
Abstract

Standard messaging middleware guarantees the
delivery of messages to intermediary destinations like
message queues, but does not guarantee the receipt or
the processing of a message by final recipients.
Conditional messaging is an extension to standard
messaging middleware that addresses this shortcoming
by allowing an application to define, monitor, and
evaluate various conditions on messages, such as time
constraints on the receipt or the processing of a
message by a set of final recipients. In this paper, we
introduce the notion of conditional messaging, and
present the design and implementation of a flexible and
reliable system that supports conditional messaging for
use in Java 2 Enterprise Edition and message queuing
environments. Our solution uniquely shifts the
responsibilities for implementing the management of
conditions on messages from the application to the
middleware. We further discuss the grouping of multiple
conditional messages into atomic units-of-work, which
can also integrate requests to transactional resources
like distributed objects using object middleware.
Conditional messaging serves to implement various
kinds of backward dependencies for distributed object
transactions that integrate messaging.

1 Introduction

The development of enterprise systems frequently
entails the integration of diverse existing applications.
Middleware is application-independent connectivity
software that is commonly used for purposes of Enter-
prise Application Integration (EAI). Middleware
enables EAI by providing services that mediate between
applications, including basic services of data translation
and conversion mechanisms and more complex services
of business process definition and management.

Some form of messaging and messaging middleware
is often used for EAI [11]. Applications create, manipu-
late, store, and (typically asynchronously) communicate
messages using the services of messaging middleware.
A message can be any application data combined with
some control information. Messaging middleware is
exemplified by products such as IBM’s MQSeries [5]
and messaging services to object middleware such as
implementations of Sun’s Java Message Service (JMS)
[12,6].

Messaging is considered beneficial to EAI as it does
not require applications to be tightly coupled. Messag-
ing applications do not directly communicate with each
other, but are mediated by the messaging middleware in
the form of message queues and/or publish/subscribe
message brokers. Mediation and asynchrony support
resilience and robustness in cases of partial failure.

Messaging applications rely on the messaging mid-
dleware to distribute messages. Standard messaging
middleware typically guarantees eventual message
delivery to intermediary destinations like queues [1,7],
but does not guarantee that an enqueued message will
also be read from the queue and be processed by some
application.

From the message sender’s perspective, however,
message receipt and message processing by final recipi-
ents often are important criteria that represent a condi-
tion on further processing by the sender. For example, in
a coordinated workflow management system, a message
representing the notification of a group meeting is sent
to a set of participants, some of which may be required
to acknowledge the receipt and accept the meeting
before the meeting can be scheduled and databases
(such as for room reservation and other purposes) can be
updated. Or, in an air traffic control scenario, a message
representing an incoming flight is delivered to a queue
and must be picked up from the queue by a controller
within a certain time frame, otherwise, some exception
handling must be started.

With current middleware, applications themselves
are forced to implement the management of such condi-
tions on messages as part of the application. The sender
application itself must in some manner define the condi-
tions on message delivery and/or processing and must
implement some observation and evaluation mechanism
to determine the satisfaction (respective violation) of the
conditions. The receiver applications must send explicit
acknowledgments of receipt and/or processing back to
the sender, and these must conform to the sender’s
expectations, that is, the sender’s particular implementa-
tion mechanism for working with conditions. There is
no defined middleware support available today to aid in
the development of applications that require the man-
agement of conditions on messages.

In this paper we address this shortcoming of current
middleware. We define and introduce the notion ofcon-
ditional messagingand present a middleware service
that shifts the responsibilities for implementing the
management of conditions on messages from the appli-
cation to the middleware. Our solution is compliant to,
and built on top of, standard messaging middleware,

Conditional Messaging:
Extending Reliable Messaging with Application Conditions

Stefan Tai, Thomas Mikalsen, Isabelle Rouvellou, Stanley M. Sutton Jr.

IBM T.J. Watson Research Center, New York, USA
{stai | tommi | rouvellou | suttonsm@us.ibm.com}

which is an important requirement for its application to
EAI scenarios. We also present the use of conditional
messaging in the context of an extended transaction
processing middleware service, theDependency-
Spheresservice [14], which allows conditional mes-
sages to be integrated with distributed transaction pro-
cessing.

The paper is structured as follows. Section 2 defines
conditional messaging and addresses all aspects of sup-
porting the management of conditions on messages; it
is structured into seven subsections that successively
explain the concepts and the design and realization of
our middleware service, using the same recurring moti-
vating application examples in each subsection. Section
3 presents Dependency-Spheres, a novel approach to
integrating distributed transactions and messaging that
employs conditional messaging as a fundamental ele-
ment. Section 4 concludes with a summary and discus-
sion.

2 Conditional Messaging

We define conditional messaging as follows: Condi-
tional messaging is messaging in which messages are
associated with application-defined conditions on mes-
sage delivery and message processing in order to define
and determine a messaging outcome of success or fail-
ure.

Conditional messaging is a general notion. Specific
models of conditional messaging can be defined with
respect to

• specific models of messaging, such as message
queuing and publish/subscribe systems,

• particular participant roles, such as sender, pub-
lisher, receiver, and subscriber,

• action kinds, such as sending out notifications or
request messages, reading messages, subscribing
to messages, and processing messages.

