
ALTOCUMULUS: Scalable Scheduling for Nanosecond-Scale Remote Procedure Calls

Jiechen Zhao, Iris Uwizeyimana, Karthik Ganesan, Mark C. Jeffrey, Natalie Enright Jerger
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Canada

{jc.zhao, iris.uwizeyimana, karthik.ganesan}@mail.utoronto.ca, {mcj,enright}@ece.utoronto.ca

Abstract—Online services in modern datacenters use Remote
Procedure Calls (RPCs) to communicate between different
software layers. Despite RPCs using just a few small functions,
inefficient RPC handling can cause delays to propagate across
the system and degrade end-to-end performance. Prior work
has reduced RPC processing time to less than 1 µs, which
now shifts the bottleneck to the scheduling of RPCs. Existing
RPC schedulers suffer from either high overheads, inability to
effectively utilize high core-count CPUs or do not adaptively
fit different traffic patterns. To address these shortcomings,
we present ALTOCUMULUS,1 a scalable, software-hardware co-
design to schedule RPCs at nanosecond scales. ALTOCUMULUS
provides a proactive scheduling scheme and low-overhead
messaging mechanism on top of a decentralized user runtime.
ALTOCUMULUS also offers direct access from the user space to a
set of simple hardware primitives to quickly migrate long-latency
RPCs. We evaluate ALTOCUMULUS with synthetic workloads
and an end-to-end in-memory key-value store application
under real-world traffic patterns. ALTOCUMULUS improves
throughput by 1.3-24.6× under a 99th percentile latency
<300 µs and reduces tail latency by up to 15.8× on 16-core
systems over current state-of-the-art software and hardware
schedulers. For 256-core systems, integrating ALTOCUMULUS
with either a hardware-optimized NIC or commodity PCIe NIC
can improve throughput by 2.8× or 2.7×, respectively, under
99th percentile latency <8.5 µs.

Keywords-Remote procedure calls, Scheduling, Datacenters,
Networked systems, Load balancing, Migration, Queuing theory

I. INTRODUCTION

Distributed online services have adopted a multi-tiered
software architecture running on thousands of datacenter
machines. Communication between tiers uses a common API,
Remote Procedure Calls (RPCs), which allows each system
to call functions or access data on another system as though
they were local. RPCs enable a high degree of flexibility and
programmer productivity as they can call functions running
on different operating systems and software stacks. RPCs
have now become so ubiquitous that significant CPU time is
spent handling RPCs in modern datacenters. Recent studies
from Google and Meta show that RPC software accounts for
6-12% of their total CPU cycles [29], [60].

1Automatic Concurrent Migration Load-balancing Strategy (Auto-
CuMuLuS), homophonic with “altocumulus” as a type of clouds in
meteorology, fragmented to separate patches or nodes.

TCP/IP [8]

eRPC [27]

nanoRPC [23]

0
 25
5
 10
 15
 20

Latency (us)

Processing
 Scheduling

Figure 1: On-CPU latency for different RPC stacks.

Along with their increased use, RPC messages are also
getting smaller. For example, in DeathStarBench [19], 75%
of RPC requests are smaller than 512B while more than 90%
of RPC responses are smaller than 64B [36]. Therefore, the
efficiency of handling small RPCs becomes the performance
determinant. However, on-CPU2 RPC latency suffers due to
high per-packet overheads for small messages [27], [45]. For
instance, distributed applications spend up to 90% of the
on-CPU time executing the RPC stack, as opposed to the
application’s business logic [19], [52].

A plethora of research has proposed ways to improve
RPC stack processing efficiency by tackling one or more
components of the stack, both in software [1], [8], [15],
[26], [27], [48], [50], [53] and hardware [3], [5], [11], [20],
[23], [31], [36], [51], [52], [61], [65]. Fig. 1 illustrates
this impact, showing the time spent on a server handling a
300B RPC message. We distinguish time spent in RPC stack
processing (extracting the RPC request from the network
packet) vs. RPC scheduling (mapping the RPC request
handler to some core). Prior work successfully reduces RPC
stack processing latency from 10s of µs to sub-1 µs. Fig. 1
shows the standard TCP/IP protocol spending significant
time processing network packets, while recent work, such as
eRPC [27] and nanoRPC [23], implement more optimized
network protocols to reduce this time significantly. In this
paper, we address the new RPC system bottleneck which has
shifted from processing to scheduling.

At the same time, datacenter networks are getting faster,

2We focus on the latency of processing an RPC from the time it arrives
at the CPU to the time the response leaves the CPU.

going from 100 Gigabit Ethernet (GbE) a few years ago [16]
to 400 GbE now [4], with 1 TbE on the horizon [2]. With
higher network speeds, CPUs must service more RPCs while
maintaining processing latency. One approach is to use CPUs
with more cores. However, systems usually have to sacrifice
CPU utilization at even moderate loads to guarantee low
latency. For example, 36-64% of cycles of a 8-12 core CPU
are wasted when handling small RPC messages at µs-scale
latency [17], [54]. Underutilizing CPUs avoids unpredictable
queuing delays and costly scheduling operations that can
lead to increased RPC processing time. However, modern
servers with 64+ cores demand a more robust approach to
support high network bandwidth and guarantee sub-1µs RPC
latency with high CPU utilization.

Prior work proposes various RPC scheduling designs and
implementations in both software [8], [17], [26], [48], [53]
and hardware [11], [23], [61]. However, these approaches
do not meet one or more of the following requirements for
RPC scheduling:

1) Performance: Small RPCs require nanosecond-scale
scheduling. Software scheduling overhead increases a state-
of-the-art RPC stack’s latency by up to 25× (Sec. II-C).

2) Scalability: Efficient utilization of high core-count CPUs
is crucial for both performance and cost-efficiency
(Fig. 13).

3) Adaptability: Hardware-based schedulers cannot adapt
to various loads and arrival patterns. For example, one
hardware scheduler suffers up to 15.8× end-to-end latency
increase for a highly-varied service time pattern (Fig. 10).

Based on these criteria, a fundamentally new and scalable
approach is required to meet the demands of sub-1µs RPCs.

To address this need, we propose ALTOCUMULUS, a
proactive migration-based system which uses a queuing
theory based model to predict which RPCs are likely to
experience high latency. We then migrate such critical
RPCs from heavily loaded to lightly loaded cores before
they negatively impact end-to-end latency. This is in stark
contrast to prior work where critical RPCs are identified
after they have violated end-to-end latency requirements and
are simply dropped [14], [21]. ALTOCUMULUS achieves high
performance without unnecessarily dropping packets.

To scale to high core-count servers, ALTOCUMULUS’
runtime splits physical cores into groups. Each group consists
of a single centralized manager core that dispatches RPCs to
its several worker cores for processing. Our approach differs
from prior work that uses a globally centralized manager
to allocate RPCs to all worker cores; a centralized manager
can become the performance bottleneck for 40+ GbE traffic
[26], [48]. Our proactive migrations occur between manager
cores, which saves scheduling traffic compared to prior work
that balances load between all worker cores [53].

To achieve both performance and scalability, we offload
migrations in ALTOCUMULUS to a hardware mechanism,

which allows for quick and efficient proactive migrations and
avoids the high scheduling overhead of prior work. Because
the mechanism is implemented based on lightweight hardware
primitives with direct register-level access from the user level,
ALTOCUMULUS provides cloud providers with adaptability.
Different from prior art that seeks adaptive scheduling for
task-parallel workloads [24], [57], ALTOCUMULUS allows
adaptability for RPCs that exist in complex and unpredictable
cloud environments while guaranteeing strict µs-level latency
deadlines. Together, ALTOCUMULUS eliminates overheads
incurred by current techniques and enables high-throughput,
scalable and adaptive handling of sub-1µs RPCs.

II. BACKGROUND AND MOTIVATION

We provide background on measuring performance in
datacenters, how RPCs are handled and why RPC scheduling
is critical for high-throughput on sub-1µs latency RPCs. Next,
we present an analysis of prior work on RPC scheduling
and motivate the necessity of providing a software-hardware
co-design to address limitations of prior work.

A. Measuring Datacenter Performance

Quantifying datacenter performance is more complex than
using a single metric such as overall throughput or queries
serviced per unit time. Cloud service providers (CSPs) must
balance competing objectives such as: 1) maximizing the
number of users they can service, 2) minimizing the latency
for users and 3) minimizing running costs. CSPs must
guarantee certain performance criteria to customers, such as
minimizing server down-time or setting a maximum latency
for user queries. These requirements are codified by CSPs
as part of their Service Level Objectives (SLO). Setting
a maximum allowable latency is particularly important as
it directly influences both end-user experience and CSP
profits [14].

Quantifying SLO. For a given hardware configuration, a
CSP could set SLO to be the highest latency a user would
tolerate for a specific application. However, this can lead to
significant resource under-utilization as only a small fraction
of users (∼1%) might experience this worst case latency.
Instead CSPs provide a probabilistic guarantee of the latency
that 99% of users would experience, referred to as the 99th

percentile latency. Therefore, we focus on 99th percentile
latency as the key SLO metric which affects CSP performance
and profits [14]. CSPs then try to service as many users as
possible without violating this latency constraint. We use
the metric of ‘throughput@SLO’ to measure the number
of user requests that can be serviced without violating this
SLO requirement [61]. To understand the challenge of RPC
scheduling (which is the focus of our work), we next describe
how an RPC is typically handled in a CPU server.

DC Network

Transport

RPC

Application

NIC Scheduler

Kernel Scheduler

User SchedulerAltocumulus, DPDK [1]
IX [8], ZygOS [53],

Shinjuku [26]
RSS [5], RPCValet [11],

Nebula [61], nanoPU [23]

Figure 2: RPC system stack and different scheduler imple-
mentations in related work.

B. RPC Handling on a CPU Server

Fig. 2 depicts the different layers of the RPC system
stack.3 An RPC request arrives as a network packet from
the datacenter (DC) network, e.g., Ethernet or InfiniBand,
shown as the lowest layer. The network interface card
(NIC) parses the packet’s header and the on-NIC scheduler
dispatches the packet to a CPU to run its transport layer.
Receive Side Scaling [5] (RSS) is a commonly used on-
NIC scheduler, where requests are distributed evenly across
per-core queues [8], [13], [25], [30], [39], [48], [49], [50],
[53], [54]. RSS scales well with increasing core count as its
dispatch decisions are agnostic to core load: each core polls
its private queue without synchronization. The transport layer
uses protocols (e.g., TCP) to handle network interfacing.

Before passing the request to the RPC layer, some
kernel schedulers use load balancing policies to schedule
requests to cores [44]. The most common policy is work
stealing [17], [48], [53], [54], where idle cores pull requests
from other busy cores. Next, the RPC layer does RPC header
parsing, requested function identification, message payload
deserialization, etc. [52]. The requested function is then called
in the application. In some systems, user-level schedulers
are implemented to decide which core runs the requested
RPC function. For instance, high-performance key-value store
(KVS) applications maintain cache locality by binding the
application and request handling to the same core [38], [39].
RPC responses are created by the application and traverse
the RPC stack, going through the same operations in reverse
order. All scheduler designs between layer-pairs can co-exist

3Some implementations bypass some layers. For example, user-space
networking may bypass the kernel scheduler.

