Scalable Hosting of Web Applications

Guillaume Pierre
(with Zhou Wei, Jiang Dejun, Swaminathan Sivasubramanian,

Tobias Groothuyse, Sandjai Bhulai, Chi-Hung Chi and Maarten van Steen)

CANOE and EuroSys Summer School

21 august 2009
http://www.cs.vu.nl/~gpierre/

vrije Universiteit amsterdam .mb

Scalable Hosting of Web Applications 1/33


http://www.cs.vu.nl/~gpierre/

_ Advertisement

@ This school is co-organized by EuroSys

» The European Professional Society on Computer Systems

» Scope: operating systems, distributed systems, event-based systems,

embedded systems, etc.

» Membership: 40 euros (senior), 10 euros (students)
@ Upcoming activities:

» EuroSys VMware Premier Conference Award (application deadline:
August 28th)
EuroSys Shadow PC (application deadline: September 15th)
EuroSys 2010 conference (submission deadline: October 23rd)
Roger Needham PhD award (application deadline: December 12th)
Note: it is not necessary to be a member to participate!

vV vy vyy

WWW.EeUrosys.org

Scalable Hosting of Web Applications 2/33


www.eurosys.org

@ You build a great Web site, advertise it
Q ...
=} F = = A



@ You build a great Web site, advertise it
o ...
Performance
A

What we want

# of users
>
o = - = DA




"A system is said to be scalable if it can handle the addition of
users and resources without suffering a noticeable loss of
performance or increase in administrative complexity.”

B. Clifford Neuman,
“Scale in Distributed Systems”

=] = = E 9ace
Scalable Hosting of Web Applications



@ One application server runs application code
@ One database server holds the application state

@ The code can issue any query to the database

» SELECT (read queries)
» UPDATE, DELETE, INSERT (UDI queries)

» Transactions

SQL
queries

HTTP

req uests
Users

Application Database
server server

Scalable Hosting of Web Applications Introduction 5/33



@ The application server contains only the application code
> It does not hold state

» Different requests can be processed independently

Users ———»

Database
server
Application
servers
=] = = E E
Scalable Hosting of Web Applications




@ State is fully replicated across multiple database servers

» Read queries can be addressed at any replica
» UDIs must be issued at every replica

Users —»

ol

Application ‘A
server

Database
server

@ Each database server must process %Read,Queries—k UDIs query load

> Increasing N does not help when the UDIs alone saturate the server's
capacity

Scalable Hosting of Web Applications Introduction 7/33



@ We must send less UDIs to each server
» Let’s partition the database

» Each server contains a subset of all tables

Users

—_—

Table T1

Tables T2, T3

Tables T1, T3
» Updates to T1 must be addressed to only 2 servers

» We must place tables according to query templates

* We cannot execute a query that joins T1 and T2...
- - e




500, 350
300

200 GlobeTP
250

GlobeTP

Number of emulated browsers
Number of emulated browsers

100
100 50 Full replication
. Full replication
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of servers Number of servers
TPC-W (e-commerce app) RUBBoS (Slashdot-like)

@ Problem: table-level granularity is too coarse

» Maximum gain = # of tables
» We need a finer granularity: column-level

[m] = =

Scalable Hosting of Web Applications




@ Service-Oriented Data Denormalization

=] = = E A
Scalable Hosting of Web Applications




Position

Position
@ We must split the application data into a number of independent
services
This implies restructuring the data schema at the column granularity
@ Each data services has its own private data store
It can be accessed through a well-defined interface
@ This transformation does not improve performance!

But it makes the workload of each service much simpler
It is easier to scale each service independently

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 11 /33



g
Applicati .
Web Server pplication Database Replication
Server
- /
o = = = = 9ac
Scalable Hosting of Web Applications




Web Server Application
Server

~

g

g s

=8 —J | -

= J % 1
% Database Replication

Data Service 1

M

R s

= 1

Data Service 2
s

e B

= -

sl &

4

2 | Database Partition

Data Service 3

Scalable Hosting of Web Applications



@ Answer: of course not!