For example, conditions can be specified by which
the sender of a message may define delivery failure of a
notification message in the context of message queuing,
or, conditions can be specified by which a subscriber
may define processing success of a request message in
the context of publish/subscribe messaging.

In this paper, we focus on conditional messaging for
message senders in the context of message queuing. We
introduce conditional messaging step-wise, as follows:

• the definition and representation of conditions
(Section 2.2.),

• the delivery of messages that are associated with
conditions (Section 2.3),

• the monitoring of conditional message delivery
and processing (Section 2.4),

• the evaluation of condition satisfaction (Section
2.5), and

• the support for evaluation outcome actions of
compensation and success notifications (Section
2.6).

Each section covers general concepts as well as
design and implementation aspects. We present the con-
ditional messaging system that we have developed, and
discuss application examples alongside. The system is

summarized with an architectural overview in Section
2.7.

2.1 Running Examples
Consider again the two examples described in Sec-

tion 1 Introduction. We will use these two examples as
running examples in this paper.

In the first example, a message representing a group
meeting notification is sent to a set of particular queues,
where each queue is designated to a specific final recip-
ient. Figure 1 illustrates this example.

Sample conditions for message success are:
• All four recipients reading from the four different

queues must acknowledge message receipt within
two days after the message has been sent out.

• Receiver3 must successfully process the mes-
sage (must update his calendar database) one
week ahead of the meeting time, and at least any
other two receivers must successfully process the
message three days ahead of the meeting time.
An acknowledgment of processing success of
these receivers is required.

In the second example, a message representing an
incoming flight is sent to one central queue from which
multiple controllers can read messages. Figure 2 illus-
trates this example.

A sample condition for message success here is:
• Any one of the controllers must read the message

from the shared queue within 20 seconds after the
message has been sent out.

These two message queuing examples and the sam-
ple conditions already exhibit some of the variety of
messages and conditions that are possible. We can
observe two purposes of an outgoing message, as

• a one-way event notification (distribution of
some data), or as

• a request for processing by receivers.

Q1

Q2

Q3

Q4

Sender 1

Receiver 1

Receiver 2

Receiver 3

Receiver 4

Figure 1: Example 1

Qcentral
Sender

Controller 1

Controller 2

Controller 3

Figure 2: Example 2

For both kinds of messages,
• multiple intermediary destinations (queues) may

exist,
• multiple known or anonymous final receivers

may exist,
• final receivers may or may not be required to

acknowledge message receipt,
• final receivers may or may not be required to pro-

cess the message and acknowledge processing
success, and

• various time constraints on receipt or on message
processing may be defined, specific to a particu-
lar receiver or a group of receivers, or indepen-
dent of any receivers (as default for any receiver).

These kinds of conditions are commonly encoun-
tered in EAI scenarios, and are typically implemented
through various application artifacts. This paper intro-
duces the concept of conditional messaging and
describes the design and implementation of a condi-
tional messaging system that covers these kinds of con-
ditions. Our objective is to explore and motivate the
idea of conditional messaging. We expect that new (and
more sophisticated) versions of conditional messaging
systems will emerge in the future, which in addition
may support other kinds of conditions as well.

2.2 Definition and Representation of
Conditions

Conditions such as those described above can be
modeled in various ways. We have chosen an object
representation of conditions where conditions are mod-
eled using three classes, theCondition class, the
Destination class, and theDestinationSet
class. These are depicted in Figure 3.

The classes follow theCompositedesign pattern [4]
for defining conditions on individual destinations and
on (hierarchies of) sets of destinations. The base class is

theCondition class. TheCondition class defines
as its interface the methods to set and get the values of
its attributes, and methods for accessing and managing
child components according to the Composite design
pattern. TheDestination class is the leaf class that
represents conditions on a particular destination. The
DestinationSet class is the composite class that
represents conditions that apply to a set of destinations.

The attribute ofMsgPickUpTime specifies the
time during which a message read is required by a final
recipient, and the attribute ofMsgProcessingTime
specifies the time during which a successful processing
of the message is required. Both time values are set in
milliseconds and are interpreted relative to the sender’s
time clock and the timestamp of sending the message.

A Destination must specify a unique queue, and
may specify an identification string for a final recipient
(for example, a defined name such as a userid in a
namespace). If time conditions such as those described
above are specified for aDestination object, the
destination is arequired destination(a message read
and/or processing is required). If no time conditions are
specified on aDestination object, but are specified
on its parentDestinationSet object, the destina-
tion is anoptional destination(time conditions speci-
fied on a set may be satisfied without a read or
processing by the particular destination).

Time conditions on aDestinationSet object
apply per default to all members of the set, unless a
subset of minimum and maximum numbers of destina-
tions of the set for message pick up or message process-
ing is defined. TheMsgPickUpTime condition on a
DestinationSet object, for example, is a condition
for all members of the set unless aMinNrPickUp
and/orMaxNrPickUp value is specified. ADesti-
nationSet object may also specify minimum and
maximum numbers for anonymous destinations.

