
Synchronization

Weeks 4 - 6

ECE 344 Operating Systems 2

Announcements & Comments

• Read the whole Synchronization Chapter in
the book; it contains important material for
the second assignment

• My slides go beyond the chapter on
synchronization, read them carefully,
especially with regards to the second
assignment (read forward, i.e., beyond the
material covered in the lecture) !!

• I may not cover the slides in the exact
sequence presented

ECE 344 Operating Systems 3

Announcements & Comments

• About the assignment’s locks see these slides
• About the assignment’s condition variables see

these slides and read monitor section in book
• For pet synchronization read classical

synchronization section in the book
• Pet synchronization solution et al. should be

generic

ECE 344 Operating Systems 4

…

• You can execute your synchronization
mechanisms and your solution to the pet
problem via the kernel’s boot menu (see
handout)

• Design a generic solution to the pet problem
(we will test for that)

• We will compare all submitted assignments to
identify cheaters …

• Do NOT change the boot menu or the test
code that it invokes (we plan to add additional
test code, beyond the one in your distribution)

ECE 344 Operating Systems 5

…

• Only fill in the blanks (function stubs) in the respective
files (do not worry about how these functions are
invoked)

• Start Assignment 1 from a new and clean distribution
(make sure you do not unpack it over your old
distribution, since certain files may or may not be
overwritten)
– Start from scratch with a new distribution
– If you wish, keep your debugging statements
– You will build on the synchronization primitives you develop

• You may have to modify all kinds of OS/161 code,
not just the pieces we explicitly point you to

• Localized understanding is essential; understanding
the whole kernel is not required to solve the assignment

ECE 344 Operating Systems 6

Before We Start

• OS/161 processes are single threaded
• OS/161 processes are realized via the

“threads structure” (see earlier slides), but
are NOT threads in the sense introduced
in my lecture

• Nothing prevents you from making them
multi-threaded – we wont ask you to do that

ECE 344 Operating Systems 7

Motivation
• Processes may want to pass on information,

e.g., UNIX pipe “ls –l | grep *.c”.
• Process A may require to wait for output of

process B, e.g., printer spooler waits for files to
print.

• Coordinate critical activities e.g., memory
allocation.

• Share and access data elements
• Keep track of the number of times an activity

is execution, e.g., the number of writing
transactions in a DBMS

ECE 344 Operating Systems 8

Bounded Buffer

Examples
• Printer queues
• Device buffers
• Shared buffers or queues

to pass information between
processes

The following discussion applies equally to process
and to threads.

inout

ECE 344 Operating Systems 9

Shared Data for Bounded-Buffer

//shared data
#define BUFFER_SIZE 10
typedef struct {
. . .
} item;
item buffer[BUFFER_SIZE];
//initial values
int in = 0;
int out = 0;
int counter = 0;

inout

0 1

out = 1
in = 5
counter = 4

Example:

ECE 344 Operating Systems 10

Bounded Buffer: Producer

item nextProduced;
while (TRUE) {

while (counter == BUFFER_SIZE)
; /* FULL - do nothing */

buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

ECE 344 Operating Systems 11

Bounded Buffer: Consumer

item nextConsumed;
while (TRUE) {

while (counter == 0)
; /* EMPTY - do nothing */

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}
producer consumer

ECE 344 Operating Systems 12

Machine-level Implementation

• Implementation of “counter++”
register1 = counter
register1 = register1 + 1
counter = register1

• Implementation of “counter—”
register2 = counter
register2 = register2 – 1
counter = register2

ECE 344 Operating Systems 13

Bounded Buffer

• If both the producer and consumer attempt to
update the buffer concurrently, the
assembly language statements may get
interleaved.

• Interleaving depends upon how the producer
and consumer are scheduled. producer consumer

ECE 344 Operating Systems 14

Possible Execution Patterns

Producer

Consumer

Context Switch

Producer

Consumer

Context Switch

Context Switch

Context Switch

Context Switch

ECE 344 Operating Systems 15

Interleaved Execution
• Assume counter is 5 and one interleaved

execution of producer and consumer code (i.e.,
counter++ and counter--):
P: r1 = counter (register1 = 5)
P: r1 = r1 + 1 (register1 = 6)
C: r2 = counter (register2 = 5)
C: r2 = r2 – 1 (register2 = 4)
P: counter = r1 (counter = 6)
C: counter = r2 (counter = 4)

• The value of counter may be either 4 or 6,
where the correct result should be 5.

context
switch

ECE 344 Operating Systems 16

Race Condition

• Race condition: The situation where several
processes or threads access and manipulate
shared data concurrently, while the final
value of the shared data depends upon which
process finishes last.

• In our example for P last, result would be 6,
and for C last, result would be 4.

