
OS Customization versus
OS Code Modularity

ECE 344 – Fall 2006
Hans-Arno Jacobsen

Thanks to Michael Gong, Vinod Muthusamy, and Charles Zhang
for helping to find interesting examples et al.

Possibly a Debugging Concern
#ifdef SLOWER
#ifndef SLOW
#define SLOW
#endif
#endif
#ifdef SLOW
static void

checksubpage(struct
pageref *pr){

// code removed
}
… (next column)

#else
#define checksubpage(pr)

((void)(pr))
#endif

#ifdef SLOWER
static void

checksubpages(void) {
// code removed

}
#else
#define checksubpages()
#endif

OS/161 Kernel: kern/lib/kheap.c

Possibly a Debugging Concern
#ifdef SLOWER
#ifndef SLOW
#define SLOW
#endif

#endif
#ifdef SLOW
static void

checksubpage(struct
pageref *pr){

// code removed
}
… (next column)

#else
#define checksubpage(pr)

((void)(pr))
#endif // ifdef SLOW

#ifdef SLOWER
static void

checksubpages(void) {
// code removed

}
#else

#define checksubpages()
#endif // ifdef SLOWER

OS/161 Kernel: kern/lib/kheap.c

/* SLOWER implies SLOW */

Observations

• Most likely the OS designers’ way of
debugging memory allocation (guess)

• Multiple highly concentrated concerns to
customize a part of OS for debugging

• Hard to read, understand, modify, test …
• FAST or NORMAL not even explicitly

documented in code

Platform Support

OS/161 Kernel: kern/arch/mips/include/stdarg.h

…
#ifdef __MIPSEB__
/* For big-endian machines. */
#define va_arg(__AP, __type) \
((__AP = (char *) ((__alignof__ (__type) > 4 \

? ((int)__AP + 8 - 1) & -8 \
: ((int)__AP + 4 - 1) & -4) \
+ __va_rounded_size (__type))), \

*(__type *) (void *) (__AP - __va_rounded_size (__type)))
#else
/* For little-endian machines. */
…
#endif
#endif
#endif /* ! defined (__mips_eabi) */

• More of the above
• Hardware platform specific

customizations

Error Checking Concern

static int __init readonly(char *str) {
if (*str)

return 0;
root_mountflags |= MS_RDONLY;
return 1;

}

static int __init readwrite(char *str) {
if (*str)

return 0;
root_mountflags &= ~MS_RDONLY;
return 1;

}
Linux Kernel 2.6: kernel initialization: do_mount.c

…

• Error checking code
scatters across code base

• It cuts across core logic

Lock & unlock I
int is_orphaned_pgrp(int pgrp) {

int retval;
read_lock(&tasklist_lock);
retval = will_become_orphaned_pgrp(pgrp, NULL);
read_unlock(&tasklist_lock);
return retval;

}

Linux Kernel 2.6: kernel/exit.c

• The same scattering and crosscutting of
synchronization concern (see error checking)

• Similar pieces of code all over the place

Lock & unlock II
int session_of_pgrp(int pgrp) {

struct task_struct *p; int sid = -1;
read_lock(&tasklist_lock);
do_each_task_pid(pgrp, PIDTYPE_PGID, p) {

if (p->signal->session > 0) {
sid = p->signal->session;
goto out; }

} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
p = find_task_by_pid(pgrp);
if (p)

sid = p->signal->session;
out:

read_unlock(&tasklist_lock);
return sid;

}

Multiprocessor Support I
static int
try_to_wake_up(task_t *p, unsigned int state, int sync) {

int cpu, this_cpu, success = 0;
unsigned long flags;
long old_state;
runqueue_t *rq;

#ifdef CONFIG_SMP
unsigned long load, this_load;
struct sched_domain *sd, *this_sd = NULL;
int new_cpu;

#endif
… (next slide)

Linux Kernel 2.6: kernel/sched.c

Multiprocessor Support II
rq = task_rq_lock(p, &flags);
old_state = p->state;
if (!(old_state & state))

goto out;
if (p->array)

goto out_running;
cpu = task_cpu(p);
this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
if (unlikely(task_running(rq, p)))

goto out_activate;
new_cpu = cpu;
schedstat_inc(rq, ttwu_cnt);
…

#endif

• pieces of multiprocessing concern
tangled with core logic (1 CPU
case)

• not the same piece of code as in
previous cases

Summary
• Certain concerns crosscut the principal or core

logic (a.k.a. crosscutting concerns)
• Similar concern code scatters across the code

base
• Different pieces of concern code tangled with

core logic
• Scattering, tangling, and crosscutting apparently

leads to code
– that is hard to read and understand, let alone maintain
– where the design intent is not cleanly represented in the code
– where concerns are not well separated and modularized
– removing a concern is error-prone

Need for Customization
• Customization of OS code is unavoidable
• OS code is often tailored to different hardware

platforms
• … creating a whole family of OS versions
• Variety of hardware features (on different

platforms) have far reaching implication for OS
code

• Traditionally dealt with
– At configuration time (various tools)
– At compile time #ifdefs/#defines (driven through

a make process or by a configuration tool)
– Dynamically loadable kernel modules

Customization in OS/161
• "options" declarations in the config file

– options dumbvm defines OPT_DUMBVM in the code
• Definition of OPT_SYNCHPROBS leads to

conditional code in
– kern/include/clock.h
– kern/include/test.h
– kern/main/menu.c
– kern/test/tt3.c
– kern/thread/thread.c