0.2 0.4 0.6 0.8 1.0
Offered Load

0
1
2
3
4
5
6

99
%

 L
at

en
cy

 (u
s) 5ns

45ns
90ns
135ns
180ns
360ns

Figure 3: High request throughput (load) with low-latency
requests requires low scheduling overhead (shown in ns).

in some systems. We now describe why RPC scheduling is
a major bottleneck for modern server CPUs.

C. Why Does RPC Scheduling Matter Now?

To demonstrate the importance of RPC scheduling time,
we perform a discrete event simulation of a 64-core system.
To show end-to-end scheduling overhead of sub-1 µs RPCs,
we combine the overheads due to all the layers in Fig. 2.
Our results in Fig. 3 show that reducing scheduling latency
from 360ns to 5ns can improve throughput by ∼3× for
a 99th percentaile tail latency of 5 µs. We use 45ns and
360ns in this experiment to represent the levels of time of
a memory access and a work-stealing operation commonly
used in scheduling [54], respectively. We tweak the overhead
from 45ns to 360ns using numbers as a multiple of 45ns. We
observe that even a few extra nanoseconds due to scheduling
can significantly hurt tail latency of nanosecond-scale RPCs.
Next, we provide some background on RPC schedulers
detailed in prior work.

D. RPC Scheduling in Practice

In Table I, we categorize several state-of-the-art scheduler
implementations according to three aspects: the scheduling
scheme, scheduling implementation, and communication
mechanism. Scheduling schemes determine which request
is dispatched to which core and whether this decision is
made in a centralized or decentralized manner. Communi-
cation mechanisms represent the communication channel a
scheduling operation relies on after decisions are made.

Kernel-based c-FCFS. Centralized first-come-first-served
(FCFS) scheduling (c-FCFS) uses one dedicated CPU core

Table I: Comparison of ALTOCUMULUS with prior art.

Prior work Scalability bottleneck Communication mechanism Scheduling scheme Scheduling manager
ZygOS [53] high s/w stealing rate

shared caches
d-FCFS with work stealing s/w, kernel-based

IX [8] imbalance d-FCFS
s/w, kernel-based

Shinjuku [26] imbalance, dispatcher throughput c-FCFS
eRSS [55] imbalance, interconnects PCIe

d-FCFS h/w, NIC RSS
nanoPU [23] register file size, NoC register files

RPCValet [11] limited cohe. domain size, mem. b/w
shared caches c-FCFS h/w, NIC-based

Nebula [61] limited coherence domain size
Altocumulus mis-prediction penalty, NoC migration channel & shared caches global d-FCFS, local c-FCFS h/w, SLO-aware user-level

NIC

Sche.

NIC

Pull-based steal

RSS

NIC

pull/poll

lock

(a) Kernel-based c-FCFS (b) d-FCFS + stealing (c) NIC-driven c-FCFS

Figure 4: Common request scheduling models. Blocks in
purple indicate schedulers.

as the scheduler (Fig. 4(a)). However, this single core can
become a significant performance bottleneck. For instance,
the centralized manager core in Shinjuku [26] can only handle
5M requests/s, or 2.5 Gbps and 41 Gbps of Ethernet traffic for
64B and 1024B requests, respectively. Due to lock contention
and synchronization overhead on the centralized queue,
current kernel-based schedulers are limited to a minimum
scheduling interval of 5µs [26], [48].

NIC RSS-based d-FCFS. Another approach is to use RSS
on the NIC to schedule requests. Despite being scalable, RSS
scheduling does not factor in each core’s load, leading to
significant imbalance and therefore unpredictable tail latency
increases [7], [53]. Scheduling using distributed queues such
as RSS is called distributed FCFS scheduling, or d-FCFS.

d-FCFS + work stealing. ZygOS [53] enables load balance
in RSS-based d-FCFS designs: idle cores with empty queues
steal requests from other heavily loaded cores (Fig. 4(b)).
However, ZygOS incurs significant overheads for two key
reasons. First, ZygOS triggers work stealing with simple
policies such as randomly selecting a queue to steal, leading
to 60% of requests being moved across cores, which wastes
communication bandwidth [53]. Worse, such intrinsic com-
munication requirements are triggered without considering
the SLO. Second, to find and fetch pending requests from
other cores, work stealing requires 2 to 3 cache misses. This
incurs 200-400 ns of inter-thread communication [54] or
even ∼1 µs interrupts [26], making it unsuitable for sub-
1 µs RPCs.

NIC-driven c-FCFS. This model features a centralized
queue managed by the NIC (Fig. 4(c)), which alleviates
the bottleneck of Fig. 4(a). However, the packets must
still use the slow PCIe bus to move from the NIC to the
CPU. RPCValet [11] and Nebula [61] bypass this overhead
with NICs that share the same memory space as the cores.
However, remote cache accesses still limit the throughput
in high core count systems [6]. NIC-to-core transfers are
also restricted to the same coherence domain, whose size is
limited due to hardware complexity [18]. While hardware
RPC schedulers improve performance over kernel-based
scheduling, they are not as adaptable to different arrival
patterns and loads, which we elaborate on next.

Scheduling adaptability V.S. programming efforts. On-
NIC schedulers typically require specialized hardware to
implement a fixed scheduling policy. For instance, Nebula
and nanoPU implement the Join-bounded-shortest-queue
(JBSQ(n)) policy in hardware [23], [33], [61]. Similarly,
other hardware-based schedulers [11] or work stealing [35]
cannot adapt to varying input loads and request patterns.

Kernel schedulers (e.g., IX, ZygOS, and Shinjuku) are
adaptive but require significant development and maintenance
effort [43]. Therefore, application developers often build
a user-level bespoke framework or dataplane system for
each application class. However, these dataplanes typically
use Linux-incompatible APIs [8], [26], [39], or rely on
syscalls [22] whose performance is far from nanoseconds.

III. ALTOCUMULUS OVERVIEW

ALTOCUMULUS prevents SLO violations by proactively
migrating potentially SLO-violating RPC requests instead of
detecting that an SLO violation has already occurred. For this,
we must first predict which requests are likely SLO violations
and migrate them to lightly-loaded cores. We develop a
model based on queuing theory, which uses statistical queue
length distributions to predict potential SLO violations
(Sec. IV). To perform migration, we employ a fast hardware-
assisted scheduling mechanism, which uses register-level
messaging to quickly move requests across cores (Sec. V).
ALTOCUMULUS synergistically combines the effectiveness of
SLO-aware migration policy and hardware-based mechanism
altogether through a software runtime (Sec. VI). We now
describe the different components of ALTOCUMULUS.

A. System Components

Fig. 5 shows a high-level overview of the entire ALTOCU-
MULUS system. The software has an offline component which
calculates a prediction model, which is then fed to the online
components in the proactive scheduling scheme. The offline
component takes as input the number of cores (k), request
service time distribution (µ), message arrival patterns (λ), and
the SLO target (detailed in Sec. IV) to generate the model.

SLO
Violation
Modeling

Threshold
Calculation

Messaging
Mechanism

Offline

Software

Hardware
SLO, A, k,

μ, λ

Prediction

Model

Concurrency
Bulk, P,

Pattern

Migration Decisions

Migration Messages

Online
Load Status Check

Proactive Scheduling Scheme

Destination

Candidates

Request
Selection

Local Load Status Monitor (q)

Parameter
Registers

1

3

2

7 4

Software/Hardware Interface

6

Status Update

5

Load Satus

SLO
Violation
Profiling

Figure 5: ALTOCUMULUS system overview.

The software runtime uses the model and based on the current
system load (A), calculates the migration threshold 1⃝. The
runtime also adjusts several migration-related parameters 2⃝,
which are then stored in parameter registers (PRs) 3⃝. The
runtime periodically checks its local load status (q) by reading
registers 4⃝. If migration is required, the runtime selects the
source and destination queues and generates a request to
migrate through the hardware messaging mechanism 5⃝ 6⃝.
The mechanism conducts each messaging operation according
to the parameters stored in the PRs 7⃝. At the end of each
period (P), the load status of each manager core is shared
to all the other managers and to the runtime to inform future
migration decisions. We now elaborate on each component
of ALTOCUMULUS.

Software runtime. The software runtime monitors the current
status of request queues and periodically predicts potential
SLO violations (Sec. IV-A). We implement our runtime as
a decentralized system, consisting of distributed manager
cores (global d-FCFS), each running the software runtime.
Each manager core then communicates with a subset of the
worker cores (local c-FCFS), to schedule RPC requests to
them. Migrations in ALTOCUMULUS only happen between
manager cores. The runtime is described in Sec. VI.

Hardware messaging. Once the runtime predicts that an
SLO violation is likely to occur, it communicates to the
hardware to migrate requests between manager cores. This
is done via messages, detailed in Sec. V.

Microarchitecture. Fig. 6 shows the additional hardware in
each manager core tile. To provide low-overhead messaging,
ALTOCUMULUS messages are sent and received directly
through specialized migration registers (MRs) instead of
using memory-mapped buffers. Hardware modules required
for messaging include: 1) MRs that store descriptors to RPC
messages in message arrival order, while the entire RPC
message is in the LLC, 2) a migrator that performs register-
to-register data movement, 3) PRs to hold runtime parameters,
4) a pair of send/receive FIFOs and 5) a controller to manage
the operation of the added hardware.

System parameters. ALTOCUMULUS is configured through
several key parameters, which we list below:
1) Concurrency determines the number of concurrent flows

Core
$

RouterNetRX

LLC

Slice

PRs

Migrator

Send FIFO

NetTX

T15

T0

Manager tile

Worker tile

Core tile 0T0

Recv. FIFO

Controller

MRs

Figure 6: Microarchitecture for each manager core. Purple
modules indicate hardware modifications.

per migration, where each flow goes to a separate
destination manager core. We set this to be n

4 , n
2 or

n, where n is the number of manager cores.
2) Period determines the time interval between two migra-

tion decisions. The runtime periodically checks migration-
related parameters to decide if migrations are necessary.
We sweep P from 10 ns to 1000 ns.

3) Bulk is the maximum number of requests we batch per
migration operation to reduce overhead. We consider
batches of 8-40 requests.

We now detail our predictive model for SLO violations.

IV. PROACTIVE MIGRATIONS

In this section, we answer the following questions:
• How can we effectively predict SLO violations?
• What are the trade-offs between minimizing migration cost

and maximizing SLO violation prediction accuracy?

