the traffic patterns described in Table II
where core-to-core coherence traffic and requests to memory
have different distributions. We consider two hotspot patterns,
UpperLeft and Corners. The channel numbers (e.g., C1)
used by the descriptions in Table II refer to the memory
channel annotations in Fig. 2(c). Apart from results showing
latency versus injection-load curves, we use a batch traffic
simulation for multiple request-reply pairs. Each core can
support a maximum of four outstanding requests. Traffic is
split equally between reads and writes.

We also verified our results with a few PARSEC applica-
tions [7] on gem5 [8] with Booksim [24] to model the NoC.



TABLE I. Simulation parameters

Common Parameters (all routers)
VCs 2, 8 flit buffers each

Pipeline 2 stages
Multi-core Die NoC Parameters

all configs 8×8 mesh, DOR routing
Interposer NoC Parameters

Mesh 10×8, DOR routing
Concentrated Mesh 6×4, DOR routing, 4:1 concentration

Double Butterfly 6 stages, 4 routers/stage, Extended Destination
Tag Routing, 4:1 concentration

TABLE II. Workloads
Core Traffic (all workloads)

Uniform random between all core pairs
Memory Traffic

Uniform Uniform distribution of memory references
across all 16 memory channels

UpperLeft 12.5% of traffic to each of channels C0, C1
C2, C3; 50% of traffic uniformly distributed
across the remaining 3 stacks

Corners 12.5% of traffic to each of channels C0, C7
C8, C15; 50% of traffic uniformly distributed
across the remaining 12 channels

Bisection All Memory references cross bisection
Permutation Each core sends to only one

memory channel (10 random trials)
Percentage of Traffic 0, 25, 50, 75, 100
Memory Reference
Read Requests 1 Flit
& Write Replies
Data packets 5 Flits
Batch Simulation 1000 requests per core
Max outstanding req. 4 per core

The overall trends are consistent with those observed from
our synthetic workloads. Due to the exorbitant run-times
required to simulate a 64-core system with a large NoC (88
nodes for CMesh and DB, 136 nodes for Mesh), we focus our
experimental analysis on the workloads presented in Table II.
To further verify the results using application behavior, we run
multi-programmed SynFull [3] traffic patterns. We simulate
a 4-way multitprogrammed mix of 16-way multi-threaded
applications. Each application is assigned a 4×4 quadrant of
cores but its memory accesses are spread across all memory
channels. We construct workload combinations based on the
intensity of their memory traffic.

Power and area are modeled using DSENT [47]. Results
are collected using a 32nm bulk/SOI low-Vt process node
with 3.4mm2 cores, with a worst-case CPU-layer core-to-
core link length of 2.2mm (1.8mm CPU width, plus 0.4mm
for µbump area). Frequency was swept to determine the
maximum operating point for each topology. Long link
lengths are faithfully modeled across each topology. µbump
power was computed using the activity factors measured
from simulation, a system voltage of 0.9V, and a µbump
capacitance of 0.7fF [21].

V. DESIGN COMPARISONS

Before presenting simulation results, this section provides
a higher-level comparison of the different interposer NoC

TABLE III. Network characteristics for the three interposer NoC
topologies.

Topology: Mesh CMesh Double Butterfly
Router Nodes 80 24 24
Router Degree 5 8 8
Diameter (in hops) 16 8 5
Avg. Memory Distance 7.13 3.75 2.75
Total Links 142 38 40
Bisection B/W 8 4 8
Link Length (mm) 2.2 4 4, 8, 12

topologies. We first provide a qualitative comparison of the
topological options based on network/graph characteristics.
Table III lists the node-count, router degree (maximum
number of ports in a router), network diameter (longest path
in the network), average number of hops to memory, total
number of bidirectional links (vertical links to the multi-core
die are not included as all topologies have 64 such links for
the 64 cores), the bisection bandwidth (normalized by the
number of bidirectional links), and the physical link lengths
for the network configurations assumed throughout this paper.
For each attribute, the topology(ies) with the best value is
shown in bold in the table.