• To prevent race conditions, concurrent
processes must be synchronized.

ECE 344 Operating Systems 17

The Moral of this Story

• The statements
counter++;
counter--;
must be performed atomically.

• Atomic operation means an operation that
completes in its entirety without interruption.

• This is achieved through synchronization
primitives (semaphores, locks, condition
variables, monitors …).

ECE 344 Operating Systems 18

Synchronization: Overview

• More formal definition of problem (the critical
section problem)

• Simple solutions to this problem
• Software solutions to this problem (defer till later)
• Hardware support for synchronization (defer till later)
• Locking, semaphores, condition variables
• Higher-level synchronization primitives
• Common synchronization problems

ECE 344 Operating Systems 19

The Critical-Section Problem
• n processes all competing to use some

shared data.
• Each process has a code segment, called

critical section, in which the shared data is
accessed.

• Problem: ensure that when one process is
executing in its critical section, no other
process is allowed to execute in its critical
section.

• Sometimes also called critical region – don’t
confuse this with our book’s critical region
construct.

ECE 344 Operating Systems 20

A Simple Solution: Disabling of Interrupts

• Context switches come about through interrupts
(e.g., clock or other interrupts)

• So how about disabling interrupts while
counter++ is executed?
– Should user really be allowed to do that?
– What does that mean in a multi-CPU context?

• Inside kernel code this may be acceptable
• This is the mechanism employed by OS/161 to

achieve atomicity in the kernel – for short pieces of
code

• Your mission – should you accept it ☺ - is to implement
higher-level synchronization mechanisms in OS/161
(locks and condition variables)

ECE 344 Operating Systems 21

Meta Comment

• We will skip a number of sections in the book
at this point and come back to them later

• We are skipping software-based solutions to
the critical section problem for now (read
them)

• We are skipping hardware features in support
of critical section

• These solutions are based on mechanisms
that require busy waiting

ECE 344 Operating Systems 22

Semaphores

• Higher-level synchronization mechanism
• Higher than disabling interrupts

– Fine for short sequences of code in kernel
– Not fine for application-level use

ECE 344 Operating Systems 23

Semaphores

• Semaphore S, integer variable
• can only be accessed via two indivisible (atomic)

operations

1. wait (S): // historically a.k.a. P(S)
while S≤ 0 do nothing;
S--;

2. signal (S): // historically a.k.a. V(S)
S++;

atomic busy waiting
loope.g., by

disabling
interrupts

atomic for S > 0

ECE 344 Operating Systems 24

wait(S)

loop: DI
if S < = 0 then {

EI;
goto loop

}
else {

S—;
EI;

}

EI – enable interrupt
DI – disable interrupt

critical section
for S <= 0

critical section
for S > 0

ECE 344 Operating Systems 25

Critical Section of n Processes

• Shared data:
semaphore mutex; // initially mutex = 1

• Process Pi:

do {
wait(mutex);

critical section
signal(mutex);

remainder section
} while (TRUE);

wait(m)

wait(m)
m ≤ 0 ?
m-- //m=0

P1: m=1

signal(m)
m++ //m=1

time

Timeline:

P2: m=1

ECE 344 Operating Systems 26

semaphore m=1

wait(m)

wait(m)
m ≤ 0 ?
m-- //m=0

P4: m=1

signal(m)
m++ //m=1

P3: m=1

wait(m)

P2: m=1

wait(m)

P1: m=1

m ≤ 0 ?

m ≤ 0 ?
m ≤ 0 ?

wait (S):

while S≤ 0 do nothing;
S--;

ECE 344 Operating Systems 27

semaphore m=3

wait(m)
m ≤ 0 ?
m-- //m=2

P4: m=3

signal(m)
m++ //m=1

P3: m=3

wait(m)

P2: m=3P1: m=3

m ≤ 0 ?

wait (S):

while S≤ 0 do nothing;
S--;

wait(m)
m ≤ 0 ?
m-- //m=1

wait(m)
m ≤ 0 ?
m-- //m=0

1

2
34

ECE 344 Operating Systems 28

semaphore m=0

wait(m)

P4: m=0P3: m=0

wait(m)

P2: m=0

wait(m)

P1: m=0

m ≤ 0 ?

m ≤ 0 ?
m ≤ 0 ?

wait (S):

while S≤ 0 do nothing;
S--;

wait(m)
m ≤ 0 ?

Rien ne va plus!

ECE 344 Operating Systems 29

Semaphore Implementation

• Variant that avoids busy waiting
• Define a semaphore as a record (shared data)

typedef struct {
int value;
struct process *L;

} semaphore;
• Assume two simple operations:

– block() suspends the process that invokes it.
– wakeup(P) resumes the execution of a blocked

process P.