A. Statistical Characterization & Modeling

The crux of ALTOCUMULUS’ proactive scheduling is
to predict and prevent potential SLO violating RPCs by
migrating them to less loaded cores that can process them
within the SLO target. We first characterize the queue length
at which SLO violations begin to occur, which we call the
threshold.
Threshold characterization. As queuing is the root cause
of long tail latency, a straightforward approach is to use the
queue length to predict potential violations.4 For a k-core c-
FCFS system under a certain load, there is a threshold queue
length T , after which SLO violations would begin to occur.
A naive approach is to directly use T = SLO Target

Average latency .
SLO is typically set to have the 99th percentile latency to be
within L× of the average latency [14], [53], [61]. If all the
worker cores are busy and the manager core’s queue length
exceeds k×L+1, any new requests will likely violate SLO.
So one option might be to set the threshold to be k×L+ 1.

This naive model is not optimal as it does not take the
statistical distributions of queuing delay, per-core service
time and request arrival patterns into account. To demonstrate
this, we perform an analysis using a cycle-accurate discrete
event simulation of a 64-core system. We set L=10 and use
a Poisson distribution for the request arrival pattern, similar
to prior work [14]. Figs. 7(a)-(c) plots the ratio of SLO
violations (# SLO V iolations

Total Requests) at a given queue length for
three widely-used service time distributions: Fixed, Uniform
and Bi-modal [26], [53], [61] for a single system load (0.99).
Figs. 7(a)-(c) demonstrate that:
1) Queue length is a good metric to capture the trend of

SLO violations and the ratio of SLO violations increases
sharply once the queue length exceeds a specific value.

4Existing software systems such as Intel DPDK (Data Plane Development
Kit) [1] offer rich APIs to monitor queue length at runtime.

0 200 400 600
Queue Length

0.0
0.2
0.4
0.6
0.8
1.0

Ra
tio

 o
f S

LO
 V

io
la

tio
ns

(a) Fixed

0 200 400 600
Queue Length

0.0
0.2
0.4
0.6
0.8
1.0

Ra
tio

 o
f S

LO
 V

io
la

tio
ns

(b) Uniform

0 200 400 600
Queue Length

0.0
0.2
0.4
0.6
0.8
1.0

Ra
tio

 o
f S

LO
 V

io
la

tio
ns

(c) Bi-modal

0.95 0.96 0.97 0.98 0.99 1.00
System Load

0
100
200
300
400
500
600
700
800

Th
re

sh
ol

d
T

E(Nq) E(T)

(d) E[T̂] vs. E[N̂q]

Figure 7: SLO violation prediction analysis on a 64-core system. (a,b,c) shows prediction accuracy for different request
service time distributions for load = 0.99. (d) Example of E[T̂] based on linear transformation of E[N̂q] for Fixed distribution
(a=1.01, c=0.998 and b=d=0).

2) The first few SLO violations occur when the queue is at
moderate occupancy (shown as points above the x-axis).
This is due to variations in request arrival intervals and
service time.

3) For all three distributions, nearly 100% of requests violate
SLO once T is set to k×L+ 1 (i.e., 64×10 + 1 = 641).
However, using this as the threshold would not catch SLO
violations which occur for smaller queue lengths.

How then can we dynamically select the threshold T based
on the current system load to accurately predict which RPCs
will violate SLO?
ALTOCUMULUS prediction model. We observe through our
simulations that, at moderate loads, early SLO violations
happen when the local queue’s length is greater than the
length of the other queues. Each manager thread holds
an independent Nq random variable representing the total
number of RPC requests waiting in the local queue. For
each manager thread, we model the expected value of queue
length (E[N̂q]) using queuing theory, which naturally embeds
statistical information and system states that affect tail latency.
Specifically, we leverage the Erlang-C formula Ck(A), which
expresses the probability that an arriving request must queue,
to model E[N̂q]:

E[N̂q] = Ck(A)
A

k −A
(1)

Ck(A) depends on the system load (A), which is a function
of the request arrival Poisson distribution with rate λ and
per-core service time µ. We use this analytical model to
derive an expected value for T , called E[T̂]. T is the queue
length when the first SLO-violating request arrives for
a given system load. First, we measure these T values in
simulation, similar to Fig. 7 but sweeping across all system
loads. We then observe that E[T̂] can be modeled as a linear
transformation of E[N̂q]:

E[T̂] = a× E[c× N̂q + d] + b (2)

a, b, c and d are constants that are empirically determined
based on factors such as the service time distribution.

Fig. 7(d) shows an example of a linear transformation of
E[N̂q] to derive an accurate SLO violation threshold E[T̂].
The modeled E[T̂] is verified with our simulation results.
The E[T̂] model is fed to our runtime, which uses the current
system load to calculate T every period. If the local manager’s
queue length exceeds T , all queued RPCs greater than T are
predicted to violate SLO and will be selected for migration.
We explain the entire software runtime in Sec. VI.
Trade-off between prediction accuracy and migration
effectiveness. Our goal is to avoid all SLO violations while
minimizing false positive predictions. We define prediction
accuracy as the ratio of correctly predicted SLO violations
to the total number of SLO violations. In the above analysis,
we derive T as the queue length when the first actual SLO-
violating request arrives for a given system load. This queue
length represents the lower bound on T (i.e., Tlower bound).
Thus Tlower bound would be 121, 80, and 268 for Fig. 7(a),
(b) and (c) when the system load is 0.99. While setting
T=Tlower bound would save all SLO-violating requests, this
would cause a significant amount of unnecessary migration
traffic as not all of these migrated requests would violate
SLO. On the other hand, to maximize migration effectiveness,
we can set T to be k × L + 1, which we denote as
Tupper bound. By doing so, every migration triggered prevents
SLO violations. Unfortunately, in this case, we miss a non-
trivial number of violations and suffer from low prediction
accuracy. Given this trade-off, we opt to design a flexible
modeling framework to accurately model different selections
for T .

V. HARDWARE MESSAGING MECHANISM

In this section, we answer the following questions:
• How does hardware support ALTOCUMULUS messages?
• What is the hardware cost of our mechanism?

A. Direct Register Messaging Mechanism
ALTOCUMULUS uses four message types to interface

between the software runtime and the hardware. Fig. 8

2 1 1 1 0 2

(1)

20
 9
8

(2)

(4)

(1) PREDICT_CONFIG (2) UPDATE (3) MIGRATE (4) ACK

(2)

(4)

(3)
(3)

Figure 8: ALTOCUMULUS protocol with hardware message
paths (dotted arrows). SLO violations happen in the manager.

Table II: Runtime messages. T: SLO violation threshold, q:
queue depth, QD: a vector of migration destination queues.

Name Description Input Format

PREDICT CONFIG
Configure registers to

adjust migration parameters
<reg addr reg value>

MIGRATE
Proactively dequeue RPCs

from Tail to destination queue(s)
S, QD , *MR[Tail]

UPDATE
Broadcast local queue

length to all other managers
<q>

ACK/NACK
Acknowledge the completion/discard

of a MIGRATE message
-

provides an example of our protocol with messages between
manager cores (squares). For local scheduling, worker cores
(circles) can queue at most 2 requests, inheriting the same
algorithm as existing hardware schedulers [23], [61]. For each
core, the number shown represents the number of queued
RPC requests. The red manager core has 20 pending requests
and is migrating RPC requests to the other two lightly-loaded
cores. The different message types are listed at the top of
Fig. 8 and summarized in Table II. We now describe each
message type.

PREDICT CONFIG. The manager cores periodically (every
period P) execute the software runtime (Sec. VI) to update
the runtime parameters. The manager cores then use this
message type to internally update their parameter registers
(PRs), which are read generating other messages. PRs store
period P , maximum batch size Bulk, queue length vector
q, migration threshold T , and the Concurrency. Unlike the
other messages, PREDICT CONFIG messages are not sent
across manager cores but are only used within cores.

MIGRATE. This message is used to migrate RPCs predicted
to violate SLO to a different manager core. To reduce
overhead, we migrate several RPC requests at once. MI-
GRATE messages involve the following: 1) determining
the size of each MIGRATE message (S), which contains
a number of requests (req_num), 2) message generation,
3) dequeuing requests locally and 4) enqueuing requests
to remote managers. MIGRATE messages have both send
and receive paths. To determine req_num when sending a
MIGRATE message, the local controller uses Concurrency
and Bulk stored in PRs to calculate Bulk

Concurrency . Then
the controller hands over message generation to the local

migrator. Each message has a header that stores req_num,
local manager core ID src_mid, remote manager core ID
dst_mid determined by the manager thread. The tail pointer
points to *MR[Tail], and is maintained by the migrator.
The migrator then reads req_num RPC pointers from its
local MRs, enqueues them into the send FIFO, and injects
them into the NoC. The send FIFO occupancy is monitored
by the controller to prevent overflowing the FIFO.

To receive a MIGRATE message, the controller first
parses the header containing req_num and src_mid, and
validates if dst_mid equals the local manager core ID. Then
the MIGRATE message payload is stored in the receive FIFO
if the FIFO is not full. Next, the controller gives permission
to the migrator to dequeue and move req_num entries from
the receive FIFO’s head to the local MR for scheduling.
ACK/NACK. When sending MIGRATE messages, once the
source migrator receives an ACK from the dst_mid, it
invalidates those req_num entries in its local MRs. When
MIGRATE messages are received, the destination manager’s
controller issues an ACK to src_mid manager after receiv-
ing the entire MIGRATE message. If the destination manager
does not have free receive FIFO slots or MR entries, it drops
the received MIGRATE message and returns a NACK to
the source to reject this migration. For simplicity, the source
core does not replay this rejected migration message.
UPDATE. UPDATE messages are triggered periodically to
broadcast the local queue length (q) to all other manager
cores. The hardware messaging latency at NoC speed (3 ns
per hop) for such synchronization is superior to software
based updates through shared caches.

B. Discussion

Design optimizations. To make the hardware messaging fast
and efficient, we implement the following optimizations:
1) Our mechanism only operates between manager core tiles.

The direct register messaging bypasses the cache coher-
ence protocol which would add unpredictable contention
and prohibitive delays for nanosecond-scale RPCs.

2) To avoid moving RPCs until they need to be processed,
each manager only stores the descriptor (pointer and
connection information) of each message (14B), while
the actual message is stored in the network buffer (in the
LLC or memory).

3) The mechanism batches multiple descriptors for every
migration to reduce data movement. It also supports
concurrent migrations between multiple source-destination
pairs to improve migration throughput.

4) We allow a request to be migrated at most once. This
restriction saves unnecessary traffic and avoids livelocks
and migration-induced interconnect contention.

Bounded MR and FIFO. Each MR does not need to store
an entire RPC message that requires up to 2KB [23]. Instead,
messages stay in the LLC [61] and each MR only stores

Algorithm 1: Software runtime executing on each
manager core.

