
Reference Model 4
and
ll

any
4.1 Object Management Architecture

4.1.1 Introduction

The Object Management Architecture Guide (OMAG) describes OMG’s technical
objectives and terminology and provides the conceptual infrastructure upon which
supporting specifications are based. The guide includes the OMG Object Model, which
defines common semantics for specifying the externally visible characteristics of
objects in a standard implementation-independent way, and the OMA Reference Model.

Through a series of RFPs, OMG is populating the OMA with detailed specifications
for each component and interface category in the Reference Model. Adopted
specifications include the Common Object Request Broker Architecture (CORBA),
CORBAservices, and CORBAfacilities.

The wide-scale industry adoption of OMG's OMA provides application developers
users with the means to build interoperable software systems distributed across a
major hardware, operating system, and programming language environments.

4.1.2 Reference Model Overview

The Reference Model identifies and characterizes the components, interfaces, and
protocols that compose the OMA. This includes the Object Request Broker (ORB)
component that enables clients and objects to communicate in a distributed
environment, and four categories of object interfaces:

• Object Services are interfaces for general services that are likely to be used in
program based on distributed objects

• Common Facilities are interfaces for horizontal end-user-oriented facilities
applicable to most application domains
A Discussion of the Object Management Architecture 4-1

4

d

e
• Domain Interfaces are application domain-specific interfaces

• Application Interfaces are non-standardized application-specific interfaces

These interface categories are shown in Figure 4-1.

Figure 4-1 OMA Reference Model: Interface Categories

A second part of the Reference Model, shown in Figure 4-2, focuses on interface usage
and introduces the notion of domain-specific Object Frameworks. An Object
Framework component is a collection of cooperating objects that provide an integrate
solution within an application or technology domain and which is intended for
customization by the developer or user. Object Frameworks are explained in mor
detail below.

Application Inte rfaces Common Faci lities

Object Services

HorizontalNon-standardized

Object Request Broker

General service interfaces

Domain Interfaces

Application
app-specific interfaces domain-specific interfaces facility interfaces
4-2 A Discussion of the Object Management Architecture

4

 same

 the

ge

e in a

loping

e

le
lled
4.1.3 Interface versus Implementation

It is important to note that applications need only support or use OMG-compliant
interfaces to participate in the OMA. They need not themselves be constructed using
the object-oriented paradigm. Figure 4-1 shows, in the case of Object Services, how
existing non-object-oriented software can be embedded in objects (sometimes called
object wrappers) that participate in the OMA.

4.1.4 Object Request Broker

The Common Object Request Broker Architecture defines the programming interfaces
to the OMA ORB component. An ORB is the basic mechanism by which objects
transparently make requests to - and receive responses from - each other on the
machine or across a network. A client need not be aware of the mechanisms used to
communicate with or activate an object, how the object is implemented, nor where
object is located. The ORB thus forms the foundation for building applications
constructed from distributed objects and for interoperability between applications in
both homogeneous and heterogeneous environments.

The OMG Interface Definition Language (IDL) provides a standardized way to define
the interfaces to CORBA objects. The IDL definition is the contract between the
implementor of an object and the client. IDL is a strongly typed declarative langua
that is programming language-independent. Language mappings enable objects to be
implemented and sent requests in the developer's programming language of choic
style that is natural to that language.

4.1.5 Object Services

Object Services are general purpose services that are either fundamental for deve
useful CORBA-based applications composed of distributed objects, or that provide a
universal - application domain-independent - basis for application interoperability.

Object Services are the basic building blocks for distributed object applications.
Compliant objects can be combined in many different ways and put to many different
uses in applications. They can be used to construct higher level facilities and object
frameworks that can interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and includ
Naming, Events, LifeCycle, Persistent Object, Transactions, Concurrency Control,
Relationships, Externalization, Licensing, Query, Properties, Security, Time,
Collections, and Trader. See “4.2 Summary of Object Services” for additional
information.