ECE 344 Operating Systems 30

Implementation Alternative
wait(S):

S.value--;
if (S.value < 0) {

add this process to S.L;
block(); }

signal(S):
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P); }

atomic

atomic

ECE 344 Operating Systems 31

Example (expressed as timeline)

wait(m)
m.v-- //m.v= 0
m.v < 0 ?

Semaphore m;
m=1; // shared data

signal(m)
m.v++ //m.v= -1
m.v ≤ 0 ?
dequeue + wakeup

time

P i P j

Semaphore m;
do { \\ Pi

wait(m);
critical section

signal(m);
remainder section

} while (TRUE);

wait(m)
m.v-- //m.v= -1
m.v < 0 ?

enqueue + block
wait(m)
m.v-- //m.v= -2
m.v < 0 ?

enqueue + block

P k

P i

P iPk

m

m

1

3

2

ECE 344 Operating Systems 32

Semaphores in OS/161

• Defined in src/kern/thread/synch.c
and src/kern/include/synch.h

• Based on Dijkstra semantic with P/V
(proberen (try) / verhogen (increase))
operations instead of wait/signal

ECE 344 Operating Systems 33

Semaphore Implementation in OS/161
void P(struct semaphore *sem)
{

int spl;
assert(sem != NULL);
spl = splhigh();
while (sem->count==0) {

thread_sleep(sem);
}
assert(sem->count>0);
sem->count--;
splx(spl);

}

Puts
thread to
sleep and
… (?)

Why is there
a while loop?

Is like our wait(sem).

ECE 344 Operating Systems 34

Semaphore Implementation in OS/161
void V(struct semaphore *sem)
{

int spl;
assert(sem != NULL);
spl = splhigh();
sem->count++;
assert(sem->count>0);
thread_wakeup(sem);
splx(spl);

}

Wakes up
all threads
waiting on

sem

Is like our signal(sem).

ECE 344 Operating Systems 35

Semaphore as Synchronization Tool

• Execute B in Pj only after A executed in Pi

• Use semaphore flag initialized to 0
• Code:

Pi Pj

A wait(flag)
signal(flag) B

ECE 344 Operating Systems 36

Careful: Deadlock and Starvation
• Deadlock – two or more processes are waiting

indefinitely for an event that can be caused by only one
of the waiting processes.

• Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

Μ Μ
signal(S); signal(Q);
signal(Q) signal(S);

• Starvation – indefinite blocking. A process may
never be removed from the semaphore queue in which it
is suspended.

wait(S)
wait(Q)

wait(Q)

// S=0
// Q=0

// Q=-1 wait(S)
// S=-1

Timeline:

ECE 344 Operating Systems 37

Bounded Buffer with Semaphores

• Shared data:
semaphore mutex = 1; // exclusive access
semaphore empty = N; // number of empty slots
semaphore full = 0; // number of full slots

• Semaphores initialized to 1 and used to serialize access to
a critical section are sometimes called binary semaphores
≠ locks

0 1

ECE 344 Operating Systems 38

Bounded Buffer: Producer

item nextProduced;
while (TRUE) {

wait (empty);
wait (mutex);
insert(nextProduced);
signal (mutex);
signal (full);

}

item nextConsumed;
while (TRUE) {

wait (full);
wait (mutex);
nextConsumed = remove();
signal (mutex);
signal (empty);

}

• Buffer implemented as a linked list

ECE 344 Operating Systems 39

Bounded Buffer: Producer (broken)

item nextProduced;
while (TRUE) {

while (counter == BUFFER_SIZE)
; /* FULL - do nothing */

buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Semaphores & Locks

ECE 344 Operating Systems 41

Semaphores, Locks & Mutexes

• Counting semaphores vs. binary semaphores
– semaphore integer takes on various values
– semaphore integer takes on values 0 and 1
– Can a counting semaphore be implemented

based on a binary semaphore?
• A binary semaphore is not a lock

– But maybe used just like a lock (other use
patterns also possible)

ECE 344 Operating Systems 42

Semaphores, Locks & Mutexes

• Mutex often refers to a locking mechanism
available in user-space (user-level threads)
– Various different kinds …

• Term lock is used to also refer to a locking
mechanism (remember presentation of
semaphores in class – lock/unlock – wait/signal)
– However, wait/signal can be used by two

different processes
– Lock/corresponding unlock must be called

from same process

ECE 344 Operating Systems 43

Mutex – Mutual Exclusion

• A semaphore that allows only one process inside
the critical section is often called a mutex

• Semaphores’ ability to count not required in the
application semantic

• Mutexes are used exclusively to manage mutual
exclusion of critical section (i.e., lock and unlock)

• Easy and efficient to implement (therefore
attractive for user-level thread packages)

• Mutex knows one of two states, 0 or 1 –
unlocked, locked

• If TSE instruction available, mutexes can be easily
implemented in user space (discussed later)

(What the assignment calls a lock.)