» Queries and transactions access multiple data rows simultaneously

» We must make sure that the application queries can still execute
» Pay particular attention to transactional ACID properties
transactions

@ We must restructure the data according to the queries and

o - = p .
Scalable Hosting of Web Applications




@ A transaction may access any
number of data items

» For consistency these items must

remain inside the same data
service

» Let's cluster data items according

to transaction patterns

Scalable Hosting of Web Applications

Table 1

Transaction

Table 2

Cl|C2

Cs

Anple clustering

Transaction

Data service

C3

C4

Table 2

C4

C6




@ Problem: many queries may now access data from multiple data
services

» Naive solution: cluster data services according to regular queries
» But this would result into a single monolithic cluster

@ Instead, we can apply other transformations

» Rewrite complex queries into multiple simple queries
» Replicate read-only columns across multiple data services
> In last resort, merge data services

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 16 / 33



@ Many join queries can be rewritten
into several simple queries

@ Example: SELECT C6 FROM T1,T2
WHERE T1.C1 = 7 AND T1.C2 =

Read Query

Data service 2

Data service 1

C3

Cl | C2 C4 | C5|C6

T2.C5
@ This query can be rewritten into: iRewn'teql\ely
© SELECT C2 FROM T1 WHERE T | iy
ead Query 1 Read Query 2
T1.C1 = 7
T2.C5 = 7

Cl|cC2|C3 C4 | C5|C6

© SELECT C6 FROM T2 WHERE ‘ Data service 1 Data service 2

The result of query 1 is the imput
of query 2

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 17 / 33



@ Original query: SELECT T1.C1,

Data service 1 Data service 2
T1.C2 FROM T1,T2 WHERE T1.C1
= T2.C4 AND T2.C6 = 7 41 e
lRephcaﬁedafa
@ Columns T2.C4 and T2.C6 are
read-only in the whole application
» We can replicate them across Data service 1 Data service 2
multiple data services ci|c|c||ca|ce ca|cs|ce

o = = QR
Scalable Hosting of Web Applications



 Scaling each data service

@ We studied the case of TPC-W

» A standard benchmark modeling an e-commerce site
» Standardized workload

@ Before denormalization:

» 10 tables, 6 transactions, 2 atomic sets, 6 UDI queries that are not part
of a transaction, and 27 read-only queries

After denormalization:
» 8 data services, in total 15 tables

Important observation: most data services are read-dominant
» Database replication works well for them

Only one data service is update-intensive
» Database replication will not work here, we need to pay closer attention

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 19 /33



@ The update-intensive service contains all financial-related operations
» Shopping carts, orders, item stocks

@ Most queries are index by shopping cart ID
@ We can apply horizontal partitioning:

» Hash table records by their shopping cart ID

> Place each record on a different server according to the hash
» Consequence: UDIs must be addressed to only one server

=] = = A
Scalable Hosting of Web Applications




 Performance of individiial et

@ We define a response time objective: 90% of service invocations must
return in less than 100 ms

@ When using N servers, how many simultaneous clients can we support
before violating the objective?

@
m 6000¢ Read-dominant ~
5 5000¢ services .
S 40004 / -
o

= 30000 1
£

2 20004 1
é" 10006 Updgte—intensive_

. service

0 2 4 6 8 10 12 14
Number of database servers

Scalable Hosting of Web Applications Service-Oriented Data Denormalization 21/33



@ Response time objective: 90% of client requests must return in less

than 500 ms

Maximum Throughput (EBs)

Scalable Hosting of Web Applications

50000

40000

30000

20000

10000

Denormalized

Monolithic with
master-slave

database replication |

10 20 30 40 50 60
Number of server machines

70

Service-Oriented Data Denormalization

22 /33



© Resource Provisioning for Web Services

=] = = E A
Scalable Hosting of Web Applications




@ How did we plot the previous graph?
» For each configuration we must select what each machine will do

90 T T T T T T

80 9

70

60

50

40 +

Machine usage

30

20
Other DB servers

10 -

Financial service DB servers
L L L

. L
0 10 20 30 40 50 60 70
Number of server machines

0

@ Method: trial and error :-(
» This is not acceptable in a real Web hosting environment. ..