For the most part, the Double Butterfly (DB) is as good, or
better, than the best of either Mesh or CMesh. Compared to
Mesh, both CMesh and DB have a significantly lower total
node count due to concentration at the cost of increasing
the number of router ports, but the savings in the total
number of routers, as well as the practical implementability
concerns related to µbump overheads for passive interposers,
are significant. DB has a lower network diameter than the
other two alternatives, which in turn is reflected by the
average number of hops through the interposer’s slice of the
NoC to reach a request’s destination memory node. Based on
total link count, both CMesh and DB are much lower than
Mesh, with DB requiring only two more links than CMesh.
CMesh has a lower node count than Mesh, but this comes at
the expense of half the bisection bandwidth. However, DB
enjoys the benefits of concentration while still providing the
same bisection bandwidth as Mesh despite having no more
router ports than CMesh and having significantly fewer total
links than Mesh. Not surprisingly, DB has longer links (the
multiple lengths listed correspond to the three different link
lengths illustrated in Fig. 2(g)); this ultimately impacts the
maximum achievable clock frequency of the router, which is
explored in more detail below.

Some of the design trade-offs made for the DB have
implications on the physical design of the network and router
nodes. For example, the higher port counts of CMesh and
DB result in larger routers (more area per router, higher
gate counts) that impacts critical timing paths. For each
topology, Table IV lists the maximum possible frequency,
and the power consumption of the network at the maximum
frequency and when all topologies are compared at the same
clock speed.



TABLE IV. Comparison of topologies for core-die and interposer’s NoCs.

Topology Maximum Power at Power at µbump
Frequency Max Freq. 1.75GHz Power

CPU-layer Mesh 5.05 GHz 6.14W 2.16W –
Mesh 5.05 GHz 10.37W 4.12W 11.4 mW
CMesh 4.00 GHz 5.95W 2.62W 6.1 mW
Double Butterfly 1.75 GHz 2.96W 2.97W 4.5 mW

DB has a lower maximum clock speed compared to
the other topologies due to its longer wires. However, the
achievable clock speed of 1.75GHz is still sufficient to keep
up with main memory,2 and clocking the NoC any faster
(such as at the maximum possible speeds for Mesh/CMesh)
would not likely provide much additional benefit. Table IV
also lists the power consumption of the networks at max-
and iso-frequency. Naturally, DB consumes less power than
the others at maximum frequency simply due to its lower top
speed. When all networks are clocked at the same speed, both
CMesh and DB achieve lower power levels than Mesh. Mesh
power consumption is hurt by a larger number of routers
and high hop count. The higher power consumption of the
long links in DB is offset by the lower average hop count
compared to CMesh.

All systems have the same mesh network on the CPU
die; the power consumption of this mesh is also shown in
Table IV. Note the CPU-layer mesh has lower power than the
interposer mesh due to fewer routers (64 vs. 80) and lower
average hop count (any-to-any traffic vs. core-to-memory).
Power data is collected using a 0.1 injection rate using the
uniform memory distribution workload. The interposer NoC
power also includes the power consumption of traversing
the µbumps for each hop through the network. This power
is negligible compared to the rest of the network power
(the µbump capacitance is about three orders of magnitude
lower than the interposer wire capacitance). For completeness,
Fig. 4(a) shows the breakdown including both the CPU and
interposer layers’ portions of the NoC power.

Fig. 4(b) shows the area for each network normalized to
CMesh. Only the interposer layer’s area costs are shown, as
all systems have the same CPU layer network. These results
use the same workload and system assumptions as used for
Table IV. We separate active area from the wiring area of
each network. Both CMesh and DB require longer wires
than Mesh; however, wiring resources in the interposer are
abundant, and so this “cost” does not have a significant impact
on the overall system design (i.e., these interposer wiring
resources would have been otherwise unutilized). The cost
of implementing these networks in the CPU layer could be