ECE 344 Operating Systems 44

Semaphores in OS/161

• For implementing locks/CVs it maybe helpful
to study the semaphore implementation in
OS/161

• Defined in src/kern/thread/synch.c
and src/kern/include/synch.h

• Based on Dijkstra semantic with P/V
(proberen (try) / verhogen (increase))
operations instead of wait/signal

ECE 344 Operating Systems 45

Desirable & Undesirable Properties of
Lock Implementations

• Improper use of locks
– Locking a non-initialised mutex (lock)
– Locking a mutex that you already own
– Unlocking a mutex that you don’t own

• As always in this context, it’s the user’s
responsibility to prevent this from happening

• Some thread implementations do check for these
conditions and signal the problem

• Note, that for semaphore (binary semaphores) the
above properties are not meant to be enforced

ECE 344 Operating Systems 46

Mutexes/Locks in OS/161

struct lock{
char * name;
struct thread *holder;

};
struct lock *

lock_create (const char *name);
void lock_acquire (struct lock *);
void lock_release (struct lock *);
int lock_do_i_hold (struct lock *);
void lock_release (struct lock *);

ECE 344 Operating Systems 47

Towards Higher-level Synchronization
Constructs

• Getting the wait/signals correct is not easy
• Higher-level languages help programmer

synchronize the applications, e.g.,
– Java’s synchronize (single threaded access of

methods of class guaranteed)
– 1975 introduction of monitor by Hoar et al.
– See also “critical region construct” in our

text book

ECE 344 Operating Systems 48

Monitor
• High-level synchronization construct that allows

the safe sharing of an abstract data type among
concurrent processes.
monitor monitor-name {

shared variable declarations
procedure body P1 (…) { . . . }

…
procedure body P2 (…) {. . . }
procedure body Pn (…) { . . .}

{ initialization code }
}

• Access to monitor code is mutually exclusive for
caller

ECE 344 Operating Systems 49

Schematic View of a Monitor

ECE 344 Operating Systems 50

Condition Variables
• To allow a process to wait within the monitor, a

condition variable must be declared, as
condition x, y;

• Condition variables can only be used with the
operations wait and signal.
– x.wait() means that the process invoking this

operation is suspended until another process
invokes x.signal();

– x.signal resumes exactly one suspended
process. If no process is waiting, then the
signal operation has no no effect effect ((unlike a unlike a
semaphoresemaphore’’s signals signal((……)).)

ECE 344 Operating Systems 51

Monitor With Condition Variables

ECE 344 Operating Systems 52

Dining-Philosophers Problem

ECE 344 Operating Systems 53

Dining Philosophers Example

monitor dp {
enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i)
void putdown(int i)
void test(int i)
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}

ECE 344 Operating Systems 54

Dining Philosophers

void pickup(int i) {
state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

}

void putdown(int i) {
state[i] = thinking;
test((i+4) % 5);
test((i+1) % 5);

}

1

34
20i

ECE 344 Operating Systems 55

Dining Philosophers

void test(int i) {
if ((state[(i + 4) % 5] != eating) &&

(state[i] == hungry) &&
(state[(i + 1) % 5] != eating))

{
state[i] = eating;
self[i].signal();

}
} (i+4)%5

i

(i+1)%5

//left neighbour

//right neighbour

//I am hungry

Not eating
Not eating

Hungry Eating

1

34
20

i

ECE 344 Operating Systems 56

Example: Putdown

A

i

(i+1)%5

test((i+4)%5)
Thinkingvoid putdown(int i) {

state[i] = thinking;
test((i+4) % 5);
test((i+1) % 5);

}
(2): putdown(i)

test(A) …
test(A):
If left ng. not eating and

“A” is hungry and
right ng. not eating then
set “A” to eat
signal(A) // wakeup A

Hungry

(1): pickup(A)
• A tried picking up a ch.stick
• Failed and put itself to sleep

putdown(i)
Eating

B

Hungry

ECE 344 Operating Systems 57

NB: OS/161 CVs

• The notion of CVs in the context of monitors correspond
to the notion of CVs asked from you in this current
assignment (i.e., in OS/161)

• The difference between a monitor CV and an OS/161
CV is
– For a monitor the lock that protects the monitor data

structure (i.e., realizes mutual exclusion) is implicit – by
virtue of the construct being a monitor

– For the OS/161 / second assignment CV the lock is
explicit and is passed as argument to the CV API /
function calls you have to implement

ECE 344 Operating Systems 58

Condition Variables

• Monitor’s signal & wait are condition variables
• CVs also exist outside monitors, e.g., in Pthreads

and in OS/161, at least, hopefully soon …
• CVs are a way for threads to notify each other (a

notification system for threads)
• Instead of CVs threads could poll variables (I.e.,

lock, query, unlock, which is not efficient)
• Read the specification in synch.h, which tells

you how to implement CVs

ECE 344 Operating Systems 59

CV Example
#include <stdio.h>
#include <pthread.h>
#define NUM_THREADS 3
#define TCOUNT 10
#define COUNT_THRES 12

int count = 0;
int thread_ids[3] = {0,1,2};
pthread_mutex_t

count_lock=PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t

count_hit_threshold=PTHREAD_COND_INITIALIZER;

• This is an example based on
pthreads.