Other attributes, includingMsgExpiry , MsgPer-
sistence , andMsgPriority , are common proper-
ties of standard messaging middleware that can be used
to set the (general, destination set- specific, or destina-
tion-specific) expiration time of a message, the persis-
tence property of a message, or the priority for delivery
and placement of the message on a queue.

The condition objects define thesuccesscriteria for
message delivery, or, in case that the attribute ofMsg-
ProcessingTime is set, the success criteria formes-
sage processing. They serve for defining and
representing the conditions of the two examples
described. Figure 4 and Figure 5 depict the object
instances as they would be defined for the two exam-
ples.

Figure 4 for Example 1 shows fourDestination
objects, and twoDestinationSet objects. The
destSetRoot object specifies aMsgPickUpTime
as a condition on all the destinations. For the destina-
tion qr3 , a MsgProcessingTime value is set in
addition. ThedestSet1 object groups the three other
destination objects and specifies that at least two of
these must process the message in theMsgProcess-
ingTime specified.

Figure 5 for Example 2 shows oneDestination
object only. TheDestination object specifies a

Figure 3: Object Model for Conditions

*

Condition

MsgExpiry
MsgPersistence
MsgPriority

MsgPickUpTime
MsgProcessingTime

Name

Destination

QueueName
QueueManager
QueueManagerHost
FinalRecipientID

DestinationSet

MinNrAnoDest
MaxNrAnoDest
AnoDestPickUpTime
AnoDestProcessingTime

MinNrProc
MaxNrProc

MinNrPickUp
MaxNrPickUp

QueueName, but no particular final recipient. The
object also specifies aMsgPickUpTime , but not a
MsgProcessingTime .

2.3 Association of Conditions to Messages
and Message Delivery

Conditions can be defined and represented indepen-
dently of a message, as described above. The separation
of condition definition and condition representation
from message creation allows conditions to be reused
for different messages. Specific conditions may apply
to all messages processed by a messaging application,
to groups of messages processed by the application, or
(most generally) to individual messages processed by
the application.

We have implemented the condition classes as a set
of Java classes that can be used in combination with the
JMS standard for messaging in Java systems (as well as
with IBM’s MQSeries Java classes). In order to associ-
ate specific condition objects with specific JMS or
MQSeries messages, a dedicated API is needed. How-
ever, the use of a special conditional messaging API
should not compromise the use of standard messaging

middleware like JMS and MQSeries, as these are often
required in an EAI setting for integration of different
legacy systems. Conditional messaging should be
implemented as an extension to standard, proven mes-
saging middleware, and applications should also be
able to continue to use the standard messaging middle-
ware directly.

In order to associate conditions with messages, we
define a methodsendMessage (Object, Con-
dition) on a Java interface for conditional messag-
ing that takes as parameters an instance of
Java.lang.Object and an instance of theCon-
dition class. The Java object parameter is any appli-
cation data that is to be represented and exchanged as a
message. (An additional method for sending condi-
tional messages that have application-defined compen-
sation support is also provided, as will be described in
Section 2.5).

Depending on the condition, multiple JMS or
MQSeries messages may be generated by the condi-
tional messaging system for the conditional message.
For example, if the Java object is a text string, and the
condition specifies four different queues as required
destinations, then four JMS messages of JMS type
TextMessage are generated (as JMS does not sup-
port multiple queue distribution lists for a single mes-
sage). Conditional messaging thus introduces two
levels of messages: the conditional message level, and
the level of standard (JMS or MQSeries) messages that
are used to implement the conditional message.

The generated standard messages contain the appli-
cation data (as provided and understood by the applica-
tion), and are attributed by the conditional messaging
system with control information required for purposes
of monitoring and evaluating the conditional message.
For example, each generated JMS message will carry as
a property the unique id that represents the conditional
message. It will also encode whether or not the process-
ing of the message has been required for the particular
destination. Further, it contains information about the
sender, such as the sender’s queue manager, in order for
the recipient’s conditional messaging system to be able
to send an acknowledgment and reply back to the
sender. The conditional messaging system in addition
creates a log entry for the outgoing messages and stores
the log entry persistently on a local message queue
(DS.SLOG.Q).

An application uses the conditional message id to
later associate outcome notification messages of condi-
tion evaluation results with a conditional message. Out-
come notifications are sent by the conditional
messaging system to the sender’sDS.OUTCOME.Qas
soon as a condition evaluation process (see Section 2.5)
has completed.

The conditional messaging API is a simple indirec-
tion to standard messaging middleware for purposes of
conditional messaging. However, an application can
continue to use JMS/MQSeries directly for sending
standard (non-conditional) messages. Figure 6 illus-
trates this approach.