Input: Concurrency, number of queues N , queue
length monitors q[0, 1, ...N − 1], network
receive queues NetRX[0, 1, ...N − 1]

1 every period ns:
2 q ←− Update(q)
3 Use the prediction model to calculate T
4 for j ← 0 to N − 1 do
5 pattern, QD ←−

predict(T, q, Concurrency)
6 for i← 0 to QD.size() do
7 MIGRATE message size S ←−

Bulk
Concurrency

8 if q[j]− S < q[QD[i]] + S then
9 continue

10 else
11 NetRX[j].tail dequeue()
12 Trigger one MIGRATE message
13 NetRX[QD[i]].tail enqueue()

an 8B pointer to the RPC message and a 48-bit IP address
per IP port. Each MR therefore consumes just 14B. Since
we use a decentralized manager, MRs in each manager core
tile can be bounded regardless of the total number of cores
in the system. According to Eqn. 1, the mean of E[N̂q] for
each group equals 11 when system load is near 1, therefore
each group contains one 154B MR (11×14B). For FIFOs,
small send/receive FIFOs suffice, since migration is not
continuously used. In our runtime, send FIFOs that hold 16
entries are sufficient to cover message bursts, which means
16×14B = 224B per FIFO.
Message Ordering. UPDATE, MIGRATE, ACK/NACK
messages go through the NoC. We need to preserve ordering
both in each manager core and during the message transfer
through the NoC between sender and receiver. In each
manager core, we employ FIFOs for send/receive buffers. In
the NoC, we can either use deterministic routing or implement
a flow control protocol with reordering at the endpoints. We
opt for deterministic routing since the NoC is often lightly
loaded [58]. We use one extra virtual network [12] to route
ALTOCUMULUS packets in the NoC.

VI. SOFTWARE RUNTIME

We now introduce the software runtime for our proactive
migration-based RPC scheduling system. The runtime is
decentralized and runs on each manager core. Each manager
core owns a network receive (NetRX) queue across all its
local worker cores and dispatches requests to worker cores.
The software runtime periodically: 1) Executes SLO violation
prediction, 2) determines the migration destination NetRX

 Connection Random RR100
120
140
160
180
200
220
240

Qu
eu

e
Le

ng
th RX Q0

RX Q1
RX Q2
RX Q3

Figure 9: Snapshot of temporal load imbalance across 4
network receive queues (256-core d-FCFS system with each
queue managing a 64-core c-FCFS system).

queue, 3) classifies the distribution pattern, 4) synchronizes
system states across manager cores, and 5) triggers MI-
GRATE messages. Algorithm 1 details the runtime operation.
Parameter register configuration. The software runtime
configures migration parameters to the PR registers in every
manager cores through the software-hardware interface.
Periodical proactive prediction. The queue length monitor
vector q is periodically updated across all manager cores
through UPDATE messages (line2 of Algorithm 1). Each
manager core runs SLO violation prediction (line5) every
P ns. The inputs of predict() are read from the PRs. For
the n-th manager core, predict() checks two conditions:
1) whether q[n] exceeds T and 2) if the queue length
distribution based on q matches any of the patterns below. If
either returns true, predict() returns a QD that records a
set of migration destination queue ID(s) and the pattern.
Pattern classification. We classify the patterns we observe
for q into three categories.
1) Hill: We identify q as a Hill pattern when the length of

the longest queue is larger than the length of the second
longest queue by Bulk. This pattern triggers several
MIGRATE messages to move pending work from the
longest queue to other (shorter) queues.

2) Valley: This pattern occurs when the length of the shortest
queue is smaller than the length of the second shortest
queue by Bulk. When detecting a Valley pattern, each
manager core triggers one MIGRATE message from itself
to the shortest queue.

3) Pairing: This pattern triggers M messages, the M th

message is sent from the N th longest queue to the shortest
queue, the (M-1)th message from the (N-1)th longest queue
to the second shortest queue, etc. Pairing occurs when there
is a gradual imbalance in queue lengths.

Fig. 9’s three bar groups correspond to Hill, Pairing, and
Valley. We model different policies such as randomly selected
(random), round-robin (RR), and connection-based (i.e.,
requests from a certain network connection are steered to
a specific network receive queue, which is the policy that
RSS uses). This result shows the queue lengths for 4 NetRX
queues at the cycle when the first 10 SLO violations occur.

We see that in each case there is a noticeable difference in
queue lengths. Each manager’s pattern classification gives
the same pattern result because q is synchronized across
all manager cores every period.
Migration destination(s) determination. For each pattern,
the number of migration destination queues is determined by
Concurrency. The queue ID of destination(s) is selected
according to the above pattern classification algorithm.
Migration message generation. line7 of Algorithm 1
generates MIGRATE messages a size of S. The number
of messages to be generated per migration is equal to
Concurrency.
Migration messaging. We forbid the migration if the
condition in line8 of Algorithm 1 is met. This prevents
a migration that would result in the migrated message
experiencing longer queuing than if migration had not
occurred. Otherwise, we leverage our hardware mechanism
to dequeue the tail of NetRX, send MIGRATE messages
out, and have the destination queue enqueue the migrated
contents at its tail.
Walk-through example. Consider a system where Bulk=40
and Concurrency=4. If q is [30, 30, 70, 30] for 4 NetRX
queues, the runtime identifies this as a Hill pattern. The
manager core of the 3rd queue triggers one MIGRATE
message to move 10 RPC request descriptors to each of the
other queues and QD will be set to {0, 1, 3}). Once complete,
the manager core of the 3rd queue will receive 3 ACK
messages in total. At the end of this period, q is updated in all
manager cores and q′ is now: [40+X1,40+X2,40+X3,40+X4],
where X1-X4 are the number of new requests that have
arrived at each NetRX queue and have not yet been
dispatched to any core.
Software-Hardware Interface. As discussed in Sec. V,
ALTOCUMULUS messages use register-level read/write, queue
operations such as enqueue, dequeue and queue status
checking for FIFOs and MRs. One option for communication
between the user runtime and hardware is using standard
x86 model specific registers (MSR) to move register-level
data. This does not require adding any new hardware or any
ISA extensions. However, this interface uses syscalls such as
rdmsr and wrmsr, rather than directly issuing micro-ops to
the hardware from the user space. We find that these syscalls
take ∼100 CPU cycles on Sandybridge-EP servers.

We add instructions (shown in Table III) to allow
the runtime to directly communicate with the hardware.
When a manager core receives a message, it can issue
the corresponding instruction directly to perform a reg-
ister level read/write. Specifically, altom_update and
altom_predict_config can perform register-level data
movement to implement UPDATE and PREDICT CONFIG
messages. altom_status grabs the arguments required
by the MIGRATE message from PRs (parameter registers).
Implementing atomic queue operations between FIFOs and

Table III: Custom ALTOCUMULUS instructions

Instruction Description
altom_send r1, r2, r3 Send local MR offset (r1)

content to MR entry ID (r2)
with a batch size (r3)

altom_status r3, r4, r5 Returns local header, tail, and
threshold pointers

altom_update r6, q<n,1> Update local rx queue depth
(r6) to all managers (vector reg
of length n, stride 1)

altom_predict_config r7 Update migration related reg-
isters

the MR can also be costly if we rely on blocking atomic
operations provided by the CPU [59]. Therefore, we leverage
our migrator hardware module (Fig. 6) to allow for reads and
writes asynchronously with the CPU. This offers significant
speed-ups compared to using MSRs, as shown in Sec. IX-D.

Programmer guidelines. To use ALTOCUMULUS’ prediction
model, the programmer of the software runtime must know
several parameters, which we now briefly list. First, they
must know k to calculate Eq. 2. They must know how many
manager cores the system has (N) for Algorithm 1. Lastly,
they must also set an SLO value, which is typically provided
by the client or determined by the cloud providers.

With these parameters known, the programmer must now
pick the optimum values for other parameters such as Period,
Bulk and Concurrency. For µs-scale RPCs, an optimal
Period is typically less than 1 µs. If RPCs’ on-CPU time
involves a long latency operation (e.g., a PCIe transfer (200-
800 ns [46]), QPI latency (150-250 ns [6]) or inter-thread
communication (400-800 ns [54]), the Period is typically
dominated by this long latency. Second, a larger Period
usually couples with a larger Bulk. Third, Concurrency is
usually maximized to be N .

VII. METHODOLOGY

In this section, we outline the methodology we use to
evaluate ALTOCUMULUS. We start by providing an overview
of the different configurations we evaluate followed by a
description of our simulation environment.

A. Configurations

We evaluate ALTOCUMULUS with both software and
hardware scheduling techniques, which we list below.

Emulated Commodity RSS NIC. A commodity server
with a modern NICs with Receive Side Scaling (RSS)
mechanism [5]. As in prior work [61], our implementation
spreads requests to cores uniformly.

ZygOS and Shinjuku. State-of-the-art software-optimized
solutions on a commodity server. Both rely on traditional
network stacks, such as TCP/UDP. Unlike ZygOS, Shinjuku
separates networking threads and dispatcher on a dedicated

CPU core. Both use SLO-unaware software-based scheduling
operations such as work stealing and 5 µs preemption.
Nebula and nanoPU. State-of-the-art network-compute co-
design with hardware schedulers. For extremely low net-
work latency, both implement hardware-terminated network
stacks [20], [23], [61] that offload NIC RX/TX queuing
operations in hardware. To reduce NIC-to-core message
transfer overhead, both tightly integrate NIC and CPU with a
hardware-based communication mechanism–Nebula leverag-
ing cache coherence protocol and nanoPU, direct messaging
to a core’s special register file. Both use centralized hardware
scheduler based on JBSQ algorithm to manage all cores–
every time a core’s local queue has less than 2 queued
requests, the central scheduler pushes the head of its queue
to that core.
ACint. ALTOCUMULUS on hardware-terminated integrated
NICs. Each group contains 1 manager core and 15 worker
cores, where the manager core only runs the software runtime
and the other 15 cores carry out RPC processing. Similar to
Nebula and nanoPU, within each group, this design employs
their centralized hardware JBSQ scheduler and offloads NIC
RX/TX operations in hardware. Our design then rebalances
requests across multiple groups.
ACrss. ALTOCUMULUS runtime on top of a commodity
CPU with RSS NIC attached through PCIe, which adds
pressure from 1) load imbalance from using RSS and 2) long
latency from PCIe. In each group, each manager core runs the
software runtime and handles traditional networking threads
and request dispatch, similar to Shinjuku. The design requires
a minimum of 70 cycles to move a message to a worker
through the cache coherence protocol [26].