• Here the “monitor” lock is made
explicit

• This is not a monitor
• This is very similar to the

OS/161 API of CVs

ECE 344 Operating Systems 60

CV Example
main(void) {
int i;
pthread_t threads[3];

pthread_create(&threads[0], NULL, inc_count, (void
*)&thread_ids[0]);

pthread_create(&threads[1], NULL, inc_count, (void
*)&thread_ids[1]);

pthread_create(&threads[2], NULL, watch_count, (void
*)&thread_ids[2]);

for (i = 0; i < NUM_THREADS; i++) {
pthread_join(threads[i], NULL);

}
return 0;

}

ECE 344 Operating Systems 61

CV Example
void *inc_count(void *idp) {
int i=0, save_state, save_type;
int *my_id = idp;
for (i=0; i<TCOUNT; i++) {
pthread_mutex_lock(&count_lock);
count++;
printf(“ … “);
if (count == COUNT_THRES) {
printf(“ … “);
pthread_cond_signal(&count_hit_threshold); } // ends if

pthread_mutex_unlock(&count_lock); } // ends for
return(NULL); } // ends inc_count procedure

However, if predictable
scheduling behavior is required,

then that mutex should be locked
by the thread calling

pthread_cond_signal().

ECE 344 Operating Systems 62

CV Example

void *watch_count(void *idp) {
int i=0, save_state, save_type;
int *my_id = idp;
printf("watch_count(): thread %d\n", *my_id);
pthread_mutex_lock(&count_lock);
while (count < COUNT_THRES) {

pthread_cond_wait(&count_hit_threshold,
&count_lock);
printf(“ … “);

}
pthread_mutex_unlock(&count_lock);
return(NULL); // ends watch_count }

Synchronization

Recap on Semaphores/Locks and
CVS

ECE 344 Operating Systems 64

Synchronization Mechanisms: Overview
• Semaphores (binary, counting)

– Enforce mutually exclusive use of resources
– Enforce arbitrary execution patterns (e.g., sequential or

ordering constraints)
– Enforce synchronization constraints (e.g., full, empty, ..)

• Locks and mutexes
– Enforce mutually exclusive use of resources, exclusively

• Condition variables
– Enforce waiting for events and conditions (e.g., value of

data)
• Monitors (& critical region construct)

– Higher-level synchronization primitives
– Condition variables introduced in this context

ECE 344 Operating Systems 65

Common Use-patterns of the Above

wait(mutex);
… critical section

signal(mutex);

wait (empty);
wait (mutex);

insert(…);
signal (mutex);
signal (full);

A signal(flag)
wait(flag) B

lock(l)
… critical section

unlock(l);

ECE 344 Operating Systems 66

Classical Problems of
Synchronization

• (Bounded-Buffer Problem)
– Already covered based on semaphores

• Readers and Writers Problem

• Dining-Philosophers Problem

ECE 344 Operating Systems 67

Readers-Writers Problem

• The problem
– Many readers may access critical section

concurrently
– Writer requires exclusive access to critical section

• If readers are in CS and a writer comes along, CS
is drained

• If readers are in CS and a writer comes along,
writer waits until there are no further readers

• Shared data
semaphore mutex, wrt;

• Initially
mutex = 1, wrt = 1;
int readcount = 0;

ECE 344 Operating Systems 68

Readers-Writers Problem Writer Process

• Exclusive access to critical section must be
enforced via the semaphore, wrt

wait(wrt); //write lock
…

writing is performed
…

signal(wrt);

ECE 344 Operating Systems 69

Readers-Writers Problem Reader Process
wait(mutex);
readcount++;
if (readcount == 1)

wait(wrt);
signal(mutex);

…
reading is performed

…
wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex);

•Concurrent access by other readers
•Counts the number of readers in CS

For 1st reader:
• If CS is not locked, enter and read
• …otherwise, wait on writer exiting,
i.e., lock writer lock (wrt)

For last reader exciting CS:
• unlock writer lock

ECE 344 Operating Systems 70

Dining-Philosophers Problem

• Shared data
semaphore chopstick[5];