In case of Example 1, the sender application sends a
conditional message with the group meeting notifica-
tion as object data and thedestSetRoot condition

qr4: Destination

FinalRecipientId: Recipient4
QueueName: Q4

qr2: Destination

FinalRecipientId: Recipient2
QueueName: Q2

destSetRoot: DestinationSet

MsgPickUpTime: 172800000 ms
Name: cond_Example1

...

qr1: Destination

FinalRecipientId: Recipient1
QueueName: Q1

destSet1: DestinationSet

MinNrProc: 2
MsgProcessingTime: <value>

...

qr3: Destination

FinalRecipientId: Recipient3
QueueName: Q3

MsgProcessingTime: <value>

Figure 4: Conditions for Example 1

Figure 5: Conditions for Example 2

qcentral: Destination

MsgPickUpTime: 20000 ms

Name: cond_Example2

...

QueueName: Qcentral

object of Figure 4. The conditional messaging system
then generates four standard JMS messages and distrib-
utes these to the four recipient queues.

In case of Example 2, the sender application sends a
conditional message with an object representing the
flight and theqcentral condition object of Figure 5.
A single JMS message is generated and sent to the
queue that is used by the various controllers.

2.4 Monitoring of Conditional Message
Delivery and Processing

Conditional messaging requires more than support
for the definition of conditions and their association to
messages. It also requires a system for monitoring mes-
sage delivery and message processing over a given
time, in order to be able to evaluate the satisfaction
(respective violation) of the conditions.

Our conditional messaging system implements spe-
cial internal acknowledgment messages for this pur-
pose. A final recipient implicitly initiates the sending of
such acknowledgments when successfully reading a
message from a queue or completing the processing of
a message. Two types of internal acknowledgments
exist:

• an acknowledgment of a successful non-transac-
tional read of a message by a final recipient, and

• an acknowledgment of a successful transactional
read (and therefore, successful processing) of a
message by a final recipient.

The first kind of acknowledgment is generated if a
recipient has successfully performed a non-transac-
tional read of a message from a queue. That is, the read
did not occur within a recipient’s transaction, and the
message cannot be put back to the queue due to a recip-
ient’s transaction failure.

The second kind of acknowledgment is generated if
a recipient has successfully performed a transactional
read of a message from a queue. That is, the message
read occurred within a recipient’s transaction and the
transaction committed successfully. (In case that the
recipient’s transaction failed, no acknowledgment is
generated and the message is put back to the queue by
the messaging middleware according to the semantics
of messaging transactions [1].)

In order for the conditional messaging system to be
able to generate these acknowledgments automatically,
the final recipients need to use a dedicated API for
reading conditional messages. Similarly to the API for
sending conditional messages, the use of such an addi-
tional API should not compromise the use of standard
messaging middleware. As such, we provide additional
Java methods that only serve as an indirection to the use
of JMS and MQSeries. These include the method
readMessage(String) and methods that serve as
facade methods to the messaging transaction demarca-
tion API of begin_tx() and commit_tx() . The
sending of a reply message by a receiver, however, does
not need to be performed using the conditional messag-
ing API. An application can use JMS/MQ directly.

A final recipient attempts to read a message from a
queue by calling the methodreadMessage
(String) with the queue name as the parameter. The
conditional messaging system then checks if the read
occurs within an ongoing transaction or not. If no trans-
action context exists, the first kind of acknowledgment
is generated once the message get call to the queue is
completed. If a transaction context exists (begin_tx
has been called), the generation of the second kind of
acknowledgment is bound to the successful commit of
the receiver’s transaction.

In messaging systems, it is common practice to per-
form the processing of a message in a transaction. That
is, the read of the message from a queue, some process-
ing, and possibly the sending of a result message are all
executed in an all-or-nothing manner. If the transaction
fails for some reason, the message is put back on the
queue. An acknowledgment of a successful transac-
tional read therefore corresponds to an acknowledg-
ment of successful processing, if the transaction
commits. (An acknowledgment of a successful process-
ing that is non-transactional cannot automatically be
generated.)

At the time that an acknowledgment of either kind is
generated, information about the final recipient can be
encoded in the acknowledgment message. This includes
the timestamp of message read or transaction commit.
The acknowledgment message further includes man-
agement information such as the id of the conditional
message that is acknowledged. The acknowledgments
thus allow the sender of the message to determine num-
bers and identities of, and timestamps and other data
about final recipients of a conditional message. In this
way, the state-of-the-art model of message delivery of
conventional messaging middleware is uniquely
extended beyond intermediate destinations like queues
to include final recipients and their actions.

A designated queue to store the acknowledgments
needs to be set up on the sender side (per default, a
queue namedDS.ACK.Q is used for this purpose).
This acknowledgment queue must be known to the
recipient-side conditional messaging system. Informa-
tion about the queue is therefore propagated to each
recipient as a property on the generated outgoing mes-
sages. The conditional messaging system on the
receiver side retrieves the information and directs the
acknowledgments properly to the right sender and
acknowledgment queue. The conditional messaging

Sender Application

sendMessage(Object,Condition)

JMS / MQ

createMessage()
sendMessage()

Figure 6: Application Use of Conditional Messaging and
Standard Messaging

Conditional Messaging

Queue

put()

DS.SLOG.Q

Sender Receiver

DS.OUTCOME.Q

system further creates a log entry for each consumed
message and puts the log entry on the persistent
receiver log queue (DS.RLOG.Q). Figure 7 illustrates
this model for reading conditional messages.

