
The Object Model 3

by
s

In

such
tures.

o
t of
3.1 Overview

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG object
model is abstract in that it is not directly realized by any particular technology. The
model described here is a concrete object model. A concrete object model may differ
from the abstract object model in several ways:

• It may elaborate the abstract object model by making it more specific, for
example, by defining the form of request parameters or the language used to
specify types

• It may populate the model by introducing specific instances of entities defined
the model, for example, specific objects, specific operations, or specific type

• It may restrict the model by eliminating entities or placing additional restrictions
on their use

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defined encapsulating interface.
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including
concepts as object creation and identity, requests and operations, types and signa
It then describes concepts related to object implementations, including such concepts
as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful t
clients. The discussion of object implementation is more suggestive, with the inten
allowing maximal freedom for different object technologies to provide different ways
of implementing objects.
A Discussion of the Object Management Architecture 3-1

3

 of the
e are

ts
uded
and

 a

o or

ation

ncepts

 an

iple

eate

t. A
There are some other characteristics of object systems that are outside the scope
object model. Some of these concepts are aspects of application architecture, som
associated with specific domains to which object technology is applied. Such concep
are more properly dealt with in an architectural reference model. Examples of excl
concepts are compound objects, links, copying of objects, change management,
transactions. Also outside the scope of the object model is the model of control and
execution.

This object model is an example of a classical object model, where a client sends
message to an object. Conceptually, the object interprets the message to decide what
service to perform. In the classical model, a message identifies an object and zer
more actual parameters. As in most classical object models, a distinguished first
parameter is required, which identifies the operation to be performed; the interpret
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either by the
object or the ORB.

3.2 Object Semantics

An object system provides services to clients. A client of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the co
relevant to clients.

3.2.1 Objects

An object system includes entities known as objects. An object is an identifiable,
encapsulated entity that provides one or more services that can be requested by a
client.

3.2.2 Requests

Clients request services by issuing requests. A request is an event, i.e. something that
occurs at a particular time. The information associated with a request consists of
operation, a target object, zero or more (actual) parameters, and an optional request
context.

A request form is a description or pattern that can be evaluated or performed mult
times to cause the issuing of requests. As described in the OMG IDL Syntax and
Semantics chapter, request forms are defined by particular language bindings. An
alternative request form consists of calls to the dynamic invocation interface to cr
an invocation structure, add arguments to the invocation structure, and to issue the
invocation. A value is anything that may be a legitimate (actual) parameter in a
request. A value may identify an object, for the purpose of performing the reques
value that identifies an object is called an object name. More particularly, a value is an
instance of an OMG IDL data type.
3-2 A Discussion of the Object Management Architecture

3

ce is

t may

 of
est.

n is

o

d to

d as

t
An object reference is an object name that reliably denotes a particular object.
Specifically, an object reference will identify the same object each time the referen
used in a request (subject to certain pragmatic limits of space and time). An object may
be denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; i
also have a request context which provides additional information about the request.

A request causes a service to be performed on behalf of the client. One outcome
performing a service is returning to the client the results, if any, defined for the requ

If an abnormal condition occurs during the performance of a request, an exceptio
returned. The exception may carry additional return parameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may als
return a single result value, as well as any output parameters.

The following semantics hold for all requests:

• Any aliasing of parameter values is neither guaranteed removed nor guarantee
be preserved

• The order in which aliased output parameters are written is not guaranteed

• Any output parameters are undefined if an exception is returned

• The values that can be returned in an input-output parameter may be constrained by
the value that was input

Descriptions of the values and exceptions that are permitted, see 3 and 7.

3.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special
mechanism for creating or destroying an object. Objects are created and destroye
an outcome of issuing requests. The outcome of object creation is revealed to the clien
in the form of an object reference that denotes the new object.

3.2.4 Types

A type is an identifiable entity with an associated predicate (a single-argument
mathematical function with a boolean result) defined over values. A value satisfies a
type if the predicate is true for that value. A value that satisfies a type is called a
member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a
possible result.

The extension of a type is the set of values that satisfy the type at any particular time.
OMA Object Semantics January 1997 3-3

3

h of

irs

e

that

 legal
s
An object type is a type whose members are objects (literally, values that identify
objects). In other words, an object type is satisfied only by (values that identify)
objects.

Constraints on the data types in this model are shown in this section.

Basic types:

• 16-bit and 32-bit signed and unsigned 2’s complement integers

• 32-bit and 64-bit IEEE floating point numbers

• Characters, as defined in ISO Latin-1 (8859.1)

• A boolean type taking the values TRUE and FALSE

• An 8-bit opaque detectable, guaranteed to not undergo any conversion during
transfer between systems

• Enumerated types consisting of ordered sequences of identifiers

• A string type which consists of a variable-length array of characters; the lengt
the string is available at run-time

• A type “any” which can represent any possible basic or constructed type

Constructed types:

• A record type (called struct), consisting of an ordered set of (name,value) pa

• A discriminated union type, consisting of a discriminator followed by an instance
of a type appropriate to the discriminator value

• A sequence type which consists of a variable-length array of a single type; th
length of the sequence is available at run-time

• An array type which consists of a fixed-length array of a single type

• An interface type, which specifies the set of operations which an instance of
type must support

Values in a request are restricted to values that satisfy these type constraints. The
values are shown in FIG. 1 on page 3-5. No particular representation for values i
defined.
3-4 A Discussion of the Object Management Architecture

3

st of
n

s of

tion
FIG. 1 Legal Values

3.2.5 Interfaces

An interface is a description of a set of possible operations that a client may reque
an object. An object satisfies an interface if it can be specified as the target object i
each potential request described by the interface.