• Initially all values are 1

ECE 344 Operating Systems 71

Dining-Philosophers Problem
do { // Philosopher i

wait(chopstick[i])
wait(chopstick[(i+1) % 5])

…
eat

…
signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

…
think

…
} while (TRUE);

ECE 344 Operating Systems 72

Example Execution

1 2

3

4

5

wait(1)
wait(2)

1
2

3

45
wait(5)
wait(1)

wait(2)
wait(3)

ECE 344 Operating Systems 73

Example Execution: Problem Case

wait(5)
wait(1)
… wait(2)

…

wait(3)
wait(4)

1

2
signal(2)
signal(3)

signal(5)
signal(1)

Hardware-based Solutions for
Synchronization

ECE 344 Operating Systems 75

Atomicity

ECE 344 Operating Systems 76

Semaphore Implementation in OS/161
void P(struct semaphore *sem)
{

int spl;
assert(sem != NULL);
spl = splhigh();
while (sem->count==0) {

thread_sleep(sem);
}
assert(sem->count>0);
sem->count--;
splx(spl);

}

Puts
thread to
sleep and
… (?)

Why is there
a while loop?

Is like our wait(sem).

ECE 344 Operating Systems 77

Semaphores

• Semaphore S, integer variable
• can only be accessed via two indivisible (atomic)

operations

1. wait (S): // historically a.k.a. P(S)
while S≤ 0 do nothing;
S--;

2. signal (S): // historically a.k.a. V(S)
S++;

atomic busy waiting
loope.g., by

disabling
interrupts

ECE 344 Operating Systems 78

Implementation Alternative
wait(S):

S.value--;
if (S.value < 0) {

add this process to S.L;
block(); }

signal(S):
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P); }

atomic

atomic

ECE 344 Operating Systems 79

Our Atomicity Assumption in Semaphores
• Our assumption was not obvious and not fully true
• Now, with a little help from the hardware

– TSE RX, Lock // Atomic test-and-set
– Read Lock into register, RX
– Store a non-zero value into

memory location Lock
– i.e., no other process can access memory location until

the operation has completed
– CPU executing TSE, locks the memory bus to prevent

access of memory from other CPUs (if multi CPU sys.)
• Supported by many hardware platforms (not by MIPS-

1, ☺; but there we have splhigh/splx)

} Atomicity
guaranteed by

hardware !

ECE 344 Operating Systems 80

Synchronization Hardware

• TSE modifies the content of a word atomically
• As pseudo code below
• Implemented by one hardware instruction, TSE

Boolean TestAndSet(Boolean &target) {
Boolean rv = target;
target = true;
return rv;

}

} Atomicity
guaranteed by

hardware !

ECE 344 Operating Systems 81

User-level Implementation

Lock: //enter_section
TSE R, MUTEX //cpy M. to R and set M to 1
CMP R, #0 //was mutex 0?
JZE ok //if 0, M. unlocked, jmp to ok
CALL thread_yield //M. busy, invoke scheduler
JMP Lock //try again later

ok RET

UN_Lock: //exit_section
MV MUTEX,#0 //store 0 in mutex, i.e., unlock
RET //return to caller

Applies to threads discussion only.

ECE 344 Operating Systems 82

Mutual Exclusion with Test-and-Set

• Shared data:
Boolean lock = false;

• Process Pi

do {
while (TestAndSet(lock)) ;
critical section

lock = false;
remainder section

}

enter_section:
TSE R, Lock
CMP R, #0
JNE enter_section
RET

leave_section:
MOVE Lock, #0
RET

Busy waiting

ECE 344 Operating Systems 83

Example: Timeline

while(TestAndSet(Lock))

P1:

lock = false

time

Shared data: lock = false;

P2:

while(TestAndSet(Lock))
//=false

//lock=true

}

busy waiting

ECE 344 Operating Systems 84

Atomicity Requirement Revisited

• Our assumption should now be clear; it was
correct

• TSE could be used to enforce atomicity for
semaphore implementation

• Disabling of interrupts could be used to enforce
atomicity for semaphore implementation

• How are semaphores implemented in OS/161?
• Is the semaphore implementation based on

block() & wakeup() always busy waiting free?

Software-based Solutions for
Synchronization

ECE 344 Operating Systems 86

Implementation Alternatives

• Disabling of interrupts
• Atomic instructions (e.g., TSE, SWAP, …)
• If neither of the above is available, can the

critical section problem still be solved?
• This comes down to solving the critical

section problem in software, i.e.,
algorithmically.

