
Scalable Hosting of Web Applications

Guillaume Pierre
(with Zhou Wei, Jiang Dejun, Swaminathan Sivasubramanian,

Tobias Groothuyse, Sandjai Bhulai, Chi-Hung Chi and Maarten van Steen)

CANOE and EuroSys Summer School

21 august 2009
http://www.cs.vu.nl/~gpierre/

Scalable Hosting of Web Applications 1 / 33

http://www.cs.vu.nl/~gpierre/

Advertisement

This school is co-organized by EuroSys
I The European Professional Society on Computer Systems
I Scope: operating systems, distributed systems, event-based systems,

embedded systems, etc.
I Membership: 40 euros (senior), 10 euros (students)

Upcoming activities:
I EuroSys VMware Premier Conference Award (application deadline:

August 28th)
I EuroSys Shadow PC (application deadline: September 15th)
I EuroSys 2010 conference (submission deadline: October 23rd)
I Roger Needham PhD award (application deadline: December 12th)
I Note: it is not necessary to be a member to participate!

www.eurosys.org

Scalable Hosting of Web Applications 2 / 33

www.eurosys.org

The Problem

1 You build a great Web site, advertise it

2 . . .

Performance

of users

What we want

W
hat w

e get

Scalable Hosting of Web Applications Introduction 3 / 33

The Problem

1 You build a great Web site, advertise it

2 . . .

Performance

of users

What we want

W
hat w

e get

Scalable Hosting of Web Applications Introduction 3 / 33

Scalability

“A system is said to be scalable if it can handle the addition of
users and resources without suffering a noticeable loss of

performance or increase in administrative complexity.”

B. Clifford Neuman,
“Scale in Distributed Systems”

Scalable Hosting of Web Applications Introduction 4 / 33

A typical Web application

One application server runs application code

One database server holds the application state

The code can issue any query to the database
I SELECT (read queries)
I UPDATE, DELETE, INSERT (UDI queries)
I Transactions

Database

server

Application

server

HTTP

requests

SQL

queries
Users

Scalable Hosting of Web Applications Introduction 5 / 33

Scaling the application server

The application server contains only the application code
I It does not hold state
I Different requests can be processed independently

Database

server

Application

servers

Users

Scalable Hosting of Web Applications Introduction 6 / 33

Replicating the database server

State is fully replicated across multiple database servers
I Read queries can be addressed at any replica
I UDIs must be issued at every replica

Application

server

Database

server

Users

Re
ad

UDI

Each database server must process 1
N Read Queries + UDIs query load

I Increasing N does not help when the UDIs alone saturate the server’s
capacity

Scalable Hosting of Web Applications Introduction 7 / 33

Partially replicate the database

We must send less UDIs to each server
I Let’s partition the database
I Each server contains a subset of all tables

Users Tables T2, T3

Tables T1, T3

Read(T
1)

Read(T1,T3)

UDI(T1)

Table T1

I Updates to T1 must be addressed to only 2 servers
I We must place tables according to query templates

F We cannot execute a query that joins T1 and T2. . .

Scalable Hosting of Web Applications Introduction 8 / 33

Performance of partial database replication

N
um

be
r

of
 e

m
ul

at
ed

 b
ro

w
se

rs

 500

 400

 300

 200

 100

 0
 2 3 4 5 6 7 8 1

Number of servers

GlobeTP

Full replication

TPC-W (e-commerce app)

N
um

be
r

of
 e

m
ul

at
ed

 b
ro

w
se

rs

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8
Number of servers

Full replication

GlobeTP

RUBBoS (Slashdot-like)

Problem: table-level granularity is too coarse
I Maximum gain = # of tables
I We need a finer granularity: column-level

Scalable Hosting of Web Applications Introduction 9 / 33

Table of Contents

1 Introduction

2 Service-Oriented Data Denormalization

3 Resource Provisioning for Web Services

4 Conclusion

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 10 / 33

Position

Position

We must split the application data into a number of independent
services

I This implies restructuring the data schema at the column granularity

Each data services has its own private data store
I It can be accessed through a well-defined interface

This transformation does not improve performance!
I But it makes the workload of each service much simpler
I It is easier to scale each service independently

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 11 / 33

System model (traditional)

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 12 / 33

System model (denormalized)

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 13 / 33

Can we split data arbitrarily?