An interface type is a type that is satisfied by any object (literally, any value that
identifies an object) that satisfies a particular interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the composition
mechanism for permitting an object to support multiple interfaces. The principal
interface is simply the most-specific interface that the object supports, and consist
all operations in the transitive closure of the interface inheritance graph.

3.2.6 Operations

An operation is an identifiable entity that denotes a service that can be requested.

An operation is identified by an operation identifier. An operation is not a value.

An operation has a signature that describes the legitimate values of request parameters
and returned results. In particular, a signature consists of:

• A specification of the parameters required in requests for that operation

• A specification of the result of the operation

• A specification of the exceptions that may be raised by a request for the opera
and the types of the parameters accompanying them

Value

Object Reference Constructed Value

Basic Value Struct Sequence Union Array

Short Long UShort ULong Float Double Char St ring Boolean Octet Enum Any
OMA Object Semantics January 1997 3-5

3

t

est

rmly
bly
DL

ed

ned

e

e

ill

 in
• A specification of additional contextual information that may affect the reques

• An indication of the execution semantics the client should expect from a requ
for the operation

Operations are (potentially) generic, meaning that a single operation can be unifo
requested on objects with different implementations, possibly resulting in observa
different behavior. Genericity is achieved in this model via interface inheritance in I
and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_sp ec> <identifier> (param1, ..., paramL)
 [raises(except1,...,exceptN)] [co ntext(name1, ..., nameM)]

where:

• The optional oneway keyword indicates that best-effort semantics are expect
of requests for this operation; the default semantics are exactly-once if the
operation successfully returns results or at-most-once if an exception is retur

• The <op_type_spec> is the type of the return result

• The <identifier> provides a name for the operation in the interface

• The operation parameters needed for the operation; they are flagged with th
modifiers in , out , or inout to indicate the direction in which the information
flows (with respect to the object performing the request)

• The optional raises expression indicates which user-defined exceptions can b
signaled to terminate a request for this operation; if such an expression is not
provided, no user-defined exceptions will be signaled

• The optional context expression indicates which request context information w
be available to the object implementation; no other contextual information is
required to be transported with the request

Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the
value should be passed from client to server (in), from server to client (out), or both
(inout). The parameter’s type constrains the possible value which may be passed
the directions dictated by the mode.

Return Result

The return result is a distinguished out parameter.
3-6 A Discussion of the Object Management Architecture

3

.

ct

ents

r

pair

eded
Exceptions

An exception is an indication that an operation request was not performed successfully
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a
record, it may consist of any of the types described in Section 3.2.4.

Contexts

A request context provides additional, operation-specific information that may affe
the performance of a request.

Execution Semantics

Two styles of execution semantics are defined by the object model:

• At-most-once: if an operation request returns successfully, it was performed
exactly once; if it returns an exception indication, it was performed at-most-once.

• Best-effort: a best-effort operation is a request-only operation, i.e. it cannot return
any results and the requester never synchronizes with the completion, if any, of
the request.

The execution semantics to be expected is associated with an operation. This prev
a client and object implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous o
deferred-synchronous manner.

3.2.7 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a
of accessor functions: one to retrieve the value of the attribute and one to set the value
of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is
defined.

3.3 Object Implementation

This section defines the concepts associated with object implementation, i.e. the
concepts relevant to realizing the behavior of objects in a computational system.

The implementation of an object system carries out the computational activities ne
to effect the behavior of requested services. These activities may include computing
the result of the request and updating the system state. In the process, additional
requests may be issued.
OMA Object Implementation January 1997 3-7

3

e

at

ge the

ameters

on an
sible

ds.
ith

ong
 also
The implementation model consists of two parts: the execution model and the
construction model. The execution model describes how services are performed. Th
construction model describes how services are defined.

3.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code th
operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may chan
state of the system.

Code that is executed to perform a service is called a method. A method is an
immutable description of a computation that can be interpreted by an execution engine.
A method has an immutable attribute called a method format that defines the set of
execution engines that can interpret the method. An execution engine is an abstract
machine (not a program) that can interpret methods of certain formats, causing the
described computations to be performed. An execution engine defines a dynamic
context for the execution of a method. The execution of a method is called a method
activation.

When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and the output par
and return value (or exception and its parameters) are passed back to the requestor.

Performing a requested service causes a method to execute that may operate up
object’s persistent state. If the persistent form of the method or state is not acces
to the execution engine, it may be necessary to first copy the method or state into an
execution context. This process is called activation; the reverse process is called
deactivation.

3.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of
requests. These mechanisms include definitions of object state, definitions of methods,
and definitions of how the object infrastructure is to select the methods to execute and
to select the relevant portions of object state to be made accessible to the metho
Mechanisms must also be provided to describe the concrete actions associated w
object creation, such as association of the new object with appropriate methods.

An object implementation—or implementation, for short—is a definition that provides
the information needed to create an object and to allow the object to participate in
providing an appropriate set of services. An implementation typically includes, am
other things, definitions of the methods that operate upon the state of an object. It
typically includes information about the intended type of the object.
3-8 A Discussion of the Object Management Architecture

	The Object Model
	3.1 Overview
	3.2 Object Semantics
	3.2.1 Objects
	3.2.2 Requests
	3.2.3 Object Creation and Destruction
	3.2.4 Types
	3.2.5 Interfaces
	3.2.6 Operations
	3.2.7 Attributes

	3.3 Object Implementation
	3.3.1 The Execution Model: Performing Services
	3.3.2 The Construction Model

