Secure Coding and
Buffer Overflow Attacks

ECE344

References

Book Chapter 19

Smashing the Stack for Fun and Profit by Aleph
One.

Buffer Overflow Attacks and Their
Countermeasures/ By Sandeep Grover.

All examples in these slides draw for the above
references

Needless to say, this is for educational purposes
only. | want you to understand weaknesses In
systems and how to prevent introducing them ad
developers.

This may also serve you during an interview; writing
safe code Is a major requirement today.

Terminology

Static variables are allocated at load time
In the data segment

Dynamic variables are allocated at run
time on the stack

Stack pointer points to the top of the stack
Bottom of stack Is at a fixed address
Stack grows / shrinks dynamically

CxELIZELIE

Coco 00300 &0

Codd 0000 0

CRO4d80 30

0

Process Layout

kernel virlual memory
(codea, data, heap, stack)
|
user stack
{created at runtime)

]

MEMory
invisible 1o
user code

Teasp (stack pointer)

v
s

memory mapped region for
shared libraries

I

run-time heap
(created at runtime by malloc)

readiwrile segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

unused

brk

' loaded from the

axecutable fila

The Stack

Stack Is organized into logical stack frames

Stack frames pushed and popped from stack as
procedures are called and complete

Stack frame

— Parameters to a function

— Function’s local variables

— Data to recover previous stack frame
— Often a frame pointer

Depending on the architecture stacks grow up or
down

Often stacks grow down (e.g., Motorola, Intel,
Sparc, MIPS)

Stack Pointer and Frame Pointer

 EBP frame pointer
 ESP stack pointer

Top of Stackl

EBP

ESP

Example |

void function (int a, int b, int ¢) {

iInt main() {
function(1,2,3);

}

char bufferl[5];
char buffer2[10]; }

$ gce -S -0 examplel.s examplel.c
pushl $3 /[a onto stack
pushl $2 // b onto stack
pushl $1 /[¢ onto stack
call function // Pushes PC on stack

// Procedure prologue

pushl %ebp /[EBP onto stack
movl %esp,%ebp // SP into EBP
subl $20,%esp // Space for locals

Stack Layout for Example |

bottom of top of
memory memory
buffer2 bufferl sfp ret a b ¢

<[10 10 1030 10 10]

top of bottom of
stack stack

- memory can only be addressed in word-size junks (4 bytes)
 bufferl requires 8 bytes, i.e., 2 words
* buffer2 requires 12 bytes, i.e., 3 words

Buffer overflow

* Buffer overflow means to input more data
Into a buffer than it can handle

* |.e., to write beyond the limits of the buffer
possibly overwriting what'’s there

Example Il

void function(char *str) {

char buffer[16]; e strcpy copies the content of *str
strcpy(buffer,str); (i.e., large_string[]) to local function
} variable buffer[] until a null-
void main() { character is found in large_string(]
char large_string[256];
int i * when run, this results in a

for(i = 0: i < 255; i++) segmentation faul
large_string[i] = 'A’;

. 2
function(large_string); Why?

What's Happening?

buffer iIs much smaller than what'’s in *str
16 vs. 256

250 bytes In the stack are overwritten with the
content of large_string]

Including sfp, ret, *str ...
large_string contains ‘A’; in hex 0x41

So the 4 bytes for ret contain
— 0x41414141

Which is outside the processes address space

Stack Layout for Example Il

bottom of top of
memory memaory

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...
buffer sfp ret *str

<-mmee- [| N O N

top of bottom of
stack stack

- This changes the flow of execution !!!

Exploit

Point the procedure return address to a
pDiece of executable code

Place the executable code on the stack

Stack Layout

bottom of top of

memory memory
buffer sfp ret st

S — [ssSsssssssssssss] [ssss] [0xD8] []

top of I ‘ bottom of

stack stack

- Direct the return address to the beginning of the code
on the stack

The Code To Execute

iInclude <stdio.h>
void main() {
char *name|2];
name[0] = "/bin/sh";
name[l] = NULL,;
execve(name[0], name, NULL);

}

In Assembly |

[aleph1]$ gcc -0 shellcode -ggdb -static shellcode.c
[aleph1]$ gdb shellcode

GDB is free software and you are welcome to distribute ...
(gdb) disassemble main

Dump of assembler code for function main:

0x8000130 <main>: pushl %ebp

0x8000131 <main+1>: movl %esp,%ebp

0x8000133 <main+3>: subl $0x8,%esp

0x8000136 <main+6>: movl $0x80027b8,0xfffffff8(%ebp)
0x800013d <main+13>: movl $0x0,0xfffffffc(Yoebp)

In Assembly |

(gdb) disassemble _ execve

Dump of assembler code for function __execve:
0x80002bc < execve>: pushl %ebp

0x80002bd < execve+1>: movl %esp,%ebp
0x80002bf < execve+3>: pushl %ebx
0x80002c0 < execve+4>: movl $0xb,%eax
0x80002c5 < execve+9>: movl 0x8(%ebp),%ebx
0x80002c8 < execve+12>: movlOxc(%ebp),%ecx

Addresses

We need “/bin/sh” as string in memory
We need it's address

We don’t know what the address will be at
run time

So, use, PC relative addressing, I.e.,
address a location as an offset relative to
PC

Stack Layout

bottom of top of
memory memaory

buffer sfp ret ...
<mmmmmm [JJSSSSSSSSSSCCss] [sss] [0xD8] []

Hi !

top of I ‘ bottom of
stack stack
- S is the shell code JJ is a JMP instruction

e s is the “/bin/sh” string CC is a call instruction
« JMP / CALL can use PC relative addressing

More Detalls

There are a few more detalls to get this to
work

Translate the exploitation code into
assembly

Calculate the relative address of JMP and
CALL

Make sure that the final code does not
contain any NULL characters, as the
exploit Is Injected as a string

Counter-measures

e Write secure code. Careful

— strcpy, strcat, sprintf, vsprintf operate on
NULL-terminated strings without bounds
checking

— gets reads input until EOF
— scanf

* Do bounds checking in code yourself
e Use strncpy et al.

Counter-measures

* Disallow executing code on stack
— Sometimes difficult, as part of compiler design
— Possible in Linux

— Possible in newer versions of Solaris with
support from architecture (Sparc)

 Compller tools and compiler warnings
— Detect unsafe code and warns user
— Do not ignore compiler warnings

Counter-measures

e Look at
— Libsafe
— Safequard
— Stackshield