Answer: of course not!
I Queries and transactions access multiple data rows simultaneously
I We must make sure that the application queries can still execute
I Pay particular attention to transactional ACID properties

We must restructure the data according to the queries and
transactions

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 14 / 33

Step 1: restructure data according to transactions

A transaction may access any
number of data items

I For consistency these items must
remain inside the same data
service

I Let’s cluster data items according
to transaction patterns

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 15 / 33

Step 2: restructure data according to regular queries

Problem: many queries may now access data from multiple data
services

I Naive solution: cluster data services according to regular queries
I But this would result into a single monolithic cluster

Instead, we can apply other transformations
I Rewrite complex queries into multiple simple queries
I Replicate read-only columns across multiple data services
I In last resort, merge data services

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 16 / 33

Rewrite complex queries

Many join queries can be rewritten
into several simple queries

Example: SELECT C6 FROM T1,T2
WHERE T1.C1 = ? AND T1.C2 =
T2.C5

This query can be rewritten into:
1 SELECT C2 FROM T1 WHERE

T1.C1 = ?
2 SELECT C6 FROM T2 WHERE

T2.C5 = ?

The result of query 1 is the imput
of query 2

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 17 / 33

Replicate read-only column

Original query: SELECT T1.C1,
T1.C2 FROM T1,T2 WHERE T1.C1
= T2.C4 AND T2.C6 = ?

Columns T2.C4 and T2.C6 are
read-only in the whole application

I We can replicate them across
multiple data services

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 18 / 33

Scaling each data service

We studied the case of TPC-W
I A standard benchmark modeling an e-commerce site
I Standardized workload

Before denormalization:
I 10 tables, 6 transactions, 2 atomic sets, 6 UDI queries that are not part

of a transaction, and 27 read-only queries

After denormalization:
I 8 data services, in total 15 tables

Important observation: most data services are read-dominant
I Database replication works well for them

Only one data service is update-intensive
I Database replication will not work here, we need to pay closer attention

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 19 / 33

Scaling the Financial service

The update-intensive service contains all financial-related operations
I Shopping carts, orders, item stocks

Most queries are index by shopping cart ID

We can apply horizontal partitioning:
I Hash table records by their shopping cart ID
I Place each record on a different server according to the hash
I Consequence: UDIs must be addressed to only one server

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 20 / 33

Performance of individual data services

We define a response time objective: 90% of service invocations must
return in less than 100 ms

When using N servers, how many simultaneous clients can we support
before violating the objective?

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2 4 6 8 10 12 14

M
a
x
im

u
m

 T
h
ro

u
g
h
p
u
t
(E

B
s
)

Number of database servers

Read−dominant
services

Update−intensive
service

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 21 / 33

Performance of the entire application

Response time objective: 90% of client requests must return in less
than 500 ms

 0

 10000

 20000

 30000

 40000

 50000

 0 10 20 30 40 50 60 70

M
a

x
im

u
m

 T
h

ro
u

g
h

p
u

t
(E

B
s
)

Number of server machines

Monolithic with
master−slave

database replication

Denormalized

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 22 / 33

Table of Contents

1 Introduction

2 Service-Oriented Data Denormalization

3 Resource Provisioning for Web Services

4 Conclusion

Scalable Hosting of Web Applications Resource Provisioning for Web Services 23 / 33

The “secret sauce” behind the previous graph

How did we plot the previous graph?
I For each configuration we must select what each machine will do

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70

M
ac

hi
ne

 u
sa

ge

Number of server machines

Financial service DB servers

Other DB servers

Application servers

Load balancers

Clients

Method: trial and error :-(
I This is not acceptable in a real Web hosting environment. . .