B. Simulation Environment

We simulate all designs with a Pin-based [41] in-house
simulator extended from Zsim [56]. We model 16 cores, as
the prior work we compare against is optimized for this
scale. We model the NIC, NoC and QPI in our simulator and
faithfully quantify their queuing effects. We model the NIC
with memory-mapped queue pairs (QPs) that receive RPC
messages and send RPC responses. We integrate techniques
that reduce NIC-to-core transfer overhead proposed by
Nebula and nanoPU when evaluating those two baselines.
Ethernet MAC, serial I/O and transport interpretation time
on the NIC are set to be ∼30ns in total [23]. Each NoC
packet has a per-hop latency of 3ns. We model QPI with
point-to-point latency of 150ns [6]. PCIe latency is 200-800ns
depending on data size [46].
Load generator. We evaluate both synthetic and real-world
traces. First, we generate Poisson-based synthetic traces.
Second, we use a request arrival pattern based on a regression
model trained in the public cloud [9]. The regression model
also integrates features that encode temporal information
about the period for which we are generating batches. Batches

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Throughput (Million Requests per Second)

0
50

100
150
200
250
300

99
th

 la
te

nc
y

(u
s) IX

ZygOS
Shinjuku
RPCValet

Nebula
nanoPU
AC_rss

Figure 10: Comparisons against prior work with synthetic
workloads (16-core, Bi-modal distribution)

are particularly common and widely explored for RPCs [27].
This model can accurately capture 82% and 92% of actual
request arrivals in Microsoft Azure and Huawei Cloud,
respectively [9].
Evaluation metrics. We evaluate the performance of all
designs in terms of throughput@SLO. Unless otherwise stated,
the SLO is a 99th percentile latency target of 10× the average
RPC service time [14], [53], [61]. We evaluate the effect of
saving SLO violations for SLO target ratios other than 10 in
Fig. 13(c). Our measurements are server-side: each RPC’s
latency measurement begins when it is received by the NIC,
and ends when its buffers are freed upon completion.

VIII. EVALUATION

We now present an evaluation of our design, starting with a
comparison against state-of-the-art schedulers using synthetic
workloads (Sec. VIII-A). We also explore varying group
sizes, migration parameters and evaluate scaling to higher
core counts in Sec. VIII-B-VIII-E. Finally, we evaluate an
end-to-end application with realistic traces in Sec. IX.

A. Comparing ALTOCUMULUS and State-of-the-art RPC
Scheduling Systems

We compare ALTOCUMULUS with state-of-the-art schedul-
ing systems in Table I. They span both software (IX [8],
ZygOS [53], Shinjuku [26]) and hardware (RPCValet [11],
Nebula [61] and nanoPU [23]) techniques. The request
service time follows a Bimodal distribution where 99.5% of
the requests are 0.5 µs and 0.5% 500 µs [26]. This high
dispersion service time pattern represents the scenarios where
long/short RPCs co-exist, e.g., GET/SET vs SCAN in key-
value stores and databases. For this experiment, we set SLO
target to be 300 µs. We use ACrss to demonstrate how our
design can correct the initial load imbalance caused by RSS.

Fig. 10 demonstrates tail latency vs. throughput. Though
ZygOS outperforms RSS-based IX by using software-based
work stealing, both suffer from head-of-line blocking when
long requests exist (even though rare). Shinjuku addresses
these issues through fast preemption and centralized load
balancing and achieves up to 5× better throughput@SLO.

(a) Bulk size

No
Migra.

10 40 100 200 4001000

Migration Period (ns)

0

50

100

150

200

250

300

350

400 SLO-Vio.
SLO-non-Vio.

5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5

99
%

 L
at

en
cy

 (u
s)

(b) Period

Figure 11: Impact of migration granularity and period on
throughput (bars) and 99th percentile latency (line).

Nebula and nanoPU have a 3.9-4.4× throughput improvement
over Shinjuku, as they employ hardware-based scheduler and
hide NIC-core communication latency with a fine-grained
JBSQ algorithm. Since Nebula’s JBSQ only makes decisions
based on per-core request number, it lacks awareness of long
requests. Therefore, even at low load, its tail latency is up to
4.7× worse than Shinjuku. nanoPU avoids this drawback of
JBSQ scheduler by piggybacking a preemption mechanism
on each core. ACrss has 24.6× improvement over ZygOS
due to effective migration and low-overhead direct register
messaging. We outperform Nebula by a factor of 1.05× and
15.8× for throughput and 99th percentile latency. Although
we dedicate one core as the manager – sacrificing 6.25%
potential throughput – we still deliver 92.5% throughput
and similar 99th percentile latency compared to the best-
performing case of nanoPU that gets rid of RSS. While
nanoPU requires hardware changes both in the core microar-
chitecture and the NIC, ALTOCUMULUS only modifies the
manager core tiles.

B. Group Size Exploration

ALTOCUMULUS ‘groups’ cores such that each group has
one manager core and one or more worker cores. As the
manager cores do not service RPC requests, smaller groups
suffer from higher overhead due to the manager core. On
the other hand, large groups makes more effective use of all
cores, but suffer from the drawback of earlier work where
the single manager core becomes the bottleneck. Fig. 12(a)

explores different group configurations for a 64-core system.
For ACint, group sizes of 16 and 32 cores achieve the
highest throughput@SLO. A group size of 64 gets degraded
throughput because of variance in remote cache access
latency. In ACrss, for group sizes larger than 16, a manager
core itself can become the throughput bottleneck. The reason
is that a manager’s throughput has a theoretical upper bound
of 28 MRPS, considering 70 cycles@2GHz per message. To
support both designs, we choose to use 16 cores per group.

C. Migration Parameter Exploration

We now perform two sensitivity studies to understand
how the choice of design parameters affects ALTOCUMULUS
performance. We model NIC bandwidth to be 1.6 TbE and
use a 256-core system, with 16 manager cores, each assigning
work to 16 worker cores. In Fig. 11(a), we show the number
of SLO violations and 99th percentile tail latency vs. Bulk,
for a migration period of 200 ns. When Bulk=16, we can
eliminate all SLO violations (left axis). We also see that 99th

percentile tail latency (right axis) strongly correlates with
SLO violations.

In Fig. 11(b), we show that varying the migration period
from 10 ns to 400 ns does not significantly affect either the
rate of SLO violations or the 99th percentile latency. We can
understand why this is the case as follows. For a 1.6 TbE
NIC, the time between packets is on average ∼2.5 ns. Thus
for 16 queues, it would take 16×Bulk number of packets
to fill the queues such that the longest queue would reach the
threshold for migration. This works out to 2.5ns×16×Bulk =
∼640 ns, which is comparable to the mean service time of an
RPC, which is ∼630 ns in our experiment. If migrating every
1000 ns, Fig. 11(b) indicates ∼1/3 of migration opportunity
is lost and it fails to recover 150K out of 400K RPCs that
violate SLO. The anomaly in the 40 ns case is explained in
Sec. VIII-D.

D. Migration Effectiveness Breakdown

We replay 400K RPCs from the baseline, and compare the
two cases to evaluate the effectiveness of ALTOCUMULUS’
migration implementation. We split predicted SLO violations
into four groups, which we show in Fig. 12(c), where:
1) Eff. means migrations that saves SLO violations.
2) InEff. w/o harm means the migrated RPC request

did not violate SLO either before or after migration.
3) InEff. w/o benefit means this SLO-violating

RPCs would still violate SLO after migration.
4) False, harmful mis-predictions, where an SLO-

satisfying RPC becomes an SLO-violating one after
migration.

Eff. can significantly improve 99th percentile latency
because the worst case SLO violations are recovered.
InEff. w/o harm can also reduce queuing delay of
requests because we migrate them to a shorter queue. False

(a) Group size exploration (# groups x
size)

40 200 400 1000
Migration Period (ns)

0
50

100
150
200
250

M

ig
ra

te
d

Re
qs

 (K
) Eff.

False
InEff. w/o harm
InEff. w/o benefit

(b) Migration effectiveness

40 200 400 1000
Migration Period (ns)

500
1000
1500
2000
2500
3000

M

ig
ra

te
d

Re
qs

False

(c) False migrations for different periods

Figure 12: ALTOCUMULUS sensitivity analysis.

and InEff. w/o benefit cause unnecessary scheduling
traffic, and False even increases extra SLO violations and
thus adversely affects throughput@SLO.

In Fig. 12(a), we observe that 130K, 161K, 108K, 69K
RPCs have experienced migration for the 4 migration periods
tested. First, migrating too lazily (1000 ns) fails to save
47% RPCs that are queued too deep (InEff. w/o benefit).
Migrating too eagerly (40 ns) results in 41% of migration
operations that fail to impart any positive benefit, as such
frequent scheduling produces migrations faster than they can
be consumed leading to new contention effects in the system.

Fig. 12(b) shows that we can eliminate nearly all mispre-
dictions and save all RPCs to satisfy the SLO. At best, among
161K migrated RPCs, 70K of them are effective migration,
saving SLO-violations. The effective ratio is 42%. The rest
(58%) of the migration messages significantly reduce queuing
time because they rebalance system loads across managers
and do not cause any undesirable SLO violations. Sec. VIII-E
discusses the overhead of those ineffective migrations and
the way to further reduce such overhead.

Effectiveness of preventing SLO violations. Fig. 12(c)
shows only the false migrations from Fig. 12(b). Since we
evaluate 99th percentile latency, the slowest 1% of RPCS (4K)
contribute disproportionately to tail latency. With a period
of 200ns, we falsely migrate only 53 RPCs. We successfully
eliminate >99.8% of SLO violations and improves tail
latency.

E. Migration Overhead

Migration traffic. The results in Fig. 12(c) use the prediction
model that selects T based on the first SLO violation,
which delivers the highest accuracy by sacrificing migration
effectiveness as discussed in Sec. IV. ALTOCUMULUS’
approach can provide flexibility to balance this trade-off and
save migration traffic. Although the model used in Fig. 12(c)
results in 58% ineffective migration, the number of requests
involved migration is smaller than the 70% of messages
moved by ZygOS [53]. ZygOS also moves the entire message
up to thousands of bytes, whereas we only move 14B message

pointers which significantly reduces scheduling related traffic.

Latency cost. The migration happens well before a migrated
request gets processed. Thus, migration latency is off the
critical path and does not hurt tail latency. Instead, Fig. 11
illustrates that migration can actually reduce the queuing time
of migrated requests. The SLO prediction overhead added on
each RPC consists of the operations needed in Algorithm 1.
These operations (and their cycle counts) are: 1) 3ns per
hop in the NoC to send update messages between managers,
2) 2 multiplications (7 cycles) and 2 additions (1 cycle) to
calculate T , 3) at most 3 comparisons (2 cycles), one against
T and the other three against Bulk for each pattern. For
a 2 GHz CPU, this gives a worst-case prediction latency is
18ns. For 256-core system, migration latency is less than
50ns. ALTOCUMULUS enables migrations as frequent as
every ∼50ns without saturating system throughput or adding
significant latency on the critical path.

IX. END-TO-END APPLICATION

In the previous section, we evaluated ALTOCUMULUS us-
ing a synthetic workload. We now show that ALTOCUMULUS
effectively reduces RPC scheduling latency for an end-to-end
application, namely MICA, under real-world traces.