2The NoC’s 128-bit link width matches the stacked DRAM channel’s 128-bit data
bus width, the number of channels on one side of the interposer (eight) matches
the number of uni-directional links along the bisection (or equivalently, the 16 total
channels match the bandwidth provided by the eight bi-directional bisection links),
and the router clock speed (1.75GHz) is slightly faster than the assumed memory bus
speed (1.6GHz). For different memory bandwidth assumptions, other asymmetric and
indirect network topologies could be used.
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Fig. 4. (a) Power Breakdown for Core Die Mesh, Interposer NoC, and
Microbumps. (b) Area Comparison for 1.75GHz operating frequency.
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Fig. 5. Average completion time for uniformly distributed memory traffic.

significant due to the addition of extra metal layers. Compared
to Mesh, active area is reduced as CMesh and DB require
fewer total routers, which in turn also leads to overall power
savings. Lower active area also makes these topologies more
feasible for the passive interposer arrangement described in
Fig. 3. The small black boxes in Fig. 2 at the middle of each
group of four cores shows the die area needed to implement
the logic for the interposer-layer routers (figure is drawn to
scale).

VI. PERFORMANCE EVALUATION

This section provides a performance evaluation of our
proposed NoC approach. We first compare DB against the
Mesh and CMesh interposer topologies, followed by a variety
of other indirect networks. Section VII then provides the
simulation results for additional optimizations.

A. Uniform-Random Traffic

Fig. 5 shows the normalized average completion time of
1,000 messages by each core with a varying fraction of
memory traffic. All results are normalized to the concentrated
mesh (CMesh) on the interposer layer. The CMesh is chosen
because it has the same router area/complexity and µbump
overheads as the Double Butterfly (DB). For the results
in this subsection, memory traffic is uniformly distributed
across the 16 memory channels. For all evaluated workloads
where the fraction of memory traffic is greater than zero,
DB outperforms the other configurations. As the amount
of memory traffic increases (i.e., high fraction of memory
requests in the figure), the benefit of DB becomes more
pronounced. The performance benefit comes from the reduced
hop count in the routes from core-to-memory for DB.
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The performance of CMesh initially improves compared
to the unconcentrated Mesh, but as memory traffic increases,
the performance improvement goes away (and CMesh is even
slightly worse than Mesh at 100% memory load). The reason
for this behavior is that at lower levels of memory traffic, the
lower hop-count of CMesh provides a faster network transit
time compared to Mesh. However, as network load increases,
CMesh becomes bandwidth limited (recall that CMesh has
only half of the bisection bandwidth of Mesh and DB), and
then queuing delays rather than the number of hops dominate
the end-to-end message latency. DB does well because it has
a lower average hop count than either Mesh or CMesh while
maintaining a bisection bandwidth equal to Mesh.

In addition to having a lower average completion time,
DB also provides better fairness [34]. Cores in the network
receive a more equal share of bandwidth to memory for DB.
No explicit fairness mechanisms are employed; the balance is
inherent to the DB topology due to the low hop count. Fig. 6
shows the distribution of completion times for all nodes with
25% memory traffic. CMesh and DB have tighter groupings
of completion times indicating that all nodes receive a more
equal share of bandwidth to and from the memory channels.
The last cores to complete execution on the DB topology
are as fast as the fastest cores on the unconcentrated Mesh.
Similarly, we see the packet latency distribution is shifted to
the left for DB versus Mesh and CMesh in Fig. 7. CMesh and
Mesh have longer tails in these distributions; more packets
in these networks experience severe congestion than in DB.

Fig. 8 shows the load-latency curves. In this experiment,
we want to isolate the performance of the interposer network,
so we assume 0% traffic on the CPU die. At low injection
rates, the average latency for CMesh is better than the
unconcentrated Mesh due to shorter average number of hops
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Fig. 8. Load-latency curves with uniformly-distributed memory references.

to reach the memory nodes. DB further improves average
latency because the longer “diagonal” links further reduce
the average path length. As discussed earlier, the reduced
bisection bandwidth of CMesh causes it to saturate even
before the unconcentrated Mesh. Mesh does not fare much
better, despite having the same bisection bandwidth as DB.
The reason is that the y-dimension links in the Mesh become
a bottleneck, whereas DB provides greater path diversity so
that requests that go to different “rows” in the network do
not always use the same paths.