Scalable Hosting of Web Applications Resource Provisioning for Web Services 24 / 33

Resource provisioning for a single Web service

One Web service can be seen as being composed of:
I 0 or more front-side cache(s)
I 1 or more application server(s)
I 0 or more database query cache(s)
I 0 or more database server(s)
I 0 or more external service response cache(s)

Database

Database���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
������

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

bTier 2Tier 0 Tier 1 Tier 3

Tier 2a

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

cache
DB query

cache
DB query

Service
response

cache

Service
response

cacheserver
Application

server
Application

cache
response
Service

cache
response
Service

External
service

External
service

Scalable Hosting of Web Applications Resource Provisioning for Web Services 25 / 33

We can model a Web service as a queuing network

...

1−p
1

1−p
N

T
N

1T

1−p
0

0
p

1
p

p
N

(external
service)

Service N

Cache N
(service
caches)

(databases)
Service 1

Cache 1
(DB query

caches)

Cache 0
(front−side

caches)

Service 0
(app.

servers)

Requests

Model:
I Poisson distribution of arrival times
I Infinite-server queue caches
I Processor-sharing application servers and database servers

Scalable Hosting of Web Applications Resource Provisioning for Web Services 26 / 33

Mean response time

We can calculate the mean response time:

ES = p0βc,0 + (1− p0)
(M + 1)βs,0

1− ρs,0
+

(1− p0)
N∑

i=1

ETi

[
piβc,i + (1− pi)

βs,i

1− ρs,i

]
.

The formula for the variance looks much worse. . .

Scalable Hosting of Web Applications Resource Provisioning for Web Services 27 / 33

Model-based resource provisioning

The performance model allows us to steer resource provisioning
1 Give an SLA to the service
2 Monitor its response time
3 When the SLA is violated: for each tier, compute the expected

response time if this tier would have one more server
4 Select the tier that brings the most improvement, add a server there

Similar algorithm for removing servers when traffic decreases

Note: there are a few subtleties
I How do you estimate the new cache hit rate if you add more caches?

(add more caches ≡ increase cache size)
I When should you initiate this process?

Scalable Hosting of Web Applications Resource Provisioning for Web Services 28 / 33

Example: TPC-App

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Number of EBs

1AS-1DB 1AS-1DBC-1DB

1AS-1DBC-2DB

Change in Resource
Configuration

SLA (HighRespTime)

Scalable Hosting of Web Applications Resource Provisioning for Web Services 29 / 33

Resource Provisioning of a multi-service application

Nowadays most service-oriented applications use a graph of services
I “If you hit the Amazon.com gateway page, the application calls more

than 100 services to collect data and construct the page for you.”
[Werner Vogels, Amazon CTO]

Simple option: give an SLA to each service
I Service 1 has the same SLA as the whole

application
I How do you select SLAs for the other services?
I A wrong choice leads to inefficient resource

usage

Our option: give an SLA only to the
front-side service

I Let services negotiate resource allocation with
each other

I “How much faster/slower can your sub-tree
perform with one more/less machine?”

1

2

54

3

76

Clients

Scalable Hosting of Web Applications Resource Provisioning for Web Services 30 / 33

Example: a 7-service invocation tree

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120

F
ro

n
t−

e
n
d
 r

e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Time

Workload
Response time

Prediction

Remove server

from service 7

Remove server

from service 5

Add server

to service 7

Add server

to service 5

SLA=500ms

Scalable Hosting of Web Applications Resource Provisioning for Web Services 31 / 33

Table of Contents

1 Introduction

2 Service-Oriented Data Denormalization

3 Resource Provisioning for Web Services

4 Conclusion

Scalable Hosting of Web Applications Conclusion 32 / 33

Conclusion

Web applications are very diverse
I Most of them can easily be hosted by a single PC
I Some of them require complicated infrastructures with thousands of

servers
I It is impossible to predict if a small site will become popular tomorrow!

Even small Web applications should be ready to scale if necessary:
1 Denormalize the application’s data into independent services
2 Enable hosting infrastructures with automatic resource provisioning

mechanisms
3 We need pools of resources that can be automatically assigned to

applications (Grids, Clouds. . .)

Scalable Hosting of Web Applications Conclusion 33 / 33

	Introduction
	Service-Oriented Data Denormalization
	Resource Provisioning for Web Services
	Conclusion

