
Presented by Alex Nicolaou



The world wide Application Server



























More about Security: Design Principles

Do not re-invent the wheel

Principle of least privilege

Sandboxed code is malicious code

Be lightweight

Emulation doesn’t guarantee security



Testing



Webkit





V8 Javascript VM























Q&A
Thanks!



Chrome Tip: Memory

Memory usage falls into three categories: 
shared, shareable, and private

Windows’ Task Manager reports different 
numbers in different versions

The best way to figure out what Chrome is 
using is to look at about:memory or use 
Chrome’s own task manager (Shift-Esc)

Multiple processes means more memory in 
minimal configurations but less in the long 
run



Chrome Tip: DNS Prefetch

DNS lookups are a surprising source of 
potential latency, with lookups that are 
250ms or more being commonplace

Chrome caches DNS lookups and populates 
the cache from links in the pages displayed 
to save you time

about:histograms displays a lot of fun 
statistics about the workings of the browser, 
like DNS.PrefetchFoundName for prefetch 
stats



Chrome Tip: We really aren’t evil!

Enabling chrome to share statistics with 
Google is a powerful way for Chrome users 
to work together to gather info

Crash reports and usage statistics drive 
development that’s good for everyone

Incognito mode can always be used for 
specially secure browsing

We hope you enjoy using and contributing to 
Chrome!



Multi-Process Architecture



Multi-Process Architecture

A single browser process is the master

Each web site is rendered by a single render 
process

Communication between the two is via 
Chromium’s IPC mechanism (named pipes)

The master process is called a ‘broker’ and the 
slave processes are called ‘sandboxes’



Anatomy of a Render Process

The RenderProcess talks to the corresponding 
RenderHost in the browser. There is exactly one instance 
per process and it handles all communication to the 
browser

The RenderView communicates with the corresponding 
RenderViewHost via the RenderProcess



Anatomy of the Browser Process

The Browser object corresponds to a top-level 
window
Each RenderProcessHost corresponds to each IPC 
connection to a render sandbox
The RenderViewHost encapsulates rendering specific 
to a frame/DOM in the RenderProcess and handles 
painting and events



Life of a mouse click
The Windows message is received on the UI thread of the browser 
by RenderWidgetHostHWND::OnMouseEvent

ForwardMouseEventToRenderer packages the input event into a cross-
platform WebMouseEvent and sends it to the RenderWidgetHost

RenderWidgetHost::ForwardInputEvent creates an IPC 

Then the renderer takes control:

RenderView::OnMessageReceived gets the message and in turn 
forwards it to RenderWidget::OnHandleInputEvent.

The event goes to WebWidgetImpl::HandleInputEvent where it is 
converted to a WebKit PlatformMouseEvent class and passed to 
the WebCore::Widget class inside WebKit.



Specific naming and isolation for security



The Broker’s responsibilities

Specify the policy for each target process

Spawn the target processes

Host the sandbox policy engine service

Host the sandbox interception manager

Host the sandbox IPC service (to the target 
processes)

Perform the policy-allowed actions on behalf of 
the target process



The Sandbox’s limits

Sandbox is given a restricted token

Sandbox is in a Windows job object

Sandbox is confined to its own 
Windows desktop object

Windows Vista+: sandbox is at the lowest 
integrity level



The Sandbox’s Restricted Token

The restricted token means no access to 
secured objects

Does a good job on properly configured(?) 
Windows systems

Does not handle access to sockets on XP or 
access to legacy filesystems (FAT32 on USB 
Keys for example)



The Sandbox’s Job

The Job abstraction allows limiting access to 
system resources that are otherwise unsecured

Forbids the creation or switch of desktops, 
modifying screen resolution, clipboard access, 
event broadcast, etc.

Crucial for keeping the sandbox process inside 
its jail away from other windows



The Sandbox’s Desktop

All windows on the same desktop are vulnerable 
to each other

Screen scraping is one threat

Synthesized events is another

Keylogging is a third

Isolating the sandboxes to their own desktop 
carries a small memory penalty but is otherwise 
effective



Isolation of Resource Loading



Resource Loading Caveats

It is assumed that cross-domain restrictions are 
handled by the renderer

Handling cross domain rules outside the 
renderer would introduce a lot of complexity – 
consider pages that legitimately load resources 
from many sites versus javascript to do the 
same

It is a non-goal of chromium to protect the user 
from XSS website attacks