Scalable Hosting of Web Applications Resource Provisioning for Web Services 24 /33



 Resource provisioning for & il

@ One Web service can be seen as being composed of:
0 or more front-side cache(s)

1 or more application server(s)

0 or more database query cache(s)

0 or more database server(s)

0 or more external service response cache(s)

vV vy vy VvYyy

Tier 22
Service External
eI service
s Vincge | External
egc%e service
DB query
cache
DB query
cache
Tier 0 Tier 1 Tier 20 Tier 3

Scalable Hosting of Web Applications Resource Provisioning for Web Services 25 /33



p, | Cache 1
(DB guery
caches)
T1 :
12 Service 1
1(databases,
Py | Cache O
(front-side
caches)
Requests
Service 0
1-p (app. [
0 | servers) p. | Cache N
Ny (service
caches)
TN
Service N
1-p (external
N servwe‘}

o Model:

» Poisson distribution of arrival times
> Infinite-server queue caches
» Processor-sharing application servers and database servers

Scalable Hosting of Web Applications Resource Provisioning for Web Services 26 /33



@ We can calculate the mean response time:

M s
ES = pofco+ (1 — Po)w

_'_
1—ps0
N 5.
(1 — po) ZETi [Piﬁc,i +(1—p)—2
i—1

1- s,i
@ The formula for the variance looks much worse. . .

=] = = E A
Scalable Hosting of Web Applications




 Modek-based resource provisioNiE G

@ The performance model allows us to steer resource provisioning

© Give an SLA to the service

@ Monitor its response time

© When the SLA is violated: for each tier, compute the expected
response time if this tier would have one more server

@ Select the tier that brings the most improvement, add a server there

@ Similar algorithm for removing servers when traffic decreases

@ Note: there are a few subtleties

» How do you estimate the new cache hit rate if you add more caches?
(add more caches = increase cache size)
» When should you initiate this process?

Scalable Hosting of Web Applications Resource Provisioning for Web Services 28 /33



700

600 - R
SLA (HighRespTime)

@
£
()
£
= .
2 500 Changein Resource
= Configuration
< EaN
S 400 S 1
@ 7 N
] 2 N
[}
o ! E
% 300 ; """"" ,
')‘
200 i -

100

esmmenn X'y ]
: \

1A\S-1DB 1AS-1DBC-1DB

0 50 100 150 200 250 300 350 400 450 500

Number of EBs

[m] = =

Scalable Hosting of Web Applications




Resou

@ Nowadays most service-oriented applications use a graph of services
> “If you hit the Amazon.com gateway page, the application calls more

than 100 services to collect data and construct the page for you.”
[Werner Vogels, Amazon CTO]

@ Simple option: give an SLA to each service Clients
» Service 1 has the same SLA as the whole
application
» How do you select SLAs for the other services?
» A wrong choice leads to inefficient resource
usage

@ Our option: give an SLA only to the
front-side service

» Let services negotiate resource allocation with
each other

» “How much faster/slower can your sub-tree
perform with one more/less machine?”

Scalable Hosting of Web Applications Resource Provisioning for Web Services 30/33



900

Workload ——
Response time s
sool  Add server Remove server ~ Fredcton ¢
to service 7 from service 5

__ 700} E
(2]
E
.GEJ 600 g
@ SLA=500ms
S 500+ / g
Q
3
- 400 !—/\ N
=
?
5 soof i
w

200+ g

100 Add server Remove server ]

o ‘ to service 5  from service 7
0 20 40 60 80 100 120

Time

Scalable Hosting of Web Applications Resource Provisioning for Web Services 31/33



@ Conclusion

=] = = E A
Scalable Hosting of Web Applications




@ Web applications are very diverse

» Most of them can easily be hosted by a single PC
» Some of them require complicated infrastructures with thousands of

servers
» It is impossible to predict if a small site will become popular tomorrow!

@ Even small Web applications should be ready to scale if necessary:

@ Denormalize the application’s data into independent services
@ Enable hosting infrastructures with automatic resource provisioning

mechanisms
© We need pools of resources that can be automatically assigned to

applications (Grids, Clouds. . .)

Scalable Hosting of Web Applications Conclusion 33/33



	Introduction
	Service-Oriented Data Denormalization
	Resource Provisioning for Web Services
	Conclusion