4.1.6 Common Facilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicab
to most application domains. Adopted OMG Common Facilities are collectively ca
CORBAfacilities and include an OpenDoc-based Distributed Document Facility.
OMA Object Management Architecture January 1997 4-3

4

f

.

ome

 and

A specification of a Common Facility or Object Service typically includes the set o
interface definitions - expressed in OMG IDL - that objects in various roles must
support in order to provide, use or participate in the facility or service. As with all
specifications adopted by OMG, facilities and services are defined in terms of
interfaces and their semantics, and not a particular implementation.

4.1.7 Domain Interfaces

Domain Interfaces are domain-specific interfaces for application domains such as
Finance, Healthcare, Manufacturing, Telecom, Electronic Commerce, and
Transportation. Figure 4-1, highlights the fact that Domain Interfaces will be grouped
by application domain by showing a possible set of collections of Domain Interfaces

4.1.8 Object Frameworks

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direct
interest to end-users in particular application or technology domains.

Object Frameworks are collections of cooperating objects categorized into Application,
Domain, Facility, and Service Objects. Each object in a framework supports (for
example, by virtue of interface inheritance) or makes use of (via client requests) s
combination of Application, Domain, Common Facility, and Object Services
interfaces.

A particular Object Framework may contain zero or more Application Objects, zero or
more Domain Objects, zero or more Facility Objects, and zero or more Service
Objects. Service Objects support Object Services (OS) interfaces; Facility Objects
support interfaces that are some combination of Common Facilities (CF) interfaces
potentially inherited OS interfaces; Domain Objects support interfaces that are some
combination of Domain Interfaces (DI) and, potentially, inherited CF and OS
interfaces; and so on for Application Objects. Thus, higher level components and
interfaces build on and reuse lower level components and interfaces.
4-4 A Discussion of the Object Management Architecture

4

s
)

rk.
;
Figure 4-2 OMA Reference Model: Interface Usage

The concept of an Object Framework is illustrated in Figure 4-2. Objects are shown a
an implementation “core” surrounded by a partitioned concentric shell (or “donut”
representing the interfaces that the object supports.

The picture shows the most general case where objects support all the possible
interfaces for their category. In any given specific situation, degenerative cases may
exist, such as Domain Objects that support only inherited Object Services interfaces
(e.g. the event channel pull consumer interface) and no Common Facility interfaces, or
Domain Objects that support neither Object Services or Common Facility interfaces in
order to provide their functionality.

Figure 4-3 shows how objects in an Object Framework can make requests to other
objects in the framework in order to provide the overall functionality of the framewo
The picture shows three requests: one from an Application Object to a Service Object

DI

AI

OS
CF

.

. . .

Application
Objects

Domain
Objects

Facility
Objects

Service
Objects

DI

OS CF

CF

OS

OSOS

Object
Framework

Object Request Broker
OMA Object Management Architecture January 1997 4-5

4

ces,

one from a Facility Object to a Service Object; and one from a Domain Object to an
Application Object which could, for example, be a “call back” to a Domain Interface
supported by the Application Object.

Figure 4-3 Example request flow (runtime reuse)

4.1.9 Object Framework Specifications

A specification of an Object Framework defines such things as the structure, interfa
types, operation sequencing, and qualities of service of the objects that make up the
framework. This includes requirements on implementations in order to guarantee
application portability and interoperability across different platforms. Object
Framework specifications may include new Domain Interfaces for particular
application domains.

DI

AI

OS
CF

.

. . .

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AADI

OS CF
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AACF

OS

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

OSOS

Object
Framework

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA

Implementation provided by
application developer

Implementation provided by
“service” provider

request

request

request

(e.g call back)
4-6 A Discussion of the Object Management Architecture

4

t
y

y the

r

an be
al

s of
The application-specific part of an Application Object’s interface is, by definition, no
included in the specification of an Object Framework. This part is totally defined b
the application developer. On the other hand, standardized interfaces that must be
inherited and supported in order that the Application Object can function in the
framework may form part of the framework specification.