• This is an example for crosscutting conditional
compilation in OS/161

Crosscutting

• Crosscutting phenomenon is often not due
to bad design

• But tied to the characteristics of traditional
development techniques

• … the decomposition mechanism of
traditional development paradigms
– Files, functions, structures
– Classes, objects, interfaces, methods

Conventional Programming
Paradigms

• Red shows lines pertaining to a given concern
• Not in just one place (i.e., file, function)
• Not even in a small number of places (files or functions)
• Example is a bit out of context for operating systems
• OS code would show very similar footprints

A file (a module)

Is there a Solution?

• For separating crosscutting concerns from
core code

• Pick and choose the concerns required
(based on hardware platform etc.)

Yes ☺ !

Aspect-oriented Programming (AOP)

• AOP is a programming paradigm that aims to
support the modularization of crosscutting
concerns in software

• AOP is complementary to existing paradigms
• Emerged about 10 years ago from different

research efforts studying the Separation of
Concerns in software

• Supported in industry today by IBM, BEA,…
• AOP support is available for Java, C, C++ …
• AspectJ, AspectC, AspectC++

Key Idea
• Crosscutting concerns are represented by aspects in

the program sources
• Required aspects are woven into the program
• The program is fully unaware of the aspect (i.e., in the

sources, there is no aspect code inside the program)
– Note, there are a few AOP approaches around today that do not

fully follow this model (i.e., some code present in program)
• The program is often referred to as the base program or

the core advised by the aspect code
• Aspects specify when and what code to execute
• This specification is declarative and outside the core
• For AspectC weaving happens at compile time (other

models are load time or run-time weaving.)

Example: Key Idea

OS/161 src/kern/aspect/trace.ac:

before(): call ($ $bootstrap$(...))
{

kprintf("> Entering %s \n", this->funcName);
}

advice

Join point declaration
Pointcut
declaration

Join Points
• Well-defined points in the execution of a program

– The point a function is called
– The point a function is executed

• Examples for C
– Function calls (before/after) (call site)
– Function execution (before/after) (called site)
– …

• Examples for Java
– Method calls & execution
– Field reads & writes
– Exceptions
– …

Pointcuts
• Declaratively define sets of join points
• Call pointcut (all join points associated with the

call of a function)
• Execution pointcut (all join points associated

with the execution of a function)
• Example

call($ $bootstrap$(...))

– All call join points involving functions that contain the
word “bootstrap” in the function name

– With any list of input parameter types
– With any return value type

Advice

• The code executed when the associated
pointcut matches a join point

Example: Memory Profiling I
size_t totalMemoryAllocated;
int totalAllocationFuncCalled;
int totalFreeFuncCalled;
void initProfiler(){

totalMemoryAllocated = 0;
totalAllocationFuncCalled = 0;
totalFreeFuncCalled = 0;

}
void printProfiler(){

printf("total memory allocated = %d bytes\n",
totalMemoryAllocated);

…
totalAllocationFuncCalled);

…
totalFreeFuncCalled);

}

Example: Memory Profiling II

before(): execution(int main()) {
initProfiler();

}
after(): execution(int main()) {

printProfiler();
}
before(size_t s): call($ malloc(...)) && args(s) {

totalMemoryAllocated += s;
totalAllocationFuncCalled ++;

}

Example: Memory Profiling III

before(size_t n, size_t s): call($ calloc(...)) && args(n, s) {
totalMemoryAllocated += n * s;
totalAllocationFuncCalled ++;

}
before(size_t s): call($ realloc(...)) && args(void *, s) {

totalMemoryAllocated += s;
totalAllocationFuncCalled ++;

}
before() : call(void free(void *)) {

totalFreeFuncCalled++;
}

Example: Memory Profiling IV

• Is the code thread safe?

• Is thread-safety an aspect?

• Left as an exercise for the reader.

Use of AOP

• Build aspects into systems right from the
start (i.e., design with aspects in mind)

• Use aspects to aid in debugging,
analyzing, policy checking …

• Use aspects to refactor existing systems
– Tailoring and customization
– Adaptation
– Extension

AspectC
• Developed by Michael Gong and myself
• Aspect-oriented extension to C
• ANSI-C compliant
• gcc source-compatibility
• Compiler and generated code is portable (mostly /)
• Seamless Linux, Solaris and Windows support (Mac OS

X support in progress.)
• Integration in existing build processes possible
• Code transparency through source-to-source

transformations
• Based on open source license and compiler

AspectC Resources

• http://www.AspectC.net
• Assignment 0 handout
• AspectC Tutorial
• AspectC Language Specification
• See the AspectC web site for submitting a

bug report, if you think you found one

Resources

• Aspect-oriented Software Development
Portal
– http://www.aosd.net

• AspectJ
– http://www.eclipse.org/aspectj/

• AspectC++
– http://www.aspectc.org

• AspectC
– http://www.AspectC.net

