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I The European Professional Society on Computer Systems
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embedded systems, etc.
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The Problem

1 You build a great Web site, advertise it

2 . . .
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Scalability

“A system is said to be scalable if it can handle the addition of
users and resources without suffering a noticeable loss of

performance or increase in administrative complexity.”

B. Clifford Neuman,
“Scale in Distributed Systems”
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A typical Web application

One application server runs application code

One database server holds the application state

The code can issue any query to the database
I SELECT (read queries)
I UPDATE, DELETE, INSERT (UDI queries)
I Transactions

Database

server

Application

server

HTTP

requests

SQL

queries
Users
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Scaling the application server

The application server contains only the application code
I It does not hold state
I Different requests can be processed independently

Database

server

Application

servers

Users

Scalable Hosting of Web Applications Introduction 6 / 33



Replicating the database server

State is fully replicated across multiple database servers
I Read queries can be addressed at any replica
I UDIs must be issued at every replica

Application

server

Database

server

Users

Re
ad

UDI

Each database server must process 1
N Read Queries + UDIs query load

I Increasing N does not help when the UDIs alone saturate the server’s
capacity
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Partially replicate the database

We must send less UDIs to each server
I Let’s partition the database
I Each server contains a subset of all tables

Users Tables T2, T3

Tables T1, T3

Read(T
1)

Read(T1,T3)

UDI(T1)

Table T1

I Updates to T1 must be addressed to only 2 servers
I We must place tables according to query templates

F We cannot execute a query that joins T1 and T2. . .
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Performance of partial database replication
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Problem: table-level granularity is too coarse
I Maximum gain = # of tables
I We need a finer granularity: column-level
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Position

Position

We must split the application data into a number of independent
services

I This implies restructuring the data schema at the column granularity

Each data services has its own private data store
I It can be accessed through a well-defined interface

This transformation does not improve performance!
I But it makes the workload of each service much simpler
I It is easier to scale each service independently
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System model (traditional)
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System model (denormalized)
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Can we split data arbitrarily?

Answer: of course not!
I Queries and transactions access multiple data rows simultaneously
I We must make sure that the application queries can still execute
I Pay particular attention to transactional ACID properties

We must restructure the data according to the queries and
transactions
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Step 1: restructure data according to transactions

A transaction may access any
number of data items

I For consistency these items must
remain inside the same data
service

I Let’s cluster data items according
to transaction patterns
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Step 2: restructure data according to regular queries

Problem: many queries may now access data from multiple data
services

I Naive solution: cluster data services according to regular queries
I But this would result into a single monolithic cluster

Instead, we can apply other transformations
I Rewrite complex queries into multiple simple queries
I Replicate read-only columns across multiple data services
I In last resort, merge data services
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Rewrite complex queries

Many join queries can be rewritten
into several simple queries

Example: SELECT C6 FROM T1,T2
WHERE T1.C1 = ? AND T1.C2 =
T2.C5

This query can be rewritten into:
1 SELECT C2 FROM T1 WHERE

T1.C1 = ?
2 SELECT C6 FROM T2 WHERE

T2.C5 = ?

The result of query 1 is the imput
of query 2
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Replicate read-only column

Original query: SELECT T1.C1,
T1.C2 FROM T1,T2 WHERE T1.C1
= T2.C4 AND T2.C6 = ?

Columns T2.C4 and T2.C6 are
read-only in the whole application

I We can replicate them across
multiple data services
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Scaling each data service

We studied the case of TPC-W
I A standard benchmark modeling an e-commerce site
I Standardized workload

Before denormalization:
I 10 tables, 6 transactions, 2 atomic sets, 6 UDI queries that are not part

of a transaction, and 27 read-only queries

After denormalization:
I 8 data services, in total 15 tables

Important observation: most data services are read-dominant
I Database replication works well for them

Only one data service is update-intensive
I Database replication will not work here, we need to pay closer attention
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Scaling the Financial service

The update-intensive service contains all financial-related operations
I Shopping carts, orders, item stocks

Most queries are index by shopping cart ID

We can apply horizontal partitioning:
I Hash table records by their shopping cart ID
I Place each record on a different server according to the hash
I Consequence: UDIs must be addressed to only one server
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Performance of individual data services

We define a response time objective: 90% of service invocations must
return in less than 100 ms

When using N servers, how many simultaneous clients can we support
before violating the objective?
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Performance of the entire application

Response time objective: 90% of client requests must return in less
than 500 ms
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The “secret sauce” behind the previous graph

How did we plot the previous graph?
I For each configuration we must select what each machine will do
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Method: trial and error :-(
I This is not acceptable in a real Web hosting environment. . .
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Resource provisioning for a single Web service

One Web service can be seen as being composed of:
I 0 or more front-side cache(s)
I 1 or more application server(s)
I 0 or more database query cache(s)
I 0 or more database server(s)
I 0 or more external service response cache(s)
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We can model a Web service as a queuing network

...
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Model:
I Poisson distribution of arrival times
I Infinite-server queue caches
I Processor-sharing application servers and database servers
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Mean response time

We can calculate the mean response time:

ES = p0βc,0 + (1− p0)
(M + 1)βs,0

1− ρs,0
+

(1− p0)
N∑

i=1

ETi

[
piβc,i + (1− pi )

βs,i

1− ρs,i

]
.

The formula for the variance looks much worse. . .
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Model-based resource provisioning

The performance model allows us to steer resource provisioning
1 Give an SLA to the service
2 Monitor its response time
3 When the SLA is violated: for each tier, compute the expected

response time if this tier would have one more server
4 Select the tier that brings the most improvement, add a server there

Similar algorithm for removing servers when traffic decreases

Note: there are a few subtleties
I How do you estimate the new cache hit rate if you add more caches?

(add more caches ≡ increase cache size)
I When should you initiate this process?
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Example: TPC-App
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Resource Provisioning of a multi-service application

Nowadays most service-oriented applications use a graph of services
I “If you hit the Amazon.com gateway page, the application calls more

than 100 services to collect data and construct the page for you.”
[Werner Vogels, Amazon CTO]

Simple option: give an SLA to each service
I Service 1 has the same SLA as the whole

application
I How do you select SLAs for the other services?
I A wrong choice leads to inefficient resource

usage

Our option: give an SLA only to the
front-side service

I Let services negotiate resource allocation with
each other

I “How much faster/slower can your sub-tree
perform with one more/less machine?”
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Example: a 7-service invocation tree
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Conclusion

Web applications are very diverse
I Most of them can easily be hosted by a single PC
I Some of them require complicated infrastructures with thousands of

servers
I It is impossible to predict if a small site will become popular tomorrow!

Even small Web applications should be ready to scale if necessary:
1 Denormalize the application’s data into independent services
2 Enable hosting infrastructures with automatic resource provisioning

mechanisms
3 We need pools of resources that can be automatically assigned to

applications (Grids, Clouds. . . )
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