A. MICA over an Altocumulus RPC system

We evaluate MICA, an in-memory key-value store [39],
which is the end-to-end application evaluated in prior work,
such as HERD [28], Nebula [61] and nanoPU [23]. MICA is
implemented as a library with an API that allows distributed
applications to GET and SET key-value pairs. We port MICA
to our RPC handlers, in which requests generated by our load
generator are drained from pre-allocated message buffers.
We copy the descriptors of network messages between in-
memory buffers and register files of ALTOCUMULUS mi-
croarchitecture. After completion, the RPC handler enqueues
RPC responses to pre-allocated response message buffers.
Each RPC handler follows a run-to-completion model. Each
manager thread can enqueue/dequeue its NetRX and read

the number of waiting RPC requests within a few cycles.
Message buffers are read/written at shared cache speed.
We evaluate ALTOCUMULUS using two optimized network
protocols, where eRPC stack lowers RPC latency down to
850 ns [27] and nanoRPC, within 40 ns [23].

B. MICA Configurations

The MICA key-value store implementation is optimized
for multicore architecture with partitioned DRAM stores. We
use EREW (exclusive read, exclusive write) mode of MICA,
in which each core owns one key partition. EREW has the
highest performance in most cases [39] because there are no
concurrency control overheads, making MICA scale linearly
with CPU cores. In our implementation, we map each key
partition to each manager thread instead of mapping them to
each core. From each manager to its local worker cores, we
assume each worker core has the entire replica of the dataset
and therefore it is possible to balance load to any local worker
core if available. We use the default MICA hash bucket count
(2M) and circular log size (4GB). We deploy an 819MB
dataset owned by each manager, comprising 1.6M 16B/512B
key/value pairs. Query mixes are 50/50 GET/SET. For a SET,
the core loads the value to be written from the LLC [61] (i.e.,
a remote cache read) or the main memory [1] (i.e., a DRAM
access) and then write it to the DRAM-resident MICA log.
GETs first must fetch the value from the MICA log, and
write it to the response message buffer, usually taking longer
delay than SETs.

C. Scalability

Fig. 13(a) shows that all our evaluated configurations scale
effectively with increasing number of cores under a Poisson
arrival distribution and a fixed 850 ns service time per request
with the eRPC stack [27]. Fig. 13(a) also evaluates real-world
traffic under which commodity RSS NIC and Nebula achieve
limited throughput@ SLO as they cannot adapted to varied
request times and arrival patterns.

In contrast, we demonstrate our adaptability using two
configurations. ACint subopt uses optimal migration parame-
ters for synthetic traces (Sec. VIII-C), i.e., Period=200 ns,
Bulk=16 and Concurrency=8. Although not optimal for
real traffic, it still increases throughput@SLO over Nebula by
a factor of 2.3 and 1.5, with 128 and 256 cores, respectively.
By tuning migration parameters, ACint opt realizes near-
linear scalability across core counts, achieving 2.8-7.4×
throughput when the ratio of SLO violations is within 5%
range. ACint opt under realistic traffic loses 13.6-15.4%
throughput@SLO compared to that under synthetic traces.
First, due to more complex traffic patterns, ALTOCUMULUS’
prediction accuracy decreases from 99.8% to 96%. Second,
since MICA is in EREW mode, our design undergoes
application-level concurrency overhead as some migrated
RPCs have to perform an additional remote cache access to
the key’s owner core.

D. Adaptability

We mix three types of RPCs: 0.5% ∼50 µs SCAN, and
99.5% ∼50 ns GET/SET based on nanoRPC stack [23]. The
baseline (Nebula) and our 4-manager ALTOCUMULUS are all
set to be 64 cores because large core count needs cross QPI
bus, whose latency is detrimental for 50 ns GET/SET. We
only initialize the ALTOCUMULUS runtime when throughput
reaches 250 MRPS, which is the point at which Nebula
starts to violate SLO. ALTOCUMULUS settings including
ACrss-ISA and ACrss-MSR to compare our custom ISA
instructions versus x86 MSR instructions to implement our
mechanism.

Comparison against Nebula. Fig. 14 reports 99th percentile
latency (left, logscale) and SLO violation (right) results
after 10,000 RPCs complete. At low load, Nebula can
maintain low 99th percentile latency within 300 ns due to the
effectiveness of Nebula’s NIC-managed hardware scheduler
design and request prefetch. However, once throughput
reaches 250 MRPS, Nebula’s 99th percentile latency begins
to fluctuate unpredictably and increases to 15µs, 320× worse
than an average GET/SET request handling time. Fig. 14
on the right shows that up to 47% requests violate the SLO
at ∼300 MRPS due to head-of-line blocking in Nebula. In
contrast, the ALTOCUMULUS scheduler, particularly ACrss-
ISA, does not experience these fluctuations and achieves a
much lower 99th percentile latency We also see a more grad-
ual increase in the rate of SLO violations up to 700 MRPS,
achieving a 2.5× throughput improvement over Nebula when
99th percentile latency reaches SLO.

Comparison against kernel scheduling. Fig. 14 shows that
before the ALTOCUMULUS runtime has started, our two
configurations experience high tail latency. The generic RSS-
based kernel-scheduler we model can cause severe queueing
effects, resulting in a high 99th percentile latency of ∼40µs
at even low load. Software-only schedulers are inefficient
at handling sub-1 µs RPCs on a manycore system, under
complex arrival patterns.

Custom ISA instructions vs. MSR. Fig. 14 shows at high
load, ACrss-MSR reaches 91% of the max throughput that
ACrss-ISA delivers (for 99th percentile latency < 1 µs).
ACrss-ISA also provides more stable tail latency than
ACrss-MSR, as instructions are much faster than the ∼100s
cycles taken by rdmsr/wrmsr syscalls. ALTOCUMULUS
sees a 2.5× higher throughput over state-of-the-art hardware-
based system.

E. Case studies using ALTOCUMULUS

In this section, we present three case studies to show the
versatility of ALTOCUMULUS.

Case study 1. First, we show how ALTOCUMULUS com-
ponents can be used with an integrated-NIC based system,
such as Nebula, to improve throughput@SLO. The baseline

50 100 150 200 250
of Cores

0
50

100
150
200
250
300

M
RP

S
(1) Fix service dist., 850 ns

50 100 150 200 250
of Cores

0
50

100
150
200
250
300

(2) Real-world patterns
RSS
Nebula
AC_int_subopt
AC_int_opt

(a)

RSS

AC_in
t_1

AC_in
t_2

AC_rs
s_1

AC_rs
s_2

0
50

100
150
200
250

M
RP

S

(b)

SLO=5A SLO=10A SLO=20A0.0
0.2
0.4
0.6
0.8
1.0

Pr
ed

ict
io

n
Ac

cu
ra

cy RSS
AC_int_opt

AC_rss_opt

(c)

Figure 13: (a) Throughput@SLO and SLO prediction accuracy for MICA using real-world traffic patterns (256 cores). (b)
Throughput@SLO for case studies 1 and 2 with the following configurations: RSS, ACint rt, ACint rt+msg, ACrss syn

and ACrss rw. (c) Prediction accuracy while varying the ratio of SLO to average service time (A).

0 100 200 300 400 500 600 700
Throughput (MRPS)

100

101

102

99
th

%
 la

te
nc

y
(u

s)

0 100 200 300 400 500 600 700
Throughput (MRPS)

0.0
0.2
0.4
0.6
0.8
1.0

Ra
tio

 o
f S

LO
 V

io
la

tio
ns Nebula

AC_rss-ISA
AC_rss-MSR

(a) Latency

0 100 200 300 400 500 600 700
Throughput (MRPS)

100

101

102

99
th

%
 la

te
nc

y
(u

s)

0 100 200 300 400 500 600 700
Throughput (MRPS)

0.0
0.2
0.4
0.6
0.8
1.0

Ra
tio

 o
f S

LO
 V

io
la

tio
ns Nebula

AC_rss-ISA
AC_rss-MSR

(b) Ratio of violations

Figure 14: Nebula vs. two implementations on MICA with
real-world traffic (nanoRPC, 64 cores).

for our comparison is a commodity server with RSS NIC
attached via PCIe. We evaluate a scale-out 256-core Nebula
system, where each 16-core Nebula is a single group. We
optimistically assume that all 256 cores use a single coherence
domain (as required by Nebula). ACint rt integrates our
decentralized runtime on each of the 16 manager cores. We
also evaluate ACint rt+msg which adds both our runtime and
hardware messaging on top of the scale-out Nebula system.

Fig. 13(b) shows the throughput comparison between the
baseline RSS system and the two modified Nebula systems.
Nebulart improves throughput@SLO over the baseline RSS
system by 2.2×. ACint rt+msg further improves this by a
factor of 1.3×. We get a best case throughput of 251 MRPS,
achieving 83.3% of the ideal throughput (which is 301 MRPS
for 850 ns requests with 256 cores).

Case study 2. We now show how ALTOCUMULUS’ pa-
rameters can be tuned for the ACrss system, which uses
a commodity CPU with an RSS NIC attached via PCIe.
We explore two variations of ACrss, namely ACrss syn

and ACrss rw, shown in Fig. 13(b). ACrss syn is tuned for
synthetic traces but still achieves a 1.4× speedup over the
baseline RSS system. Using tuned parameters for the real-
world traffic, ACrss rw achieves a 2.7× throughput@SLO
improvement. Interestingly, performance only degrades by
7% from ACint rt+msg to ACrss rw, primarily because our
design is resilient to the long queuing delays that would be
caused by RSS load imbalance and long PCIe latency.

Case study 3. The final case study explores the effect of
changing the SLO target on prediction accuracy. Recall that,
until now we have used an SLO target of 10A, where A is the
average service time. For this experiment, we also evaluate
SLO=5A and SLO=20A with A = 850ns and load=0.9. We
evaluate using two configurations: ACint opt and ACrss opt,
both tuned separately for maximum performance. Further-
more, for ACrss opt we integrate the recent feature that
allows RSS to re-configure its request-to-core mapping to
adapt to load imbalance, but only at a frequency of every
20 µs [7].

Fig. 13(c) shows the comparison between a baseline
RSS system and the two AC systems described above.
At SLO=5A, ACint opt and ACrss opt achieves 2.3 and
1.8× prediction accuracy increase over the baseline RSS,
respectively. Our technique works better for the stricter
SLO=5A case as other systems are not able to effectively
load balance at such a strict latency constraint.

At SLO=10A, ACrss opt saves 1.3× more SLO violations
than the baseline RSS system. For SLO=20A, as the target is
not demanding anymore, all approaches are able to realizes
>95% prediction accuracy for this relaxed SLO target. This
shows that ALTOCUMULUS is ideally suited to systems with
demanding SLO targets (e.g., <= 10A target) requirements,
which is pivotal in modern cloud [14], [27], [53].

Through these three case studies, we provide some key

takeaways regarding our design:
1) ALTOCUMULUS is highly versatile and is able to improve

throughput@SLO on a variety of systems.
2) Even for a simple baseline system such as a commodity

CPU with a PCIe-attached RSS NIC, parameter tuning
enables ALTOCUMULUS to reduce the impact of load
imbalance and PCIe overhead caused by RSS.

