
Naming and Service Discovery
in Peer-to-Peer Networks

ECE1770 Expert Topic

Eli Fidler
Vinod Muthusamy

February 13, 2003



Outline

� Traditional Distributed Naming Systems

� Distributed Naming Paradigms

� P2P Naming

� Existing Systems

� Emerging Systems 



Traditional Naming Systems

� TCP/IP Host Naming

� Static

� hosts files

� No central authority

� Hierarchical

� Domain Name System (RFC1034/5)

� Authority for domains is delegated, but top level is 
centralized

� Caching is vital for acceptable performance



Distributed Naming Paradigms

� Host IDs (CORBA Naming Service)

� Each host is given a globally unique ID

� Hosts are organized into hierarchical namespaces

� Service IDs (CORBA Trader Service, Jini)

� Services are registered with broker, discovered using 
lookup

� Distributes Object IDs (file sharing networks)

� Each object has a unique ID, but may not exist in any 
single place



Node Discovery Techniques

� Static/Neighbours

� Each host has a static list of known nodes/neighbours

� Centralized Repository

� Each host knows the address of a repository

� Local Broadcast

� A host searches for nodes using broadcast

� “Buddy List”

� A host connects to favourite/previously seen hosts



P2P Naming

� Static

� Centralized

� Neighbour Discovery

� “Smart” Discovery

� Emerging Naming Systems



Static P2P Naming

� Each host knows a static, explicit configuration of 
other nodes

� The P2P network is static

� c.f. hosts files



Centralized P2P Naming

� There is a single host responsible for each service 
(or one host for all services)

� Nodes connect to P2P network, then contact host 
for desired service

� ex. Napster, Jini



Jini

� Hierarchy of centralized lookup services

� Advertisement = { interface name, attributes }

� Lookup = { interface name, [attributes] }

� Object moves from Provider to Lookup Service to Client

� Must renew leases

� Peer lookup
Lookup Service

Client

Service Provider
Service Object

Service Attributes1. Discover

2. Join

3. Lookup



Neighbour Discovery P2P Naming

� Once connected to P2P network, hosts use P2P 
neighbours to connect to services

� Searches/commands propagate in waves

� ex. Gnutella/Limewire



“Smart” Discovery P2P Naming

� Once connected to P2P network, hosts use P2P 
neighbours to connect to services

� Searches/commands propagate along “best” path 
of neighbour-neighbour links

� ex. Freenet



Freenet

� The requests get routed to the appropriate host by 
incremental discovery



Emerging Naming Systems

� Technologies

� JXTA

� Intentional Naming System (INS)

� Active Names

� Attributes

� Naming expressiveness

� Architecture



JXTA

� Super peers: distributed search hubs

� Advertisement = { query space, predicates, address }

� Query = { query space, predicates }

� Groups of hubs

� Each group is responsible for some query space(s)

� Each group has a member from every other group

� Each hub has a summary of adverts in every other hub in its group

Search group Search hub



INS – Naming

� Name specifier ={ A hierarchy of attribute-value pairs }

� Name record = { Name specifier, metric, address }



INS – Architecture

� INRs form spanning tree

� Late binding handles service/node mobility

� Name can refer to groups

� Scalability, load balancing



Active Names

� Hierarchical namespace delegation

� Active Name = { name to resolve, namespace program }

� Namespace program = { Active Name }

� Service composition using after methods

� Location independent execution of namespace program



Summary

� Decentralized administration

	 Well addressed

� Network failures, robustness

	 Addressed by periodic advertisements

	 Automatic resolver spawning in INS

� Lookup

	 Typically need (distributed) servers (INS, Freenet, 
etc.)

	 Flooding (Gnutella) is inefficient



Summary (Cont'd)

� Query expressiveness

	 Primarily still hierarchical (INS, AN, Jini, etc.)

� Node/service mobility

	 Addressed by periodic advertisements

	 Late binding in INS

� Scalability

	 Many are not scalable to Internet (INS, JXTA, Jini)

	 Rely on lookup service hierarchy for scalability


