OS Customization versus
OS Code Modularity

ECE 344 — Fall 2006
Hans-Arno Jacobsen

Thanks to Michael Gong, Vinod Muthusamy, and Charles Zhang
for helping to find interesting examples et al.

Possibly a Debugging Concern

#ifdef SLOWER
#ifndef SLOW
#define SLOW
#endif

#endif

#ifdef SLOW

static void
checksubpage(struct

pageref *pry
/I code removed

}

... (next column)
0S/161 Kernel: kern/lib/kheap.c

#Helse

#define checksubpage(pr)

((void)(pr))
#endif

#ifdef SLOWER

static void
checksubpages(void) {

// code removed
}
#else
#define checksubpages()
#endif

Possibly a Debugging Concern

[* SLOWER implies SLOW */
#ifdef SLOWER

#ifndef SLOW
#define SLOW
#endif

#endif

#ifdef SLOW

static void
checksubpage(struct

pageref *pry
/| code removed

}

... (next column)
0S/161 Kernel: kern/lib/kheap.c

#Helse

#define checksubpage(pr)

((void)(pr))
#endif // ifdef SLOW

#ifdef SLOWER

static void
checksubpages(void) {

// code removed
}
#else
#define checksubpages()
#endif // ifdef SLOWER

Observations

Most likely the OS designers’ way of
debugging memory allocation (guess)

Multiple highly concentrated concerns to
customize a part of OS for debugging

Hard to read, understand, modify, test ...

FAST or NORMAL not even explicitly
documented In code

Platform Support

#ifdef _ MIPSEB_
[* For big-endian machines. */
#define va_arg(__AP, _ type)
((_AP = (char*) ((__alignof __ (__type) >4
? ((int) AP +8-1)&-8
c((int) _AP+4-1) &-4)
+ va_rounded_size (__type))),
(__type) (void *) (__AP - va rounded_size (__type)))
#else
[* For little-endian machines. */

—

—

e e More of the above
#endif .
#endif « Hardware platform specific

#endif /* | defined (__mips_eabi) */ customizations

0OS/161 Kernel: kern/arch/mips/include/stdarg.h

Error Checking Concern

« Error checking code

static int __init readonly(char *str) { scatters across code base
£ (*afp) « It cuts across core logic
if (*str)

&
w

return O;
root_mountflags |= MS_RDONLY;
return 1;

}

static int __init readwrite(char *str) {
If (*str)

return O;
root_mountflags &= ~MS_ RDONLY;
return 1;

Linux Kernel 2.6: kernel initialization: do_mount.c

Lock & unlock |

Int Is_orphaned_pgrp(int pgrp) {
Int retval;
read_lock(&tasklist_lock);
retval = will_become _orphaned_ pgrp(pgrp, NULL);
read_unlock(&tasklist lock);
return retval;

}

 The same scattering and crosscutting of
synchronization concern (see error checking)
e Similar pieces of code all over the place

Linux Kernel 2.6: kernel/exit.c

Lock & unlock I

Int session_of pgrp(int pgrp) {
struct task_struct *p; int sid = -1;
read lock(&tasklist lock);
do_each _task pid(pgrp, PIDTYPE_PGID, p) {
If (p->signal->session > 0) {

sid = p->signal->session;

goto out; }
} while_each_task pid(pgrp, PIDTYPE_PGID, p);
p = find_task by pid(pgrp);
It (p)

sid = p->signal->session;

out:

read_unlock(&tasklist_lock);
return siq,

Multiprocessor Support |

static int
try to wake_ up(task t *p, unsigned int state, int sync) {
Int cpu, this_cpu, success = 0;
unsigned long flags;
long old_state;
runqueue _t *rq;
#ifdef CONFIG_SMP
unsigned long load, this load,;
struct sched domain *sd, *this_sd = NULL;
Int new_cpu;
#endif
... (next slide)

Linux Kernel 2.6: kernel/sched.c

Multiprocessor Support Il

rq = task_rqg_lock(p, &flags);

old_state = p->state; _ | .
if (I(old_state & state)) ° PIECES of multiprocessing concern

goto out; tangled with core logic (1 CPU

if (p->array) case) | |
goto out_running; * Not the same piece of code as in

cpu = task_cpu(p); previous cases

this_cpu = smp_processor_id();
#ifdef CONFIG_SMP
If (unlikely(task_running(rq, p)))
goto out_activate,
New_cpu = cpu;
schedstat_inc(rg, ttwu_cnt);

#endif

Summary

Certain concerns crosscut the principal or core
logic (a.k.a. crosscutting concerns)

Similar concern code scatters across the code
base

Different pieces of concern code tangled with
core logic

Scattering, tangling, and crosscutting apparently

leads to code

— that is hard to read and understand, let alone maintain

— where the design intent is not cleanly represented in the code
— where concerns are not well separated and modularized

— removing a concern is error-prone

Need for Customization

Customization of OS code Is unavoidable

OS code Is often tailored to different hardware
platforms

... creating a whole family of OS versions

Variety of hardware features (on different
pIaC}forms) have far reaching implication for OS
code

Traditionally dealt with

— At configuration time (various tools)

— At compile time #1fdefs/#defines (driven through
a make process or by a configuration tool)