The architecture of our conditional messaging sys-
tem, as indicated with the presentation so far, is a dis-
tributed architecture. Responsibilities of conditional
messaging are distributed between the sender side and
the various receiver sides, with message communica-
tion taking place in both directions (for the primary
messages and for internal acknowledgment messages).
The architecture complies to the architecture of com-
mon messaging middleware, where sender and receiver
applications each need to explicitly establish a connec-
tion to the messaging middleware (typically, a queue
manager) in order to send and receive messages. The
conditional messaging functionality in this way could
be regarded as an extension to existing queue manager
functionality.

Consider again Example 1. Each receiver applica-
tion will implicitly initiate the sending of an acknowl-
edgment message when it successfully reads a message
using the conditional messaging API. If the receiver
performs a non-transactional read, an acknowledgment
of the first kind with a timestamp of the actual message
read is sent. If the receiver performs a read inside the
scope of a transaction, an acknowledgment of the sec-
ond kind is sent in case that the transaction commits.
This acknowledgment comprises two timestamps: the
timestamp of the actual message read from the queue,
and the timestamp of transaction commit. Note that
there will never be two acknowledgments generated for
one receiver reading one message (such as one
acknowledgment for receipt, and one acknowledgments
for transaction processing commit). A receiver either
consumes a message non-transactionally, or consumes
the message transactionally. A transactional read of a
message cannot be acknowledged if and unless the
transaction commits.

For Example 2, an acknowledgment is generated for
the one receiver that reads the incoming flight message.
The acknowledgment comprises, in both cases of trans-
actional read or non-transactional read, the timestamp
of the actual message read from the queue.

2.5 Evaluation of Condition Satisfaction
The monitoring of conditional messages that are

delivered to and processed by final recipients is needed
in order to evaluate the message conditions so that the
success or failure of the message can be determined.

The evaluation of conditions can be started immedi-
ately after the message has been sent out, and can be
ended when an evaluation result of success or failure is
determined. The conditional messaging system further
allows a sender to specify a timeout relative to the
timestamp of the sending of the conditional message to
ultimately terminate an evaluation.

For example, the message sender of Example 2 may
specify an evaluation timeout of 21 seconds, as the
requirement for message receipt by any controller is 20
seconds. If no positive evaluation result is determined
after 20 seconds, the conditional message can be
declared to have failed.

The conditional messaging system comprises an
evaluation manager that reads incoming acknowledg-
ment messages of the designated acknowledgment
queue and interprets them accordingly. Incoming
acknowledgment messages must be sorted with respect
to the conditional message they address (using the con-
ditional message ids), as the single acknowledgment
queue collects acknowledgment messages for an arbi-
trary number of different conditional messages.

Consider again Example 1. The evaluation of the
satisfaction of the conditions can start after the message
has been sent out. Four acknowledgment messages are
expected, of which at least three must be an acknowl-
edgment of message processing success. Once all four
acknowledgments have been received, the individual
time values need to be checked. All four acknowledg-
ment messages must carry a read timestamp that is less
than theMsgPickUpTime specified on thedest-
SetRoot:DestinationSet object. The acknowl-
edgment fromRecipient3 must carry a processing
timestamp that is less than the value specified on the
qr3:Destination object, and at least two of the
other three acknowledgments must carry a processing
timestamp that is less than the value specified on the
destSet1:DestinationSet object. If any single
condition is violated, the overall outcome of the condi-
tional message is declared to be a failure.

When the evaluation process is completed, an out-
come notification of success or failure is sent to the
sender’sDS.OUTCOME.Q.

2.6 Evaluation Outcome Actions:
Compensation and Success Notifications

Conditional messaging further provides system sup-
port for taking some appropriate action in the event that
a condition is found to be satisfied or violated.

In the event that a message succeeds (with respect to
its conditions), the system can send out a notification
message of evaluation success to all destinations. Suc-
cess notifications serve as confirmations to final receiv-
ers that all sender-side conditions were met. In case of
our Example 1, for instance, a success notification con-
firms that the meeting is scheduled to take place.

Receiver Application
readMessage(String)

JMS / MQ

getMessage()

Figure 7: Implicit Acknowledgments for Reading
Conditional Messages

Conditional Messaging

Queue

DS.ACK.Q

get()

put()

DS.RLOG.Q

Sender Receiver

begin_tx()
commit_tx()

put()

In the event that a message fails (with respect to its
conditions), the conditional messaging system can send
out acompensationmessage to all destinations to which
the original message has been delivered.

The compensation message can be a system-gener-
ated message that contains no specific data, but simply
tells the receiving applications that the conditional mes-
sage failed and that any effects caused by the receipt of
the original message need to be undone. This type of
compensation message is generated in casesendMes-
sage(Object,Condition) was called, and the
receiving application needs to understand this simple
notification. In case of the Example 1, such a compen-
sation message indicates the cancellation of the meet-
ing, and the receiving applications can be designed to
understand such simple compensation even if no addi-
tional application-specific compensation data is pro-
vided.