3) Optimizing ALTOCUMULUS parameters for real-world
traces requires tuning a few parameters (as shown in
Sec. VI) to achieve high throughput.

X. RELATED WORK

We discussed RPC scheduling designs and implementa-
tions in Sec. II. We now highlight additional related work.
RPC stack optimization. DPDK [1] and PacketMill [15]
reduce OS network transport overhead and memory copying
via user-level specialization. eRPC [27] combines many soft-
ware techniques to optimize small messages and congestion-
free common cases. Recent research focuses on dedicating
extra hardware to realize faster RPC stack processing.
RPCValet [11] achieves NIC-core communication through
shared caches, bypassing slow PCIe buses. Nebula [61]
further shortens delays between messages and applications at
L1 cache speed. Dagger [36] and Cerebros [52] offload
software components required for commonly used RPC
protocols to hardware. Optimus Prime [51] and Zerializer [65]
propose data marshalling accelerators for (de)serialization
ill-suited for CPUs. nanoPU [23] offers an ultra-low latency
path between the NIC and the core by directly writing a
message from the NIC to the core’s register file.

We are the first to identify the bottleneck of RPC
scheduling for µs-scale RPCs. We expect our design to
synergize with existing RPC stack optimization: the more
optimized the RPC stack, the more scheduling overhead
affects the RPC throughput and latency, and the more pivotal
our design will be.
CPU efficiency of RPC servers. Prior work implicitly
acknowledges that guaranteeing µs-scale SLO comes at
the cost of sacrificing CPU utilization. Existing Linux
systems can only deliver µs-scale latency when keeping CPU
utilization low and leaving enough idle cores available to
handle incoming requests instantly [30], [37], [67]. Alterna-
tively, by circumventing the kernel scheduler, kernel-bypass
approaches such as ZygOS achieve µs-level latency at higher
throughput [1], [8], [49], [50], [53]. Shenango addresses CPU
wastage coming from spin-polling and core overprovisioning
for peak load [48]. However, significant CPU cycles of even a
small core-count CPU remain wasted when handling µs-scale
requests [17], [54]. A plethora of work enables co-location
of latency-critical and batch applications to improve system
efficiency [17], [32], [34], [40], [42], [44], [64], [66], [67].
Our work focuses on another source of CPU waste – lack of

effective and fast scheduling for µs-scale SLO. Mitigating
such waste is beneficial to improve loads of latency critical
requests under guaranteed µs-scale latency constraints such
as RPC systems [17], [44], or leave more CPU cycles for
handling batch applications as prior work proposed.

SLO and queuing theory in RPC systems. While prior
work used queuing theory for load balancing in a distributed
multi-server systems [33], [47], we employ it to balance
loads across tens to hundreds of cores within a CPU server.
Nebula [61] leveraged queuing theory to bound RPC buffer
size to mitigate memory bandwidth bottleneck, while we
leverage it to predict SLO violations with the help of discrete
event simulation.

Architectural support for scheduling. Hardware accelerated
scheduling has been proposed for traditional [10], [35], [57],
[62], [63] and speculative [24] task-parallel programming
models. Our messaging for scheduling is most similar to
ADM [57]. However, since most scheduling designs in
task-parallel systems target throughput but not latency, we
augment the ADM mechanism with unique features for RPC
systems. ALTOCUMULUS inherits direct register messaging
for low latency RPC message transfer from nanoPU [23].
Unlike nanoPU that moves the entire message payload around,
we only send the descriptor of a RPC message and thus
mitigate overhead and boost migration efficiency.

XI. CONCLUSIONS & FUTURE WORK

We present ALTOCUMULUS, which uses a predictive model
to migrate RPC requests that are likely to violate SLO to less
busy cores. ALTOCUMULUS uses hardware to move requests
at the register level and allows software a direct path to
hardware via ISA extensions. The ALTOCUMULUS runtime
runs as a software shim layer, whose migration messages
are supported by a set of simple hardware primitives. Our
two-tier scheduling scheme effectively scales to hundreds of
cores for CPUs used in future datacenters.

The ALTOCUMULUS software-based hardware-assisted
design opens up new opportunities in RPC systems and
beyond. The flexibility provided by the ALTOCUMULUS
software runtime can support a wide range of new scheduling
policies, without requiring hardware or kernel scheduler
modifications. In addition, our distributed software runtime
offers the opportunity for isolating different applications,
which we leave as a study for future work.

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers and members
of the NEJ group for their valuable feedback. This work
was supported by the Natural Science and Engineering
Research Council of Canada, a Canada Research Chair and
the Canadian Foundation for Innovation.

REFERENCES

[1] “Data Plane Development Kit. The Linux Foundation Projects.”
https://www.dpdk.org.

[2] “Ethernet alliance. (2020),” https://ethernetalliance.org/
technology/2020-roadmap/.

[3] “Intel Corp. Introduction to Intel Ethernet
Flow Director and Memcached Performance.”
http://www.intel.com/content/dam/www/public/us/en/
documents/white-papers/intel-ethernet-flow-director.pdf.

[4] “Marvell® octeon 10 dpu platform.” https:
//www.marvell.com/content/dam/marvell/
en/public-collateral/embedded-processors/
marvell-octeon-10-dpu-platform-product-brief.pdf.

[5] “Microsoft corp. receive side scaling.” http://msdn.microsoft.
com/library/windows/hardware/ff556942.aspx.

[6] R. Achermann, A. Panwar, A. Bhattacharjee, T. Roscoe,
and J. Gandhi, “Mitosis: Transparently self-replicating page-
tables for large-memory machines,” in Proceedings of the
25th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2020, pp. 283–300.

[7] T. Barbette, G. P. Katsikas, G. Q. Maguire Jr, and D. Kostić,
“RSS++: load and state-aware receive side scaling,” in Pro-
ceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies (CoNEXT), 2019,
pp. 318–333.

[8] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis,
and E. Bugnion, “IX: A protected dataplane operating system
for high throughput and low latency,” in Proceedings of
the 11th Symposium on Operating Systems Design and
Implementation (OSDI), 2014, pp. 49–65.

[9] S. Bergsma, T. Zeyl, A. Senderovich, and J. C. Beck,
“Generating complex, realistic cloud workloads using recurrent
neural networks,” in Proceedings of the 28th Symposium on
Operating Systems Principles (SOSP), 2021, pp. 376–391.

[10] E. Castillo, L. Alvarez, M. Moreto, M. Casas, E. Vallejo, J. L.
Bosque, R. Beivide, and M. Valero, “Architectural support for
task dependence management with flexible software schedul-
ing,” in Proceedings of the 24th International Symposium on
High Performance Computer Architecture (HPCA), 2018, pp.
283–295.

[11] A. Daglis, M. Sutherland, and B. Falsafi, “RPCValet: NI-driven
tail-aware balancing of µs-scale RPCs,” in Proceedings of the
24th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2019, pp. 35–48.

[12] W. J. Dally and B. P. Towles, Principles and practices of
interconnection networks. Elsevier, 2004.

[13] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,
B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow, J. A.
Docauer, J. Alpert, J. Ai, J. Olson, K. DeCabooter, M. d. Kruijf,
N. Hua, N. Lewis, N. Kasinadhuni, R. Crepaldi, S. Krishnan,
S. Venkata, Y. Richter, U. Naik, and A. Vahdat, “Andromeda:
Performance, isolation, and velocity at scale in cloud network
virtualization,” in Proceedings of the 15th Symposium on
Networked Systems Design and Implementation (NSDI), 2018,
pp. 373–387.

[14] J. Dean and L. A. Barroso, “The tail at scale,” Communications
of the ACM, vol. 56, no. 2, pp. 74–80, 2013.

[15] A. Farshin, T. Barbette, A. Roozbeh, G. Q. Maguire Jr, and
D. Kostić, “PacketMill: toward per-core 100-Gbps networking,”
in Proceedings of the 26th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), 2021, pp. 1–17.

[16] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield,
E. Chung, H. K. Chandrappa, S. Chaturmohta, M. Humphrey,
J. Lavier, N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri,
S. Raindel, T. Sapre, M. Shaw, G. Silva, M. Sivakumar,
N. Srivastava, A. Verma, Q. Zuhair, D. Bansal, D. Burger,
K. Vaid, D. A. Maltz, and A. Greenberg, “Azure accelerated
networking: Smartnics in the public cloud,” in Proceedings
of the 15th Symposium on Networked Systems Design and
Implementation (NSDI), 2018, pp. 51–66.

[17] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay, “Caladan:
Mitigating interference at microsecond timescales,” in Pro-
ceedings of the 14th Symposium on Operating Systems Design
and Implementation (OSDI), 2020, pp. 281–297.

[18] Y. Fu, T. M. Nguyen, and D. Wentzlaff, “Coherence domain
restriction on large scale systems,” in Proceedings of the
48th International Symposium on Microarchitecture (MICRO),
2015, pp. 686–698.

[19] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki,
A. Bruno, J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi,
Y. He, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang,
L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla,
and C. Delimitrou, “An open-source benchmark suite for
microservices and their hardware-software implications for
cloud & edge systems,” in Proceedings of the 24th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019, pp. 3–18.

[20] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and
M. Lipshteyn, “RDMA over commodity ethernet at scale,” in
Proceedings of the 2016 ACM SIGCOMM Conference, 2016,
pp. 202–215.

[21] M. Hao, H. Li, M. H. Tong, C. Pakha, R. O. Suminto, C. A.
Stuardo, A. A. Chien, and H. S. Gunawi, “MittOS: Supporting
millisecond tail tolerance with fast rejecting SLO-aware OS
interface,” in Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP), 2017, pp. 168–183.

[22] J. T. Humphries, N. Natu, A. Chaugule, O. Weisse, B. Rhoden,
J. Don, L. Rizzo, O. Rombakh, P. Turner, and C. Kozyrakis,
“ghOSt: Fast & flexible user-space delegation of linux schedul-
ing,” in Proceedings of the 28th Symposium on Operating
Systems Principles (SOSP), 2021, pp. 588–604.

https://www.dpdk.org
https://ethernetalliance.org/technology/2020-roadmap/.
https://ethernetalliance.org/technology/2020-roadmap/.
http://www.intel.com/content/dam/ www/public/us/en/documents/white-papers/intel-ethernet-flow- director.pdf
http://www.intel.com/content/dam/ www/public/us/en/documents/white-papers/intel-ethernet-flow- director.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
http: //msdn.microsoft.com/library/windows/hardware/ff556942.aspx
http: //msdn.microsoft.com/library/windows/hardware/ff556942.aspx

[23] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz,
C. Kim, and N. McKeown, “The nanoPU: A nanosecond
network stack for datacenters,” in Proceedings of the 15th
Symposium on Operating Systems Design and Implementation
(OSDI), 2021, pp. 239–256.