B. Non-Uniform Workloads

In addition to the basic uniformly-distributed memory traffic
workload, Fig. 9 and Fig. 10 present results with the other
less balanced/asymmetric traffic workloads, where 25% and
100% of the traffic goes to memory, respectively. For all of
these experiments, DB significantly outperforms the other
options with the exception of Bisection in the 100% memory
traffic case. DB sees a modest performance degradation
for Bisection; the static routing policy is not able to fully
distribute the load in this pattern.3 UpperLeft and Corners
produce hotspots in the network that can lead to greater
unfairness. We see the worst absolute performance for the
UpperLeft traffic pattern across all topologies; DB is able
to better distribute the hotspot loads and does not suffer as
much as the other topologies. CMesh suffers from significant
congestion and even performs worse than Mesh for Corners.
DB provides more robust performance across a range of
asymmetric traffic patterns leading to improved performance
across a range of potential application/memory behavior.

Fig. 11 shows the distribution of completion times for
the UpperLeft workloads which has the most imbalance.
Compared to Fig. 6, we see an even wider spread of
completion times. The standard deviation of completion times
are 3060, 2337, and 782 cycles for Mesh, CMesh, and DB,
respectively. As with the uniform workload analysis, DB
clearly provides greater fairness than the other two topologies.

C. SynFull Evaluation

Fig. 12 compares the average packet latencies of the CMesh,
Mesh, and DB networks using the SynFull traffic models [3].

3There is sufficient path diversity across the bisection for DB to perform well if
adaptive routing is employed. The exploration of adaptive routing schemes is left for
future work.
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memory references.
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Fig. 12. Latency comparison using multi-programmed SynFull workloads.

SynFull workloads are combined based on memory intensity
(e.g., the H-H-M-M category represents a multi-programmed
workload constructed of two applications with high memory
traffic and two applications with medium memory traffic).
Multiple workload combinations are averaged in each cate-
gory. We see consistently lower latency for DB across a
range of memory intensities. The low hop count of the
DB network gives it an advantage over the Mesh network.
The performance of CMesh and DB are similar with DB
having a slight advantage. CMesh performs the worst on the
highest memory intensive workload, due to lower bisection
bandwidth compared to the mesh and the formation of
hotspots that cause significant congestion. These results
confirm the conclusions reached in our extensive synthetic
traffic evaluation.
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Fig. 13. Normalized runtime for additional topologies where 25% of the
total traffic consists of memory references, which are uniformly distributed.

D. Other Topologies

Fig. 13 compares the DB network with other indirect
topologies including a CMesh with express links, a fat tree,
and a flattened butterfly. The fat tree and flattened butterfly
(FBFly) achieve similar performance to the DB topology;
however, the fat tree requires 4× more routers than in a
conventional layout because it is used as an indirect network.
The FBFly achieves competitive performance at the cost of
larger and more power-hungry routers; FBFly routers have a
degree of 12 versus 8 for the DB routers. Our proposed DB
network is not the only topology that may make sense for the
interposer, but the key take-away is to tailor the topology to
the interposer traffic (i.e., middle-to-edge memory requests
and not any-to-any coherence messages).

E. Summary

The Double-Butterfly topology is well suited to a multi-core
system implemented on a silicon interposer. In a single-chip
multi-core scenario, the single NoC layer must simultaneously
support both core-to-core and main memory traffic, and
so a relatively uniform topology such as a mesh performs
reasonably well without introducing too much complexity.4

However, by taking advantage of the additional routing
resources on the interposer, the system designer can choose
an interposer-layer topology specifically tailored for the core-
to-memory requests.

