
ECE 344 Operating Systems

Operating Systems –
Scheduling

ECE 344 – Week 9

ECE 344 Operating Systems

Scheduling
• Task: Determine which process is allowed to run
• What are the objectives?

– Maximize
• CPU utilization
• Throughput (tasks per unit of time)

– Minimize
• Turnaround time (submission-to-completion)
• Waiting time (sum of times spend in ready queue)
• Response time (production of first response)

– Fairness
• Every task should be handled eventually (no

starvation)
• Tasks with similar characteristics should be treated

equally
• Who are the stake holders? (owner, user, system)

ECE 344 Operating Systems

Systems

• Batch systems
• Interactive systems
• Real-time systems

• Desktops
• Servers

ECE 344 Operating Systems

Types of Scheduling

• Long-term (admission scheduler, job scheduler)
– Decision to admit a process to system (into the ready

queue)
– Controls degree of multiprogramming
– Batch systems

• Medium-term (memory scheduler)
– Decision to put process image on disk vs. keep in memory
– Part of swapping mechanism
– Need to manage and control the degree of

multiprogramming
• Short-term (CPU scheduler)

– Decision which of the ready processes to execute next
– Executes most frequently, executes when an event occurs

ECE 344 Operating Systems

Scheduling
– more processes,

less CPU time,
more I/O interleaving
potential

– infrequent invocations
– second / minute range

– must operate fast
– millisecond range

ECE 344 Operating Systems

Addition of Medium Term Scheduling

ECE 344 Operating Systems

When are scheduling decision made?

• Switch from running to waiting
• Switch from running to ready
• Switch from waiting to ready
• On process termination

ECE 344 Operating Systems

When are scheduling decisions made?

ECE 344 Operating Systems

Preemptive vs. non-preemptive

• Non-preemptive scheduling
– Once in running state, process will continue
– Potential to monopolize the CPU
– May voluntarily yield the CPU

• Preemptive scheduling
– Currently running process may be interrupted by OS and

put into ready state
– Timer interrupts required (for IRP)
– Incurs context switches

• Should kernel code be preemptive or non-preemptive?

ECE 344 Operating Systems

Scheduling Criteria 1

• User-oriented
– Response time

• Elapsed time between submission of a request and
until there is an output

– Waiting time
• Total time process is spending in ready queue

– Turnaround time
• Amount of time to execute a process, from creation

to exit

ECE 344 Operating Systems

Scheduling Criteria 2

• System-oriented
– Effective and efficient utilization of CPU(s)
– Throughput

• Number of jobs executed per unit of time

• Often, conflicting goals

ECE 344 Operating Systems

Scheduling Criteria 3

• Performance related
– Quantitative
– Measurable, such as response time &

throughput
• Non-performance related

– Qualitative
– Predictability
– Proportionality

ECE 344 Operating Systems

Criteria for each type of system
Different “priorities” for different types of systems

• All Systems
– Fairness, give each process fair share of CPU
– Balance, keep all system components busy
– Enforce system-wide policies

• Batch
– non-preemptive policies, or preemptive with

long time quanta
– Throughput, turnaround, CPU utilization

ECE 344 Operating Systems

…

• Interactive
– Preemptive is essential,
– Response time, proportionality (meet user

expectation)
• Real-time (hard & soft)

– Preemptive often not necessary for hard real-
time systems

– Meeting deadlines (avoid loosing data),
predictability (avoid quality degradation, e.g.,
in multimedia systems)

ECE 344 Operating Systems

Optimization Criteria

• Max. CPU utilization
• Max. throughput
• Min. turnaround time
• Min. waiting time
• Min. response time

ECE 344 Operating Systems

CPU-I/O Burst Cycles
Processes typically consist of
• CPU bursts
• I/O bursts
Duration and frequency of bursts vary greatly from

process to process
– CPU-bound few very long CPU bursts

• Number crunching tasks, image processing
– I/O-bound many short CPU bursts

• Maximum CPU utilization obtained with
multiprogramming and mixing CPU and I/O bound
tasks for maximal parallel resource utilization

ECE 344 Operating Systems

ECE 344 Operating Systems

Histogram of CPU-burst Times

ECE 344 Operating Systems

• Bursts of CPU usage alternate with periods of I/O wait
– a CPU-bound process
– an I/O bound process

ECE 344 Operating Systems

Dispatcher

• Dispatcher module gives control of the CPU
to the process selected by the short-term
scheduler; this involves:
– switching context
– switching to user mode
– jumping to the proper location in the user

program to restart that program
• Dispatch latency – time it takes for the

dispatcher to stop one process and start
another running.

ECE 344 Operating Systems

Scheduling Algorithms

ECE 344 Operating Systems

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the
order: P1 , P2 , P3

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

ECE 344 Operating Systems

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P2 , P3 , P1 .

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case.