4.2 Summary of Object Services

This section provides a brief description of each Object Service.

• The Naming Service provides the ability to bind a name to an object relative to a
naming context. A naming context is an object that contains a set of name
bindings in which each name is unique. To resolve a name is to determine the
object associated with the name in a given context. Through the use of a very
general model and in dealing with names in their structural form, Naming Service
implementations can be application specific or be based on a variety of naming
systems currently available on system platforms.

Graphs of naming contexts can be supported in a distributed, federated fashion.
The scalable design allows the distributed, heterogeneous implementation and
administration of names and name contexts.

Because name component attribute values are not assigned or interpreted b
Naming Service, higher levels of software are not constrained in terms of policies
about the use and management of attribute values.

• The Event Service provides basic capabilities that can be configured togethe
flexibly and powerfully. The service supports asynchronous events (decoupled
event suppliers and consumers), event “fan-in,” notification “fan-out,"—and
through appropriate event channel implementations—reliable event delivery.

The Event Service design is scalable and is suitable for distributed environments.
There is no requirement for a centralized server or dependency on any global
service. Both push and pull event delivery models are supported; that is,
consumers can either request events or be notified of events.

Suppliers can generate events without knowing the identities of the consumers.
Conversely, consumers can receive events without knowing the identities of the
suppliers. There can be multiple consumers and multiple suppliers of events.
Because event suppliers, consumers, and channels are objects, advantage c
taken of performance optimizations provided by ORB implementations for loc
and remote objects. No extension is required to CORBA.

• The Life Cycle Service defines operations to copy, move, and remove graphs of
related objects, while the Relationship Service allows graphs of related objects to
be traversed without activating the related objects. Distributed implementation
the Relationship Service can have navigation performance and availability similar
OMA Summary of Object Services January 1997 4-7

4

nd

 the
 The

 of

ural

ect
also

g a

o it

hen

 with

the
k
es

to CORBA object references: role objects can be located with their objects a
need not depend on a centralized repository of relationship information. As such,
navigating a relationship can be a local operation.

• The Persistent Object Service (POS) provides a set of common interfaces to
mechanisms used for retaining and managing the persistent state of objects.
object ultimately has the responsibility of managing its state, but can use or
delegate to the Persistent Object Service for the actual work. A major feature
the Persistent Object Service (and the OMG architecture) is its openness. In this
case, that means that there can be a variety of different clients and
implementations of the Persistent Object Service, and they can work together.
This is particularly important for storage, where mechanisms useful for
documents may not be appropriate for employee databases, or the mechanisms
appropriate for mobile computers do not apply to mainframes.

• The Transaction Service supports multiple transaction models, including the flat
(mandatory in the specification) and nested (optional) models. The Transaction
Service supports interoperability between different programming models. For
instance, some users want to add object implementations to existing proced
applications and to augment object implementations with code that uses the
procedural paradigm. To do so in a transaction environment requires the obj
and procedural code to share a single transaction. Network interoperability is
supported, since users need communication between different systems, including
the ability to have one transaction service interoperate with a cooperating
transaction service using different ORBs.

The Transaction Service supports both implicit (system-managed transaction)
propagation and explicit (application-managed) propagation. With implicit
propagation, transactional behavior is not specified in the operation’s signature.
With explicit propagation, applications define their own mechanisms for sharin
common transaction.

The Transaction Service can be implemented in a TP monitor environment, s
supports the ability to execute multiple transactions concurrently, and to execute
clients, servers, and transaction services in separate processes.

• The Concurrency Control Service enables multiple clients to coordinate their
access to shared resources. Coordinating access to a resource means that w
multiple, concurrent clients access a single resource, any conflicting actions by
the clients are reconciled so that the resource remains in a consistent state.