ECE 344 Operating Systems 87

Model Process to Study Problem

• Our model process for looking at this problem
• 2 processes, P0 and P1

• General structure of process Pi (other process Pj)

do {
entry section

critical section
exit section

remainder section
} while (TRUE);

ECE 344 Operating Systems 88

Requirements for Solutions
1. Mutual Exclusion
2. Progress
3. Bounded Waiting

Assume that each process executes at a
non-zero speed
No assumption concerning relative speed
of the n processes.
For the following algorithms 1 to 3, we
assume two processes P0 and P1

ECE 344 Operating Systems 89

Algorithm 1
Shared variables:

int turn; turn = 0; // initialization
turn == i ⇒ Pi may enter CS

Pi:

do {
while (turn != i) ;

critical section
turn = 1 - i;
remainder section

} while (TRUE);

busy wait loop

Entry section

Exit section

ECE 344 Operating Systems 90

Algorithm 1
Shared variables:

–int turn; turn = 0; // initialization
–turn - i ⇒ Pi may enter CS

Pi:
do {

while (turn != i) ;
critical section

turn = j;
reminder section

} while (TRUE);

P0 P1

turn = 0

while (0 != 0)

while (0 != 1);
busy wait loop

ECE 344 Operating Systems 91

P0 P1
turn = 0

while (0 != 0)

while (0 != 1);

turn = 1

turn = 1 – 1 // =0

while (1 != 0)

Critical section

Critical section

Critical section

turn = 1

while (1 != 0)

Remainder section

do {
while (turn != i) ;

critical section
turn = j;

reminder section
} while (TRUE);

ECE 344 Operating Systems 92

Algorithm 1

• Enforces a strictly alternating pattern
between both processes
– P0, P1, P0, P1, P0
– P0, P1, P1 is not possible

• That is mutual exclusion is guaranteed
• Progress is not (see previous case)

ECE 344 Operating Systems 93

Algorithm 2
Shared variables

– Boolean flag[2];
– flag [0] = flag [1] = false
– flag [i] = true ⇒ Pi ready to enter its critical section

Pi
do {
flag[i] = true;
while (flag[1 - i]) ;
critical section

flag [i] = false;
remainder section

} while (TRUE);

Entry section

Exit section

ECE 344 Operating Systems 94

P1P0

flag[1] = true
while(flag[0]);

flag[1] = false

flag[0] = true
while(flag[1]);

flag[0] = false flag[1] = false

ECE 344 Operating Systems 95

P0 P1

flag[1] = true

while(flag[0]);

flag[0] = true

while(flag[1]);

• Lacks progress requirement

flag[0] = false flag[1] = false

ECE 344 Operating Systems 96

Algorithm 3
• Combined shared variables of algorithms 1 and 2.
• Process Pi

do { // P0’s perspective
flag [i]:= true; // “I want to enter CS”
turn = 1 - i; // ”Let P1 go ahead”
while (flag [1-i] and turn == 1 – i) ;

critical section
flag [i] = false;
remainder section

} while (TRUE);

P0
flag [0]:= true; turn = 1;
while (flag [1] and turn = 1) ;

ECE 344 Operating Systems 97

P0 P1

flag[1] = true

flag[0] = true
turn = 1

while(flag[1] && turn == 1);

turn = 0

turn = 0

Depending on scheduling
Decision turn is either 1 or 0

flag[0] = false flag[1] = false

ECE 344 Operating Systems 98

Bakery Algorithm
(synchronization of n processes)

• Before entering its critical section, process
receives a number.

• Holder of the smallest number enters the
critical section first (Bakery analogy).

• If processes Pi and Pj receive the same
number (“due to scheduling accident ☺”)
– if i < j, then Pi is served first
– else Pj is served first (based on unique PIDs)

• The numbering scheme always generates
numbers in increasing order of enumeration;
i.e., 1,2,3,3,3,3,4,5...

ECE 344 Operating Systems 99

Bakery Algorithm

• Notation < corresponds to lexicographical order
– (a,b) is (ticket #, process id)
– (a,b) < (c,d) if a < c or if a = c and b < d
– max (a0,…, an-1) is a number, k, such that k ≥ ai

for i = 0, …, n – 1
• Shared data // initialization

boolean choosing[n]; // all false
int nr [n]; // all 0

ECE 344 Operating Systems 100

High-level Description of Algorithm

• Indicate that you are choosing a number
• Choose a number

– This may occur concurrently and therefore
result in two chosen numbers being equal
(i.e., kind of race condition)

• Indicate that you have completed choosing a
number

• Select the process with the smallest number
to proceed into the critical section

ECE 344 Operating Systems 101

Bakery Algorithm: Process Pi

do {
choosing[i] = true; // indicate choosing a number
nr[i] = max(nr[0], nr[1], …, nr[n – 1]) + 1;
choosing[i] = false; // has chosen a number
for (j = 0; j < n; j++) { // process with smallest nr.

while (choosing[j]) ; // wait if Pj chooses a nr
while ((nr[j] != 0) && ((nr[j], j) < (nr[i],i)));

}
critical section

nr[i] = 0;
remainder section

} while (TRUE);

{

If Pj has a number,
check it out

Is it smaller
than my own nr.?