[24] M. C. Jeffrey, S. Subramanian, M. Abeydeera, J. Emer, and
D. Sanchez, “Data-centric execution of speculative parallel
programs,” in Proceedings of the 49th International Symposium
on Microarchitecture (MICRO), 2016, pp. 5:1–5:13.

[25] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park, “mtcp: a highly scalable user-level TCP stack
for multicore systems,” in Proceedings of the 11th Symposium
on Networked Systems Design and Implementation (NSDI),
2014, pp. 489–502.

[26] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières,
and C. Kozyrakis, “Shinjuku: Preemptive scheduling for
µsecond-scale tail latency,” in Proceedings of the 16th Sym-
posium on Networked Systems Design and Implementation
(NSDI), 2019, pp. 345–360.

[27] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter RPCs
can be general and fast,” in Proceedings of the 16th Symposium
on Networked Systems Design and Implementation (NSDI),
2019, pp. 1–16.

[28] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA
efficiently for key-value services,” in Proceedings of the 2014
ACM SIGCOMM Conference, 2014, pp. 295–306.

[29] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks, “Profiling a warehouse-
scale computer,” in Proceedings of the 42nd International
Symposium on Computer Architecture (ISCA), 2015, pp. 158–
169.

[30] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: Predictable low latency for data center applications,”
in Proceedings of the 3rd ACM Symposium on Cloud Com-
puting (SoCC), 2012, pp. 1–14.

[31] S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi,
B. Nikolic, K. Asanovic, and P. Ranganathan, “A hardware
accelerator for protocol buffers,” in Proceedings of the 54th
International Symposium on Microarchitecture (MICRO), 2021,
pp. 462–478.

[32] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with
strict QoS for latency-critical workloads,” in Proceedings of
the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2014, p. 729–742.

[33] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, and E. Bugnion,
“R2P2: Making RPCs first-class datacenter citizens,” in Pro-
ceedings of the 2019 Annual Technical Conference (ATC),
2019, pp. 863–880.

[34] N. Kulkarni, G. Gonzalez-Pumariega, A. Khurana, C. A.
Shoemaker, C. Delimitrou, and D. H. Albonesi, “CuttleSys:
Data-driven resource management for interactive services
on reconfigurable multicores,” in Proceedings of the 53rd
International Symposium on Microarchitecture (MICRO), 2020,
pp. 650–664.

[35] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: architectural
support for fine-grained parallelism on chip multiprocessors,”
in Proceedings of the 34th International Symposium on
Computer Architecture (ISCA), 2007, pp. 162–173.

[36] N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou,
“Dagger: efficient and fast RPCs in cloud microservices with
near-memory reconfigurable NICs,” in Proceedings of the
26th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2021, pp. 36–51.

[37] J. Leverich and C. Kozyrakis, “Reconciling high server utiliza-
tion and sub-millisecond quality-of-service,” in Proceedings of
the 9th European Conference on Computer Systems (EuroSys),
2014, pp. 1–14.

[38] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky,
D. G. Andersen, O. Seongil, S. Lee, and P. Dubey, “Archi-
tecting to achieve a billion requests per second throughput
on a single key-value store server platform,” in Proceedings
of the 42nd Annual International Symposium on Computer
Architecture (ISCA), 2015, pp. 476–488.

[39] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica:
A holistic approach to fast in-memory key-value storage,” in
Proceedings of the 11th Symposium on Networked Systems
Design and Implementation (NSDI), 2014, pp. 429–444.

[40] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: Improving resource efficiency at
scale,” in Proceedings of the 42nd International Symposium
on Computer Architecture (ISCA), 2015, pp. 450–462.

[41] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building cus-
tomized program analysis tools with dynamic instrumentation,”
in Proceedings of the Conference on Programming Language
Design and Implementation (PLDI), 2005, p. 190–200.

[42] A. Margaritov, S. Gupta, R. Gonzalez-Alberquilla, and B. Grot,
“Stretch: Balancing qos and throughput for colocated server
workloads on smt cores,” in Proceedings of the 25th Interna-
tional Symposium on High Performance Computer Architecture
(HPCA), 2019, pp. 15–27.

[43] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans, S. Grib-
ble, N. Kidd, R. Kononov, G. Kumar, C. Mauer, E. Musick,
L. Olson, E. Rubow, M. Ryan, K. Springborn, P. Turner,
V. Valancius, X. Wang, and A. Vahdat, “Snap: A microkernel
approach to host networking,” in Proceedings of the 27th
Symposium on Operating Systems Principles (SOSP), 2019,
pp. 399–413.

[44] S. McClure, A. Ousterhout, S. Shenker, and S. Ratnasamy,
“Efficient scheduling policies for microsecond-scale tasks,” in
Proceedings of the 19th Symposium on Networked Systems
Design and Implementation (NSDI), 2022, pp. 1–18.

[45] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa:
A receiver-driven low-latency transport protocol using network
priorities,” in Proceedings of the 2018 ACM SIGCOMM
Conference, 2018, pp. 221–235.

[46] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-
Buedo, and A. W. Moore, “Understanding PCIe performance
for end host networking,” in Proceedings of the 2018 ACM
SIGCOMM Conference, 2018, pp. 327–341.

[47] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot,
“The case for rackout: Scalable data serving using rack-scale
systems,” in Proceedings of the 7th Symposium on Cloud
Computing (SoCC), 2016, pp. 182–195.

[48] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakr-
ishnan, “Shenango: Achieving high CPU efficiency for latency-
sensitive datacenter workloads,” in Proceedings of the 16th
Symposium on Networked Systems Design and Implementation
(NSDI), 2019, pp. 361–378.

[49] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee,
B. Montazeri, D. Ongaro, S. J. Park, H. Qin, M. Rosenblum,
S. Rumble, R. Stutsman, and S. Yang, “The RAMCloud
storage system,” ACM Transactions on Computer Systems
(TOCS), vol. 33, no. 3, pp. 1–55, 2015.

[50] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishna-
murthy, T. Anderson, and T. Roscoe, “Arrakis: The operating
system is the control plane,” ACM Transactions on Computer
Systems (TOCS), vol. 33, no. 4, pp. 1–30, 2015.

[51] A. Pourhabibi, S. Gupta, H. Kassir, M. Sutherland, Z. Tian,
M. P. Drumond, B. Falsafi, and C. Koch, “Optimus prime:
Accelerating data transformation in servers,” in Proceedings of
the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2020, pp. 1203–1216.

[52] A. Pourhabibi, M. Sutherland, A. Daglis, and B. Falsafi,
“Cerebros: Evading the rpc tax in datacenters,” in Proceedings
of the 54th International Symposium on Microarchitecture
(MICRO), 2021, pp. 407–420.

[53] G. Prekas, M. Kogias, and E. Bugnion, “Zygos: Achieving
low tail latency for microsecond-scale networked tasks,” in
Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP), 2017, pp. 325–341.

[54] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout, “Arachne:
core-aware thread management,” in Proceedings of the 13th
Symposium on Operating Systems Design and Implementation
(OSDI), 2018, pp. 145–160.

[55] A. Rucker, M. Shahbaz, T. Swamy, and K. Olukotun, “Elastic
rss: Co-scheduling packets and cores using programmable
nics,” in Proceedings of the 3rd Asia-Pacific Workshop on
Networking (APNet), 2019, pp. 71–77.

[56] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate
microarchitectural simulation of thousand-core systems,” in
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), 2013, pp. 475–486.

[57] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible architec-
tural support for fine-grain scheduling,” in Proceedings of the
15th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2010, pp. 311–322.

[58] K. Sangaiah, M. Lui, R. Kuttappa, B. Taskin, and M. Hemp-
stead, “SnackNoC: Processing in the communication layer,”
in Proceedings of the 26th International Symposium on High
Performance Computer Architecture (HPCA), 2020, pp. 461–
473.

[59] M. Shan and O. Khan, “Accelerating concurrent priority
scheduling using adaptive in-hardware task distribution in
multicores,” IEEE Computer Architecture Letters, vol. 20,
no. 1, pp. 17–21, 2020.

[60] A. Sriraman and A. Dhanotia, “Accelerometer: Understanding
acceleration opportunities for data center overheads at hyper-
scale,” in Proceedings of the 25th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020, pp. 733–750.

[61] M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. Pnev-
matikatos, and A. Daglis, “The NEBULA RPC-optimized
architecture,” in Proceedings of the 47th International Sympo-
sium on Computer Architecture (ISCA), 2020, pp. 199–212.

[62] C. Torng, M. Wang, and C. Batten, “Asymmetry-aware work-
stealing runtimes,” in Proceedings of the 43rd International
Symposium on Computer Architecture (ISCA), 2016, pp. 40–
52.

[63] M. Wang, T. Ta, L. Cheng, and C. Batten, “Efficiently
supporting dynamic task parallelism on heterogeneous cache-
coherent systems,” in Proceedings of the 47th International
Symposium on Computer Architecture (ISCA), 2020, pp. 173–
186.

[64] X. Wang, S. Chen, J. Setter, and J. F. Martı́nez, “Swap:
Effective fine-grain management of shared last-level caches
with minimum hardware support,” in Proceedings of the 23rd
International Symposium on High Performance Computer
Architecture (HPCA), 2017, pp. 121–132.

[65] A. Wolnikowski, S. Ibanez, J. Stone, C. Kim, R. Manohar,
and R. Soulé, “Zerializer: Towards zero-copy serialization,” in
Proceedings of the 18th Workshop on Hot Topics in Operating
Systems (HotOS), 2021, pp. 206–212.

[66] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux:
precise online qos management for increased utilization in
warehouse scale computers,” in Proceedings of the 40th
International Symposium on Computer Architecture (ISCA),
2013, pp. 607–618.

[67] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,
and J. Wilkes, “Cpi2: Cpu performance isolation for shared
compute clusters,” in Proceedings of the 8th European
Conference on Computer Systems (EuroSys), 2013, pp. 379–
391.

	Introduction
	Background and motivation
	Measuring Datacenter Performance
	RPC Handling on a CPU Server
	Why Does RPC Scheduling Matter Now?
	RPC Scheduling in Practice

	Altocumulus Overview
	System Components

	Proactive Migrations
	Statistical Characterization & Modeling

	Hardware Messaging Mechanism
	Direct Register Messaging Mechanism
	Discussion

	Software Runtime
	Methodology
	Configurations
	Simulation Environment

	Evaluation
	Comparing Altocumulus and State-of-the-art RPC Scheduling Systems
	Group Size Exploration
	Migration Parameter Exploration
	Migration Effectiveness Breakdown
	Migration Overhead

	End-to-End Application
	MICA over an Altocumulus RPC system
	MICA Configurations
	Scalability
	Adaptability
	Case studies using Altocumulus

	Related Work
	Conclusions & Future Work
	References