VII. INTERPOSER NOC OPTIMIZATIONS

A. Impact of Load Balancing

In Fig. 14, we consider the impact of using the interposer
network for load balancing. If congestion is higher in the
CPU die, coherence traffic can be moved to the interposer die.
As mentioned in Section III-E, some restrictions are placed
on which source-destination pairs are allowed to use the
DB to prevent routing-level deadlock. No such restrictions
are placed on the Mesh and CMesh networks as they are
dimension-order routed. Mesh sees no benefit from load
balancing across the various workloads for two reasons: the
interposer-mesh does not reduce hop count, and Mesh has the
worst fairness properties of the three designs. Load balancing
does lower average packet latency but does not improve

4Our approach by no means limits the CPU layer to a mesh; other
promising topologies such as a flattened butterfly could be considered.
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Fig. 14. Load balancing across layers with 25% of total traffic consisting
of memory references.

0.5
0.6
0.7
0.9
1.0
1.1

BitReverse BitComplement Transpose

N
or

m
al

ize
d 

Ru
nt

im
e

CMesh
CMesh + Balance
Mesh
Mesh + Balance
Double Butterfly
Double Butterfly + Balance

Fig. 15. Load balancing across layers with 25% of total traffic consisting
of memory references and non-uniformly distributed CPU traffic.

total runtime as some cores suffer from greater contention
due to longer hop counts to reach memory. CMesh sees
very limited benefit from load balancing. CMesh provides
reduced hop count, but again unfairness limits the overall
runtime reduction that can be achieved. DB sees improvement
across all workloads. The smallest improvement is seen in
UpperLeft; this is expected because this pattern generates a
significant hotspot that will dominate overall runtime.

The previous results used uniform-random traffic for the
core die so that we can focus on the performance of the
interposer die. However, with opportunities to off-load traffic
from the CPU layer to the interposer, non-uniform core traffic
should be considered. To that end, we simulate three popular
synthetic traffic patterns in the multi-core die: bit reverse,
bit complement, and transpose. These results are shown with
uniform 25% memory traffic in Fig. 15. For unbalanced
workloads like transpose, there is significant benefit to be
had from off-loading traffic to the interposer die. In these
scenarios, CMesh sees benefit from load balancing for bit
reverse and transpose. These patterns have high average hop
counts so they benefit from the reduced diameters of both
CMesh and DB.

B. Impact of Using the Interposer NoC as Express Links

Fig. 16 shows the impact of utilizing express paths in the
interposer layer for coherence traffic. We consider memory
requests ranging from 10% to 50% of total traffic. The
decision to use an express link is made statically. Independent
of network load, if the interposer offers a shorter route (fewer
hops) and does not require “doubling back,” then the packet is
routed on the interposer. When coherence messages dominate
the traffic (e.g., 10% memory requests), the interposer’s
NoC slice is underutilized, and using the Double Butterfly’s
links as express routes provides over 8% benefit across the
workloads. Not surprisingly, as the memory traffic increases,
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Fig. 16. Express routing with 10%-50% of total traffic consisting of
memory references.

the benefit of the express links decreases as the coherence
requests create network congestion for the memory traffic.

We also evaluated the express routing with non-uniform
core traffic (plots are not shown due to space limitations).
Like the load-balancing results, we observed dramatic im-
provement for transpose traffic. Some long paths in transpose
effectively leverage the express links in DB for much lower
hop counts. Bit complement’s traffic pattern is such that it
is not able to effectively leverage express paths.

VIII. RELATED WORK

In this section we discuss related work in two areas: 3D
NoC designs and multi-NoC designs. Brick and Mortar
(BM) [33] proposes composable systems with different
dies connected through an interposer layer. BM targets a
greater degree of heterogeneity than our proposal. As a
result, they design a highly configurable network to suit an
unknown/unpredictable range of traffic demands [32]. The
primary differentiation from our work and that of Kim et al. is
that we do not require an active interposer, we target general
traffic characteristics that persist across all applications (core-
to-core and memory traffic), and we avoid the overheads
associated with reconfiguration.

