
Secure Coding and
Buffer Overflow Attacks

ECE344

References
• Book Chapter 19
• Smashing the Stack for Fun and Profit by Aleph

One.
• Buffer Overflow Attacks and Their

Countermeasures/ By Sandeep Grover.
• All examples in these slides draw for the above

references
• Needless to say, this is for educational purposes

only. I want you to understand weaknesses in
systems and how to prevent introducing them ad
developers.

• This may also serve you during an interview; writing
safe code is a major requirement today.

Terminology

• Static variables are allocated at load time
in the data segment

• Dynamic variables are allocated at run
time on the stack

• Stack pointer points to the top of the stack
• Bottom of stack is at a fixed address
• Stack grows / shrinks dynamically

Process Layout

The Stack
• Stack is organized into logical stack frames
• Stack frames pushed and popped from stack as

procedures are called and complete
• Stack frame

– Parameters to a function
– Function’s local variables
– Data to recover previous stack frame
– Often a frame pointer

• Depending on the architecture stacks grow up or
down

• Often stacks grow down (e.g., Motorola, Intel,
Sparc, MIPS)

Stack Pointer and Frame Pointer

• EBP frame pointer
• ESP stack pointer

ESP

EBP

Top of Stack1

Example I
void function (int a, int b, int c) {

char buffer1[5];
char buffer2[10]; }

int main() {
function(1,2,3);

}

$ gcc -S -o example1.s example1.c
pushl $3 // a onto stack
pushl $2 // b onto stack
pushl $1 // c onto stack
call function // Pushes PC on stack

// Procedure prologue
pushl %ebp // EBP onto stack
movl %esp,%ebp // SP into EBP
subl $20,%esp // Space for locals

c
b
a

ret
fp
…
…

Stack Layout for Example I

bottom of top of
memory memory

buffer2 buffer1 sfp ret a b c
<------ [] [] [] [] [] [] []

top of bottom of
stack stack

• memory can only be addressed in word-size junks (4 bytes)
• buffer1 requires 8 bytes, i.e., 2 words
• buffer2 requires 12 bytes, i.e., 3 words

Buffer overflow

• Buffer overflow means to input more data
into a buffer than it can handle

• i.e., to write beyond the limits of the buffer
possibly overwriting what’s there

Example II
void function(char *str) {

char buffer[16];
strcpy(buffer,str);

}
void main() {

char large_string[256];
int i;
for(i = 0; i < 255; i++)

large_string[i] = 'A';
function(large_string);

}

• strcpy copies the content of *str
(i.e., large_string[]) to local function
variable buffer[] until a null-
character is found in large_string[]

• when run, this results in a
segmentation faul

• Why?

What’s Happening?

• buffer is much smaller than what’s in *str
16 vs. 256

• 250 bytes in the stack are overwritten with the
content of large_string[]

• Including sfp, ret, *str …
• large_string contains ‘A’; in hex 0x41
• So the 4 bytes for ret contain

– 0x41414141
• Which is outside the processes address space

Stack Layout for Example II

bottom of top of
memory memory

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA…
buffer sfp ret *str

<------ [] [] [] []

top of bottom of
stack stack•

• This changes the flow of execution !!!

Exploit

• Point the procedure return address to a
piece of executable code

• Place the executable code on the stack

Stack Layout

bottom of top of
memory memory

buffer sfp ret *str
<------ [ssssssssssssssss] [ssss] [0xD8] []

top of bottom of
stack stack
•

• Direct the return address to the beginning of the code
on the stack

The Code To Execute

include <stdio.h>
void main() {

char *name[2];
name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);

}

In Assembly I
[aleph1]$ gcc -o shellcode -ggdb -static shellcode.c
[aleph1]$ gdb shellcode
GDB is free software and you are welcome to distribute …
(gdb) disassemble main
Dump of assembler code for function main:
0x8000130 <main>: pushl %ebp
0x8000131 <main+1>: movl %esp,%ebp
0x8000133 <main+3>: subl $0x8,%esp
0x8000136 <main+6>: movl $0x80027b8,0xfffffff8(%ebp)
0x800013d <main+13>: movl $0x0,0xfffffffc(%ebp)
…

In Assembly II
(gdb) disassemble __execve
Dump of assembler code for function __execve:
0x80002bc <__execve>: pushl %ebp
0x80002bd <__execve+1>: movl %esp,%ebp
0x80002bf <__execve+3>: pushl %ebx
0x80002c0 <__execve+4>: movl $0xb,%eax
0x80002c5 <__execve+9>: movl 0x8(%ebp),%ebx
0x80002c8 <__execve+12>: movl0xc(%ebp),%ecx
…

Addresses

• We need “/bin/sh” as string in memory
• We need it’s address

• We don’t know what the address will be at
run time

• So, use, PC relative addressing, i.e.,
address a location as an offset relative to
PC

Stack Layout

bottom of top of
memory memory

buffer sfp ret …
<------ [JJSSSSSSSSSSCCss] [sss] [0xD8] []

top of bottom of
stack stack
•

• S is the shell code JJ is a JMP instruction
• s is the “/bin/sh” string CC is a call instruction
• JMP / CALL can use PC relative addressing

More Details

• There are a few more details to get this to
work

• Translate the exploitation code into
assembly

• Calculate the relative address of JMP and
CALL

• Make sure that the final code does not
contain any NULL characters, as the
exploit is injected as a string

• …

Counter-measures

• Write secure code. Careful
– strcpy, strcat, sprintf, vsprintf operate on

NULL-terminated strings without bounds
checking

– gets reads input until EOF
– scanf

• Do bounds checking in code yourself
• Use strncpy et al.

Counter-measures

• Disallow executing code on stack
– Sometimes difficult, as part of compiler design
– Possible in Linux
– Possible in newer versions of Solaris with

support from architecture (Sparc)
• Compiler tools and compiler warnings

– Detect unsafe code and warns user
– Do not ignore compiler warnings

Counter-measures

• Look at
– Libsafe
– Safeguard
– Stackshield