The compensation message can alternatively be an
application-defined message that contains any data that
the application provides to undo effects caused by the
receipt of the original message. For this type of com-
pensation message, the conditional messaging API pro-
vides the method sendMessage(Object,
Object,Condition) , where the second object
parameter is the compensation data.

Both kinds of compensation messages are generated
by the conditional messaging system at the time the
original messages are created and sent out, and they are
stored on a local persistent queue for compensating
messages (DS.COMP.Q), as shown in Figure 9. The
compensation messages are correlated to the id of the
original message, and are only sent out if the condi-
tional message fails.

On the receiver side, the conditional messaging sys-
tem correspondingly implements some special behavior
for reading messages from queues. In case that both the
original message and the compensation message are in
the queue (the original message has not been read from
the queue), both messages cancel each other out and
will be deleted from the queue. The compensation mes-
sage is only delivered to the receiver application in case
that the original message has been read from the queue
and a log entry for consumption exists in the
DS.RLOG.Q.

Compensation introduces some special issues, as the
process of compensation must be guaranteed for an
application even in the presence of system failures. In
[16], we describe how guaranteed compensation can be
implemented using three specific message queuing pat-
terns.

2.7 Architecture Overview and Summary
Figure 9 depicts the overall conditional messaging

architecture. A sender application uses the conditional
messaging service to define conditions, and to send
messages associated with conditions. The conditional
messaging system provides the respective functionality,
and implements an evaluation manager and a compen-
sation manager. Three specific, persistent queues are
used by the conditional messaging system for these pur-
poses: theDS.SLOG.Q for logging of sender-side
actions, theDS.ACK.Q for storing incoming acknowl-
edgments, and theDS.COMP.Qfor storing compensa-
tion messages. A sender application can in addition
continue to use the underlying messaging middleware
directly, for example, to send unconditional messages,
or to read incoming standard messages (like reply mes-
sages) that were not created by the conditional messag-
ing system.

A receiver application uses the conditional messag-
ing service to read messages that represent conditional
messages (messages that were created by the condi-
tional messaging system). It also uses the service to
demarcate a transaction, if the transaction comprises the
receipt of a conditional message. A receiver-side persis-
tent queueDS.RLOG.Q is used to log a receiver’s
actions. A receiver application can also continue to use
the underlying messaging middleware directly, for
example, to send an unconditional reply message. Note
that any receiver can also be a sender of a conditional
message, in which case all queues for sending condi-
tional messages would also exist in addition to the
DS.RLOG.Qqueue.

3 Dependency-Spheres

Conditional messages typically are part of a larger
business processing context. For example, the group
meeting notification example of Section 2 may be part
of a larger coordinated workflow process for some con-
tract negotiation and signing. Or, the flight distribution
example of Section 2 may be part of a larger business
process for handing over responsibilities for flights
leaving one air sector and entering another one.

Such larger business processes may comprise multi-
ple conditional messages, and may also comprise other
kinds of actions such as invocations on distributed
object applications and updates of distributed data-
bases. The various conditional messages and other
actions often need to constitute a single unit-of-work,
that is, should be executed in an all-or-nothing manner.

In this section, we present how theDependency-
Spheresmiddleware service [14] can be used to group
multiple conditional messages and other actions such as
distributed object requests into a single atomic unit-of-
work.

Figure 8: Compensation Queue

DS.COMP.Q

Sender Application

sendMessage(Object,Condition)

JMS / MQ

Conditional Messaging

Queue

put()

DS.SLOG.Q

sendMessage(Object,Object,Condition)

put()

put()

Sender Receiver

3.1 Atomic Groups of Conditional Messages
Conditional messaging extends conventional mes-

saging and standard messaging middleware in that an
application can define and evaluate a message outcome
of success or failure on a per-message basis. A group of
conditional messages can also have anoverall group
outcome, based on the individual outcomes of the mes-
sages grouped. Similar to distributed transactions that
atomically group distributed requests on transactional
resources [1], a group of conditional messages can be
an atomic unit-of-work that either succeeds as a whole,
or fails as a whole. The success of the group is depen-
dent on the success of all constituting messages; if a
single conditional message of the group fails, the whole
group will have a failure as its outcome.

A Dependency-Sphere (D-Sphere)[14] describes
such a group of conditional messages. A D-Sphere is a
global context inside of which various conditional mes-
sages may occur. The D-Sphere is demarcated by the
sender of the conditional messages using the verbs of
begin_DS , commit_DS , and abort_DS , which
compare to the verbs of common transaction services.

With respect to message delivery, conditional mes-
sages that are part of a D-Sphere have the same behav-
ior as conditional messages that are outside of a D-
Sphere. That is, the messages are sent immediately to
all distributed destinations required, and are not bound
to the D-Sphere commit. A D-Sphere thus is unlike
common messaging transactions that group standard
messages and make their publication dependent on a
successful commit. D-Sphere conditional messages are
sent out immediately, and are then subject to monitor-
ing, condition evaluation, and further outcome actions.