Recently, there have been numerous proposals for NoCs
to leverage 3D die stacking [31], [36], [43], [53]. These
networks are typically identical across all layers. No distinc-
tion is made between different types of traffic, but rather
rich connectivity is sought across all layers of the stack.
Die stacking allows the integration of different technologies;
Morris et al. propose a symmetrical 3D optical NoC [41].
Xu et al. [51] customize each layer of a 3D NoC through
long link insertion. This long-link insertion reduces hop
count for all traffic. The Double-Butterfly network also uses
long links but focuses on more efficiently routing memory
traffic by using the under-utilized resources of the interposer
rather than on reducing the diameter of a 3D network, which
has greater wiring constraints due to the cost of additional
metals layers. Kim et al. [26] consider the interconnect design
space in the context of hybrid memory cube (HMC) based
systems. Given a different set of system constraints, they
decide to route all traffic through a memory-centric network
leading to longer core-to-core latencies; alternatively, we
functionally partition the network across the two layers and
avoid penalizing core-to-core traffic.



Recent work proposes leveraging multiple networks to
improve performance. For example, different types of co-
herence messages can be partitioned into multiple physical
networks [48]. Multiple physical networks can obviate the
need for virtual channels to break protocol-level deadlock.
Recent work demonstrates that multiple physical networks are
a more affordable solution that multiple virtual networks [52].
Tilera [49] has also taken this approach and separated traffic
associated with coherence, memory traffic, I/O, etc. NOC-
Out [40] targets specific Cloud workloads and assumes
minimal core-to-core communication; their system is highly
optimized for core-to-(L3-)cache (for I$ miss) performance.
They use a butterfly to reach L3 slices and a different topology
for the cores. Similarly, we use a Double Butterfly to optimize
memory traffic, but the traffic patterns and layout of our
system are different resulting in a new topology.

We follow a similar approach of functionally-partitioned
NoCs, but there are several key differences. The first is the
presence of the interposer. Messages will have to traverse the
interposer layer to reach memory. Using the naive approach
from Fig. 2(b) does not fully exploit the abundant resources
in the interposer. Longer link topologies such as the DB
or NOC-Out’s butterflies may pose challenges to routing
if implemented in a monolithic CPU die (as in the related
works) necessitating additional, costly metal layers. Second,
these NoCs do not support cross-layer load balancing due to
protocol-level deadlock concerns. Furthermore, techniques
that separate different cache coherence messages are com-
plementary to our technique and can be added to optimize
the CPU die, which is not the focus of this work. Balfour
and Dally [5] explore some limited load-balancing across
multiple networks. However, their networks are homogeneous
in design. Catnap [14] explores the design of an energy
proportional multi-NoC. These NoCs are not functionally
partitioned, but rather turned on and off to respond to changes
in network load.

Placement of memory controllers or channels within
the NoC has been shown to have a significant impact on
performance [1]. The Double-Butterfly design exploits similar
observations: spreading traffic out across the multiple links
used to reach the memory controllers results in superior
performance. Both the Mesh and CMesh concentrate too
much traffic on a small number of links while others remain
idle; performance suffers as a result.

IX. CONCLUSIONS

Die-stacking technology (2.5D and/or 3D) provides fascinat-
ing new opportunities for re-imagining computer architec-
tures. In this work, we explored one aspect of interposer-
based multi-core systems, namely the interconnection net-
work that ties the cores and memory together. We leverage
otherwise unused routing resources for enhanced perfor-
mance; given the presence of the interposer, these improve-
ments come with little additional cost. By exploiting the

different characteristics of coherence and memory traffic,
along with the additional routing resources presented by the
interposer, we have presented a general approach comprising
a hybrid NoC architecture spanning both layers. The result
is a NoC that achieves lower latencies, fairer response times,
and higher sustainable bandwidth/throughput.

To the best of our knowledge, this work is the first to
explore the design space of interposer-based NoC organi-
zations. However, this is only a first step, as the overall
problem space offers many more opportunities to research
and explore. For example, the 2.5D stacking of multiple chips
consisting of different combinations of CPUs, GPUs, other
accelerators, DRAM, NVRAM, etc., can lead to many new
NoC organizations, topologies, routing algorithms, and more.
The possibilities for interposer-based systems are many, and
we encourage others to explore what can be done with these
die-stacking technologies.
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