— Dynamically loadable kernel modules

Customization in OS/161

e "options" declarations in the config file
— options dumbvm defines OPT_DUMBVM in the code

o Definition of OPT_SYNCHPROBS leads to
conditional code In
— kern/include/clock.h
— kern/include/test.h
— kern/main/menu.c
— kern/test/tt3.c
— kern/thread/thread.c

* This Is an example for crosscutting conditional
compilation in OS/161

Crosscutting

e Crosscutting phenomenon is often not due
to bad design

e But tied to the characteristics of traditional
development technigues

e ... the decomposition mechanism of
traditional development paradigms

— Files, functions, structures
— Classes, objects, interfaces, methods

Conventional Programming
Paradigms

com.ooc. CORBA Request

\

A file (a module)

Red shows lines pertaining to a given concern

Not in just one place (i.e., file, function)

Not even in a small number of places (files or functions)
Example is a bit out of context for operating systems
OS code would show very similar footprints

Is there a Solution?

e For separating crosscutting concerns from
core code

* Pick and choose the concerns required
(based on hardware platform etc.)

Yes © !

Aspect-oriented Programming (AOP)

AOP Is a programming paradigm that aims to
support the modularization of crosscutting
concerns in software

AOP Is complementary to existing paradigms

Emerged about 10 years ago from different
research efforts studying the Separation of
Concerns In software

Supported in industry today by IBM, BEA,...
AOP support is avallable for Java, C, C++ ...
Aspectd, AspectC, AspectC++

Key Idea

Crosscutting concerns are represented by aspects in
the program sources

Required aspects are woven into the program

The program is fully unaware of the aspect (i.e., in the
sources, there is no aspect code inside the program)

— Note, there are a few AOP approaches around today that do not
fully follow this model (i.e., some code present in program)

The program is often referred to as the base program or
the core advised by the aspect code

Aspects specify when and what code to execute
This specification is declarative and outside the core

For AspectC weaving happens at compile time (other
models are load time or run-time weaving.)

Example: Key ldea

0OS/161 src/kern/aspect/trace.ac:
.——Join point declaration

Pointcut
before():\ call ($ $bootstrap$(...)) declaration
{
kprintf("> Entering %s \n", th@

advice

Join Points

« Well-defined points in the execution of a program
— The point a function is called
— The point a function is executed

« Examples for C
— Function calls (before/after) (call site)
— Function execution (before/after) (called site)

 Examples for Java
— Method calls & execution
— Field reads & writes
— Exceptions

Pointcuts

Declaratively define sets of join points

Call pointcut (all join points associated with the
call of a function)

Execution pointcut (all join points associated
with the execution of a function)

Example
call($ $bootstrap$(...))

— All call join points involving functions that contain the
word “bootstrap” in the function name

— With any list of input parameter types
— With any return value type

Advice

e The code executed when the associated
pointcut matches a join point

Example: Memory Profiling |

size_t totalMemoryAllocated,;

Int totalAllocationFuncCalled:;

Int totalFreeFuncCalled:;

void initProfiler(){
totalMemoryAllocated = O;
totalAllocationFuncCalled = O;
totalFreeFuncCalled = O;

}

void printProfiler(){
printf("total memory allocated = %d bytes\n",

totaIMemoryAllocated);

totalAllocationFuncCalled);

totalFreeFuncCalled);

Example: Memory Profiling Il

before(): execution(int main()) {
InitProfiler();
}
after(): execution(int main()) {
printProfiler();
}
before(size t s): call($ malloc(...)) && args(s) {
totaIMemoryAllocated +=s;
totalAllocationFuncCalled ++;

Example: Memory Profiling IlI

before(size tn, size ts): call($ calloc(...)) && args(n, s) {
totalMemoryAllocated +=n * s;
totalAllocationFuncCalled ++;

}

before(size t s): call($ realloc(...)) && args(void *, s) {
totalMemoryAllocated +=s;
totalAllocationFuncCalled ++;

}

before() : call(void free(void *)) {
totalFreeFuncCalled++;

}

Example: Memory Profiling IV

* Is the code thread safe?
* Is thread-safety an aspect?

e |eft as an exercise for the reader.

Use of AOP

e Build aspects into systems right from the
start (1.e., design with aspects in mind)

e Use aspects to aid in debugging,
analyzing, policy checking ...

e Use aspects to refactor existing systems
— Tailoring and customization

— Adaptation
— Extension

AspectC

Developed by Michael Gong and myself
Aspect-oriented extension to C

ANSI-C compliant

gcc source-compatibility

Compiler and generated code is portable (mostly ®)

Seamless Linux, Solaris and Windows support (Mac OS
X support in progress.)

Integration in existing build processes possible

Code transparency through source-to-source
transformations

Based on open source license and compiler

AspectC Resources

http://www.AspectC.net
Assignment O handout

AspectC Tutorial

AspectC Language Specification

See the AspectC web site for submitting a
bug report, if you think you found one

Resources

Aspect-oriented Software Development
Portal

— http://www.aosd.net

AspectJ

— http://www.eclipse.org/aspect|/
AspectC++

— http://www.aspectc.org

AspectC
— http://www.AspectC.net