When an evaluation outcome for an individual mes-
sage is determined, however, no immediate outcome
action will be taken for the message, if the message is

part of a D-Sphere. Only when the D-Sphere terminates
as a whole (throughcommit_DS , abort_DS , or a D-
Sphere timeout), outcome actions for all individual
messages that are part of the D-Sphere will be initiated
based on the overall D-Sphere outcome. If a D-Sphere
succeeds as a whole, success notifications can be send
for the D-Sphere and its individual messages to all des-
tinations involved. Likewise, if the D-Sphere fails as a
whole, compensation messages that are correlated to
the original messages can be send, as described in Sec-
tion 2.6.

3.2 Atomic Groups of Conditional Messages
and Distributed Object Requests

A D-Sphere not only allows the grouping of a set of
conditional messages but also supports the integration
of distributed object requests and conventional distrib-
uted object transactions into the atomic unit-of-work.
D-Spheres follow the model of "message delivery
transactions" and "message processing transactions" as
introduced in [15] to integrate distributed object trans-
action processing with messaging, and thus, to better
support enterprise applications that use object middle-
ware (like CORBA, EJB) and messaging middleware
(like MQSeries, JMS) in combination.

The sender of one or more conditional messages
may also invoke transactional resources like distributed
objects and databases using the standard invocation
mechanism of the transaction object middleware used
(such as CORBA OTS [10] and JTS [13]). These trans-
actional requests become part of the D-Sphere, that is,
they are associated to the D-Sphere context as estab-
lished when beginning a D-Sphere. The outcomes of
the object requests affect the outcome of the D-Sphere,
and the outcome of the D-Sphere affects the individual
object actions. In case that a transactional object

Figure 9: Conditional Messaging Architecture Overview

Sender Application

sendMessage(Object,Condition)

AppQueueDS.SLOG.Q

sendMessage(Object,Object,Condition)

DS.RLOG.QDS.COMP.QDS.ACK.Q AppReplyQueue

setEvalTimeout(long)
setCompensationSupport(true)
setSuccessNotifications(true)

readMessage(String)
begin_tx()
commit_tx()

put()get()

Receiver Application

JMS / MQ

Conditional

Message
Receipt

Messaging

JMS / MQ

Conditional Messaging

Evaluation
Manager

Compensation
Engine

Message
Delivery

Condition
Definition

DS.OUTCOME.Q

request fails, the D-Sphere as a whole fails. In case that
the D-Sphere fails, all object requests need to be rolled
back. If the D-Sphere succeeds, all object changes
become persistent. Figure 10 illustrates the D-Sphere
service architecture.

The D-Spheres transaction service employs condi-
tional messaging, but conditional messaging, as intro-
duced in this paper, is a concept and middleware
service that can be used independently of D-Spheres.

4 Summary and Discussion

Messaging and messaging middleware are often
used for purposes of enterprise application integration.
Messaging middleware guarantees eventual message
delivery to intermediary destinations like queues, but
does not support the management of application-
defined conditions on messages, for example, to deter-
mine the timely receipt or processing of a message by a
set of final recipients.

In this paper, we addressed this shortcoming of cur-
rent middleware. We defined the notion of conditional
messaging and presented a middleware system support-
ing the management of application-defined conditions
on messages. Conditional messaging is a new middle-
ware solution

• to define diverse conditions on message delivery
and message processing in a structured and flexi-
ble way, and to represent these conditions inde-
pendently of messages as distinct condition
objects

• to send messages associated with conditions
using a simple indirection API to standard mes-
saging middleware

• to monitor the delivery to and the processing by
final recipients using automatically generated
internal acknowledgment messages of receipt and
of (transactional) processing

• to evaluate conditions to determine a message
outcome of success or failure

• to perform actions based on the outcome of a
message, including the sending of success notifi-
cations to all destinations in case of a message
success, or, the sending of compensation mes-
sages in case of a message failure.

We presented the design of a conditional messaging
system which employs both objects and reliable mes-
saging of an underlying MOM. Various persistent mes-
sage queues are used for purposes of logging, message
monitoring and evaluation, and message compensation.
The architecture proposed implements conditional mes-
saging reliably on top of standard middleware, and can
easily be integrated in J2EE and MQ environments.

The infrastructure used and the messages created to
support conditional messaging are those that are needed
to achieve the desired qualities of service. If no condi-
tional messaging system were available, the application
would have to create similar messages for purposes
such as logging or acknowledgments. Therefore, condi-
tional messaging relieves the application developer of
this burden.

We further described how the grouping of a set of
conditional messages into a single atomic unit-of-work
is supported with the Dependency-Sphere transactional
middleware service. The Dependency-Sphere service
also allows conditional messages to be dependent on
distributed object requests that are included in the same
atomic unit-of-work.

Conditional messaging can be regarded as a func-
tionality extension to standard messaging middleware
like MQSeries and JMS, and could also be supported
by middleware products directly. For example, a mes-
sage queue manager could be enhanced to support con-
ditional messaging.

Conditional messaging uniquely shifts the responsi-
bilities for implementing the management of conditions
on messages from an application to the middleware.
The definition of conditions remains, as it should, the
responsibility of the application.