Concurrent use of a resource is regulated with locks. Each lock is associated
a single resource and a single client. Coordination is achieved by preventing
multiple clients from simultaneously possessing locks for the same resource if
client’s activities might conflict. Hence, a client must obtain an appropriate loc
before accessing a shared resource. The Concurrency Control Service defin
several lock modes, which correspond to different categories of access. This
variety of lock modes provides flexible conflict resolution. For example,
4-8 A Discussion of the Object Management Architecture

4

iple

ity.

s two

ship-

ic

in a

e

RB.
ose

s the

e of

e
s
ugh
e of
e to

ss
providing different modes for reading and writing lets a resource support mult
concurrent clients on a read-only transaction. The Concurrency Control service
also defines Intention Locks that support locking at multiple levels of granular

• The Relationship Service allows entities and relationships to be explicitly
represented. Entities are represented as CORBA objects. The service define
new kinds of objects: relationships and roles. A role represents a CORBA object
in a relationship. The Relationship interface can be extended to add relation
specific attributes and operations. In addition, relationships of arbitrary degree
can be defined. Similarly, the Role interface can be extended to add role-specif
attributes and operations. Type and cardinality constraints can be expressed and
checked: exceptions are raised when the constraints are violated.

• The Externalization Service defines protocols and conventions for externalizing
and internalizing objects. Externalizing an object is to record the object state
stream of data (in memory, on a disk file, across the network, and so forth) and
then be internalized into a new object in the same or a different process. Th
externalized object can exist for arbitrary amounts of time, be transported by
means outside of the ORB, and be internalized in a different, disconnected O
For portability, clients can request that externalized data be stored in a file wh
format is defined with the Externalization Service Specification.

The Externalization Service is related to the Relationship Service and parallel
Life Cycle Service in defining externalization protocols for simple objects, for
arbitrarily related objects, and for facilities, directory services, and file services.

• The Licensing Service provides a mechanism for producers to control the us
their intellectual property. Producers can implement the Licensing Service
according to their own needs, and the needs of their customers, because the
Licensing Service does not impose its own business policies or practices.

A license in the Licensing Service has three types of attributes that allow
producers to apply controls flexibly: time, value mapping, and consumer. Tim
allows licenses to have start/duration and expiration dates. Value mapping allow
producers to implement a licensing scheme according to units, allocation (thro
concurrent use licensing), or consumption (for example, metering or allowanc
grace periods through “overflow” licenses). Consumer attributes allow a licens
be reserved or assigned for specific entities; for example, a license could be
assigned to a particular machine. The Licensing Service allows producers to
combine and derive from license attributes.

The Licensing Service consists of a LicenseServiceManager interface and a
ProducerSpecificLicenseService interface: these interfaces do not impose busine
policies upon implementors.
OMA Summary of Object Services January 1997 4-9

4

clude

vides

lues
 and
imple

s
the
utes

ting

• The Query Service allows users and objects to invoke queries on collections of
other objects. The queries are declarative statements with predicates and in
the ability to specify values of attributes; to invoke arbitrary operations; and to
invoke other Object Services.

The Query Service allows indexing; maps well to the query mechanisms used in
database systems and other systems that store and access large collections of
objects; and is based on existing standards for query. The Query Service pro
an architecture for a nested and federated service that can coordinate multiple,
nested query evaluators.

• The Property Service provides the ability to dynamically associate named va
with objects outside the static IDL-type system. It defines operations to create
manipulate sets of name-value or name-value-mode tuples. The names are s
OMG IDL strings. The values are OMG IDL anys. The use of type any is
significant in that it allows a property service implementation to deal with any
value that can be represented in the OMG-IDL-type system.

The Property Service was designed to be a basic building block, yet robust
enough to be applicable for a broad set of applications. It provides “batch”
operations to deal with sets of properties as a whole. The use of “batch”
operations is significant in that the systems and network management (SNMP,
CMIP,...) communities have proven such a need when dealing with “attribute”
manipulation in a distributed environment.