P1P3P2

63 300

ECE 344 Operating Systems

FCFS cont.’d.

• Applied in batch systems (non-preemptive)
• Each task runs, once started, runs to

completion
• Scheduler selects oldest process in ready

queue
• Convoy effect short process behind long

process (I/O bound tasks may be waiting
behind CPU bound tasks

• Not suitable for time sharing

ECE 344 Operating Systems

Shortest-Job-First (SJR) Scheduling

• Associate with each task the length of its next
CPU burst.

• Use these lengths to schedule the task with the
shortest time.

• An expected next burst length
• Two schemes:

– non-preemptive – once CPU given to the process it
cannot be preempted until completes its CPU burst.

– preemptive – Shortest-Remaining-Time-First (SRTF).
• SJF is optimal – gives minimum average waiting

time for a given set of processes.

ECE 344 Operating Systems

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

ECE 344 Operating Systems

SJF

• Short tasks jump ahead of longer ones
• May need to abort tasks exceeding their burst

length expectations
• Long running tasks may be starved
• Burst length could be user/application

provided
• Could be based on past execution pattern of

task

ECE 344 Operating Systems

Example of Preemptive SJF

ProcessArrival TimeBurst Time
P1 0 7 (5 left)
P2 2 4 (2 left)
P3 4 1 (0 left)
P4 5 4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

ECE 344 Operating Systems

Determining Length of Next
CPU Burst

• Can only estimate the length.
• Can be done by using the length of previous

CPU bursts, using exponential averaging.

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of lenght actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .t nnn ταατ −+== 11n+1

ECE 344 Operating Systems

Prediction of the Length of the Next CPU Burst
CPU BURST

ECE 344 Operating Systems

Examples of Exponential Averaging

• α =0
– τn+1 = τn

– Recent history does not count.
• α =1

– τn+1 = tn
– Only the actual last CPU burst counts.

ECE 344 Operating Systems

Examples of Exponential Averaging

• If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+ (1 - α)j α tn - i + …
+ (1 - α)n t0 τ0

• Since both α and (1 - α) are less than or
equal to 1, each successive term has less
weight than its predecessor.

ECE 344 Operating Systems

Priority Scheduling
• A priority number (integer) is associated with

each process
• The CPU is allocated to the process with the

highest priority (smallest integer ≡ highest
priority).
– Preemptive vs. nonpreemptive

• SJF is priority scheduling where priority is the
predicted next CPU burst time.

• Problem: Starvation – low priority processes may
never execute.

• Solution: Aging – as time progresses
increase/decrease the priority of tasks

ECE 344 Operating Systems

Round Robin (RR)
• Each process gets a small unit of CPU time

– Called a time quantum
– usually 10-100 milliseconds
– preempted and added to the end of the ready queue.

• n processes in the ready queue and time quantum q
– each process gets 1/n of the CPU time in chunks of

at most q time units at once.
– No process waits more than (n-1)q time units.

• Performance
– q large ⇒ FIFO
– q small ⇒ q must be large with respect to context

switch, otherwise overhead is too high.

ECE 344 Operating Systems

Example of RR

Process Burst Time
P1 53
P2 17
P3 68
P4 24

• Typically, higher average turnaround than
SJF, but better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

• with Time Quantum = 20

ECE 344 Operating Systems

RR

• No starvation, everybody gets to run
• Choice of length of time slice/quantum is

crucial

ECE 344 Operating Systems

Multilevel Queue

• Ready queue is partitioned into separate queues:
– foreground (interactive) & background (batch)

• Each queue has its own scheduling algorithm,
– foreground – RR & background – FCFS

• Scheduling must be done between the queues.
– Fixed priority scheduling; (i.e., serve all from

foreground then from background). Possibility of
starvation.

– Time slice: each queue gets a certain amount of CPU
time which it can schedule amongst its processes; i.e.,
80% to foreground in RR and 20% to background in
FCFS

ECE 344 Operating Systems

Multilevel Queue Scheduling

ECE 344 Operating Systems

Multilevel Feedback Queue
• A process can move between the various

queues; aging can be implemented this way.
• Multilevel-feedback-queue scheduler defined

by the following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a

process
– method used to determine when to demote a

process
– method used to determine which queue a

process will enter when that process needs
service

ECE 344 Operating Systems

Example of Multilevel Feedback Queue
• Three queues:

– Q0 – time quantum 8 milliseconds
– Q1 – time quantum 16 milliseconds
– Q2 – FCFS

• Scheduling
– A new job enters queue Q0 which is served FCFS.

When it gains CPU, job receives 8 milliseconds. If it
does not finish in 8 milliseconds, job is moved to
queue Q1.

– At Q1 job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it
is preempted and moved to queue Q2.

ECE 344 Operating Systems

Multilevel Feedback Queues

ECE 344 Operating Systems

Multiple-Processor Scheduling

• CPU scheduling more complex when multiple
CPUs are available.