ECE 344 Operating Systems 102

Why May Two Numbers Be Equal?

Nr[0] = max(0, …0)

+ 1

= 1

Nr[k] = max(0, …0)

+ 1
= 1

If this happens concurrently both numbers may be equal

Context switch

Both are equal to 1 at this point.

ECE 344 Operating Systems 103

Bakery Algorithm (without choosing)

do {
nr[i] = max(nr[0], nr[1], …, nr[n – 1]) + 1;
for (j = 0; j < n; j++) {
while ((nr[j] != 0) && ((nr[j], j) < (nr[i],i))) ;

}
critical section

nr[i] = 0;
remainder section

} while (TRUE);

ECE 344 Operating Systems 104

Problem Case

nr[0] = max(0, …0) … nr[1] = max(0, …0) +1
= 1

Critical section= 1
Does P1 have a smaller number? Both are 1.
Well, break ties by looking at PID (0 & 1, here),

(nr[1],1) < (nr[0],0) // (1,1) < 1,0) - false
therefore enter CS (violation of mutual exclusion)

Context switch

Context switch

Critical section Critical section

nr[0]=0!

ECE 344 Operating Systems 105

Adding choosing[i] back in

choosing[0] = true
nr[0] = max(0, …0) …

choosing[1] = true
nr[1] = max(0, …0) +1

= 1

for (…)
while (choosing[i]);

Here, we would have
waited for P0 to choose

a number.

Then we would have let
P0 proceed into its

CS first

while (…
((nr[0], 0) < (nr[1],1))) ;

// (1,0) < (1,1) - true
// therefore busy wait

Binary Semaphore

ECE 344 Operating Systems 107

Two Types of Semaphores

• Counting semaphore – integer value can
range over an unrestricted domain.

• Binary semaphore – integer value can
range only between 0 and 1; can be
simpler to implement.

• Is a binary semaphore the same as a lock?
• Can we implement a counting

semaphore S as a binary semaphore?

ECE 344 Operating Systems 108

Implementing S as a Binary Semaphore

• Data structures:
binary-semaphore S1, S2;
int C:

• Initialization:
S1 = 1
S2 = 0
C = initial value of semaphore S

ECE 344 Operating Systems 109

Implementing S
Wait(C) operation:

wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2); }

signal(S1);

Signal(C) operation:
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

ECE 344 Operating Systems 110

Synchronization Mechanisms Summary

• Race conditions
• Semaphores (binary, counting)

– Enforce mutually exclusive use of resources
– Enforce arbitrary execution patterns (e.g., sequential or

ordering constraints)
– Enforce synchronization constraints (e.g., full, empty,

readers/writers constraint)
• Locks and mutexes

– Enforce mutually exclusive use of resources, exclusively
• Condition variables

– Enforce waiting for events and conditions (e.g., value of
data)

ECE 344 Operating Systems 111

Synchronization Mechanisms Summary
• Monitors (& critical region construct)

– Higher-level synchronization primitives
– Condition variables introduced in this context

• Disabling of interrupts to enforce atomicity
• Test-and-Set Instruction
• Classical problems

– Bounded buffer problem
– Dining Philosophers problem
– Reader Writers problem (reader priority)

ECE 344 Operating Systems 112

Outlook

• Inter-process communication
• OS Architecture
• Scheduling
• Memory management
• …

Critical Region Construct

ECE 344 Operating Systems 114

Critical Region Construct

• High-level synchronization construct
• A shared variable v of type T, is declared as:

v: shared T
• Variable v accessed only inside statement

region v when B do S
where B is a Boolean expression.

• While statement S is being executed, no
other process can access variable v.

ECE 344 Operating Systems 115

Critical Regions

• Regions referring to the same shared
variable exclude each other in time.

• When a process tries to execute the region
statement, the Boolean expression B is
evaluated.
– If B is true, statement S is executed.
– If it is false, the process is delayed until B

becomes true and no other process is in the
region associated with v.

ECE 344 Operating Systems 116

Example – Bounded Buffer

• Shared data:

struct buffer {
int pool[n];
int count, in, out;

}

ECE 344 Operating Systems 117

Bounded Buffer Producer Process

• Producer process inserts nextp into the
shared buffer

region buffer when(count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

}

ECE 344 Operating Systems 118

Bounded Buffer Consumer Process

• Consumer process removes an item from the
shared buffer and puts it in nextc

region buffer when (count > 0) {
nextc = pool[out];
out = (out+1) % n;
count--;

}