Conditional messaging extends reliable messaging
of MOM to deal with application conditions on mes-
sages in a structured and middleware-supported way.
The form of conditions supported by our system is
appropriate for many applications. Other forms of con-
ditions, for example, conditions expressed in Java or
conditions encoded in message bodies, may also be
useful for many applications and we expect to support
them in the future.

4.1 Related Work
We are not aware of a middleware system that is

comparable to the features and architecture of the con-
ditional messaging system described.

However, the importance of message processing
assurance beyond the delivery guarantees of current
middleware has been pointed out in the literature. The
Coyote approach [2], for example, suggests to imple-

Figure 10: D-Sphere Service Architecture

D-Sphere Messaging

D-Sphere Management

D-Sphere API

2PC [existing base services]

JMSJTS LRUOW MQ

Message Sender,
Transactional Client

DS_begin

sendMessage

DS_commit
DS_abort

Message Receiver

readMessage

Transactional Resource

invocation

ment a timeout-constrained message exchange protocol
of acknowledgments and compensation/cancellation
messages for a single server. Conditional messaging
supports such processing assurance, and further sup-
ports the assurance of conditions other than a timeout
for message processing by a single server. Conditional
messages may have multiple recipients (servers) that
can be required or optional, with time constraints set on
the individual recipient or on sets and subsets of recipi-
ents and with respect to message processing or message
receipt only.

The aspect of processing dependencies between
messaging partners is also addressed by [8,9] through
the definition of "coupling modes." The notion of a
coupling mode was originally introduced in the context
of active database management systems [3]. A coupling
mode as defined in [8,9] includes the specification of
forward dependencies and backward dependencies in
the context of distributed transaction processing using
messaging. For example, if a sender publishes a mes-
sage as part of a transaction, and the transaction commit
depends on the successful commit-processing by a
recipient of the message, one kind of backward-depen-
dency is described. Conditional messaging as intro-
duced in this paper allows for a flexible way in
specifying different kinds of backward dependencies.

4.2 Future Work
Conditional messaging as defined in Section 2 is a

general notion. In this paper, we focused on message
queuing as the messaging model, and on sender-side
conditions for publishing notifications and sending out
processing requests. In our future work, we plan to
extend the model for Web environments. This includes
more flexible representation of conditions, use of XML
in messaging, and message delivery through standards
such as the Simple Object Access Protocol (SOAP).

5 References

[1] P. Bernstein, E. Newcomer.Principles of Transaction
Processing.Morgan Kaufmann, San Francisco, CA,
1997.

[2] A. Dan, F. Parr. The Coyote approach for Network
Centric Service Applications: Conversational Service
Transactions, a Monitor, and an Application Style.High
Performance Transaction Processing Workshop,
Asilomar, CA, 1997.

[3] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy,
M. Hsu, R. Ledin, D.R. McCarthy, A. Rosenthal, S.K.
Karin, M.J. Carey, M. Livny, R.Jauhari. The HiPAC
Project: Combining Active Databases and Timing
Constraints. InSIGMOD Record, Volume 17(1), March
1988.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides.Design
Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, Massachusetts,
1994.

[5] IBM Corp. MQSeries Application Programming Guide,
10th Ed., 1999.

[6] IBM Corp. MQSeries Using Java, 5th Ed., 2000.

[7] R. Lewis. Advanced Messaging Applications with
MSMQ and MQSeries.Que Professional, 2000.

[8] C. Liebig, M. Malva, A. Buchmann. Integrating
Notifications and Transactions: Concepts and X2TS
Prototype. InProceedings 2nd International Workshop
on Engineering Distributed Objects(EDO 2000, Davis,
CA, USA, 11/2000), Springer-Verlag LNCS 1999, pp.
194-214, 2001.

[9] C. Liebig, S. Tai. Middleware-Mediated Transactions. In
Proceedings 3rd IEEE International Symposium on
Distributed Objects and Applications(DOA 2001,
Rome, Italy), IEEE Computer Society, September 2001.

[10] OMG. Transaction Service v1.1, TR OMG Document
formal/2000-06-28, OMG, 2000.

[11] OMG. UML Profile for Event-based Architectures in
Enterprise Application Integration. OMG EAI SIG Joint
Submission, OMG Document Number ad/2000-8-05,
August 2000.

[12] Sun Microsystems. Java Message Service API
Specification v1.02. Sun, 1999.

[13] Sun Microsystems. Java Transaction Service (JTS).
http://java.sun.com/j2ee/transactions.html

[14] S. Tai, T. Mikalsen, I. Rouvellou, S. Sutton.
Dependency-Spheres: A Global Transaction Context for
Distributed Objects and Messages. InProceedings 5th
International Enterprise Distributed Object Computing
Conference(EDOC 2001, Seattle, Washington, USA),
IEEE Computer Society, September 2001.

[15] S. Tai, I. Rouvellou. Strategies for Integrating
Messaging and Distributed Object Transactions. In
Proceedings IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2000, New
York, NY, USA), Springer-Verlag LNCS 1795, pp. 308-
330, April 2000.

[16] S. Tai, A. Totok, T. Mikalsen, I. Rouvellou. Message
Queuing Patterns for Middleware-Mediated
Transactions. February 2002.in submission.