• Homogeneous processors within a
multiprocessor.

• Load sharing

ECE 344 Operating Systems

Real-Time Scheduling

• Hard real-time systems – required to
complete a critical task within a guaranteed
amount of time.

• Soft real-time computing – requires that
critical processes receive priority over less
fortunate ones.

ECE 344 Operating Systems

Evaluation of CPU Schedulers by Simulation

ECE 344 Operating Systems

Thread Scheduling

Possible scheduling of user-level threads
• 50-msec process quantum
• threads run 5 msec/CPU burst

ECE 344 Operating Systems

Thread Scheduling

Possible scheduling of kernel-level threads
• 50-msec process quantum
• threads run 5 msec/CPU burst

ECE 344 Operating Systems

Pathfinder Mission to Mars

Launch Date: 04 December 1996 UT 06:58
Arrival Date: 04 July 1997 UT 16:57
Launch Vehicle: Delta II
Mass: 264 kg (lander), 10.5 kg (rover)
Power System: Solar panels

ECE 344 Operating Systems

Pathfinder Mission to Mars
• The Mars Pathfinder mission was widely proclaimed as "flawless"

in the early days after its July 4th, 1997 landing on the Martian
surface.

• Successes included its unconventional "landing" -- bouncing onto
the martian surface surrounded by airbags,

• Deploying the Sojourner rover, and gathering and transmitting
voluminous data back to earth, including the panoramic pictures
that were such a big hit on the Web.

• But a few days into the mission, not long after Pathfinder started
gathering meteorological data, the spacecraft began
experiencing total system resets,

• Each resulting in losses of data.
• The press reported these failures in terms such as "software

glitches" and "the computer was trying to do too many
things at once".

ECE 344 Operating Systems

ECE 344 Operating Systems

ECE 344 Operating Systems

ECE 344 Operating Systems

Software Architecture

• Based on an “information bus”
– A shared memory area for passing information

between components of the spacecraft
• Access to bus is synchronized with a lock
• High priority bus management task (ran often)

moves data in/out of bus
• Low priority meteorological data gathering task

(ran infrequently) publishes data to bus
• Medium priority, long running, communication

task

ECE 344 Operating Systems

The Problem
• An interrupt may cause the high priority bus management

task to run, while the low priority data gathering task
holds the lock on the bus; so the management task must
wait

• Another interrupt may cause the medium priority, long
running communication task to run

• The communication tasks prevents (due to higher
priority) the low priority data gathering task from running,
which prevents the lock from being unlocked, which
prevents the bus management tasks from running

• After some time a watchdog timer goes off, checks
whether the bus management task has run recently

• Since that is not the case, it concludes that there is a
problem and initiates a total system reset

ECE 344 Operating Systems

bus

Data gathering (low)

Mgmt. task (high)

IRP

LOCK

Comm. task (medium)

IRP

Watchdog: has mgmt. task run?

ECE 344 Operating Systems

Priority Inversion

• Classical problem of priority inversion
• Higher priority task is waiting for a lower

priority task
• Solution: lower priority task inherits the

priority from the higher priority task waiting on
the lock for the time it spends in the critical
section

• Priority inheritance protocol

ECE 344 Operating Systems

Really Remote Debugging

• Pathfinder used VxWorks
• VxWorks can be run in a mode where it records a

total trace of all interesting system events, including
context switches, uses of synchronization objects,
and interrupts. After the failure, JPL engineers spent
hours and hours running the system on the exact
spacecraft replica in their lab with tracing turned on,
attempting to replicate the precise conditions under
which they believed that the reset occurred.

• Early in the morning, after all but one engineer had
gone home, the engineer finally reproduced a
system reset on the replica. Analysis of the trace
revealed the priority inversion.

ECE 344 Operating Systems

Remote Bug Fixing

• When created, a VxWorks mutex object accepts a boolean parameter that
indicates whether priority inheritance should be performed by the mutex. The
mutex in question had been initialized with the parameter off; had it been on, the
low-priority meteorological thread would have inherited the priority of the high-
priority data bus thread blocked on it while it held the mutex, causing it be
scheduled with higher priority than the medium-priority communications task,
thus preventing the priority inversion. Once diagnosed, it was clear to the JPL
engineers that using priority inheritance would prevent the resets they were
seeing.

• VxWorks contains a C language interpreter intended to allow developers to type
in C expressions and functions to be executed on the fly during system
debugging. The JPL engineers fortuitously decided to launch the spacecraft with
this feature still enabled. By coding convention, the initialization parameter for
the mutex in question (and those for two others which could have caused the
same problem) were stored in global variables, whose addresses were in
symbol tables also included in the launch software, and available to the C
interpreter. A short C program was uploaded to the spacecraft, which when
interpreted, changed the values of these variables from FALSE to TRUE. No
more system resets occurred.