• The Security Service comprises:

•Identification and authentication of principals (human users and objects
which need to operate under their own rights) to verify they are who they
claim to be.

•Authorization and access control - deciding whether a principal can acces
an object, normally using the identity and/or other privilege attributes of
principal (such as role, groups, security clearance) and the control attrib
of the target object (stating which principals, or principals with which
attributes) can access it.

•Security auditing to make users accountable for their security related
actions. It is normally the human user who should be accountable. Audi
mechanisms should be able to identify the user correctly, even after a chain
of calls through many objects.

•Security of communication between objects, which is often over insecure
lower layer communications. This requires trust to be established between
the client and target, which may require authentication of clients to targets
and authentication of targets to clients. It also requires integrity
protection and (optionally) confidentiality protection of messages in
transit between objects.
4-10 A Discussion of the Object Management Architecture

4

ding

o

ror

ed to

t,

a set

on
he

heir

r job,
rvice
•Non-repudiation provides irrefutable evidence of actions such as proof of
origin of data to the recipient, or proof of receipt of data to the sender to
protect against subsequent attempts to falsely deny the receiving or sen
of the data.

•Administration of security information (for example, security policy) is als
needed.

• The Time Service enables the user to obtain current time together with an er
estimate associated with it. It ascertains the order in which “events” occurred and
computes the interval between two events.

Time Service consists of two services, hence defines two service interfaces:

•Time Service manages Universal Time Objects (UTOs) and Time Interval
Objects (TIOs), and is represented by the TimeService interface.

•Timer Event Service manages Timer Event Handler objects, and is
represented by the TimerEventService interface.

• The Collections Service provides a uniform way to create and manipulate the
most common collections generically. Collections are groups of objects which, as
a group, support some operations and exhibit specific behaviors that are relat
the nature of the collection rather than to the type of object they contain.
Examples of collections are sets, queues, stacks, lists, and binary trees.

For example, sets might support the following operations: insert new elemen
membership test, union, intersection, cardinality, equality test, emptiness test, etc.
One of the defining semantics of a set is that, if an object O is a member of
S, then inserting O into S results in the set being unchanged. This property would
not hold for another collection type called a bag.

• The Trader Service provides a matchmaking service for objects. The service
provider registers the availability of the service by invoking an export operati
on the trader, passing as parameters information about the offered service. T
export operation carries an object reference that can be used by a client to invoke
operations on the advertised services, a description of the type of the offered
service (i.e., the names of the operations to which it will respond, along with t
parameter and result types), information on the distinguishing attributes of the
offered service.

The offer space managed by traders may be partitioned to ease administration and
navigation. This information is stored persistently by the Trader. Whenever a
potential client wishes to obtain a reference to a service that does a particula
it invokes an import operation, passing as parameters a description of the se
required. Given this import request, the Trader checks appropriate offers for
acceptability. To be acceptable, an offer must have a type that conforms to that
requested and have properties consistent with the constraints specified by an
importer.
OMA Summary of Object Services January 1997 4-11

4

ables
ing

Trading service in a single trading domain may be distributed over a number of
trader objects. Traders in different domains may be federated. Federation en
systems in different domains to negotiate the sharing of services without los
control of their own policies and services. A domain can thus share information
with other domains with which it has been federated, and it cannot be searched
for appropriate service offers.
4-12 A Discussion of the Object Management Architecture

	Reference Model
	4.1 Object Management Architecture
	4.1.1 Introduction
	4.1.2 Reference Model Overview
	4.1.3 Interface versus Implementation
	4.1.4 Object Request Broker
	4.1.5 Object Services
	4.1.6 Common Facilities
	4.1.7 Domain Interfaces
	4.1.8 Object Frameworks
	4.1.9 Object Framework Specifications

	4.2 Summary of Object Services

