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Announcements & Comments

• Read the whole Synchronization Chapter in 
the book; it contains important material for 
the second assignment

• My slides go beyond the chapter on 
synchronization, read them carefully, 
especially with regards to the second 
assignment (read forward, i.e., beyond the 
material covered in the lecture) !!

• I may not cover the slides in the exact 
sequence presented
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Announcements & Comments

• About the assignment’s locks see these slides
• About the assignment’s condition variables see 

these slides and read monitor section in book
• For pet synchronization read classical 

synchronization section in the book
• Pet synchronization solution et al. should be 

generic
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…

• You can execute your synchronization 
mechanisms and your solution to the pet 
problem via the kernel’s boot menu (see 
handout)

• Design a generic solution to the pet problem 
(we will test for that)

• We will compare all submitted assignments to 
identify cheaters …

• Do NOT change the boot menu or the test 
code that it invokes (we plan to add additional 
test code, beyond the one in your distribution)
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…

• Only fill in the blanks (function stubs) in the respective 
files (do not worry about how these functions are 
invoked)

• Start Assignment 1 from a new and clean distribution 
(make sure you do not unpack it over your old 
distribution, since certain files may or may not be 
overwritten)
– Start from scratch with a new distribution
– If you wish, keep your debugging statements
– You will build on the synchronization primitives you develop

• You may have to modify all kinds of OS/161 code, 
not just the pieces we explicitly point you to

• Localized understanding is essential; understanding 
the whole kernel is not required to solve the assignment
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Before We Start

• OS/161 processes are single threaded
• OS/161 processes are realized via the 

“threads structure” (see earlier slides), but 
are NOT threads in the sense introduced 
in my lecture

• Nothing prevents you from making them 
multi-threaded – we wont ask you to do that
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Motivation
• Processes may want to pass on information, 

e.g., UNIX pipe “ls –l | grep *.c”.
• Process A may require to wait for output of 

process B, e.g., printer spooler waits for files to 
print.

• Coordinate critical activities e.g., memory 
allocation.

• Share and access data elements
• Keep track of the number of times an activity 

is execution, e.g., the number of writing 
transactions in a DBMS
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Bounded Buffer

Examples
• Printer queues
• Device buffers
• Shared buffers or queues

to pass information between
processes

The following discussion applies equally to process
and to threads.

inout
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Shared Data for Bounded-Buffer

//shared data
#define BUFFER_SIZE 10
typedef struct {
. . .
} item;
item buffer[BUFFER_SIZE];
//initial values
int in = 0;
int out = 0;
int counter = 0;

inout

0 1

out = 1
in = 5
counter = 4

Example:
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Bounded Buffer: Producer 

item nextProduced;
while (TRUE) {

while (counter == BUFFER_SIZE)
; /* FULL - do nothing */

buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}
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Bounded Buffer: Consumer 

item nextConsumed;
while (TRUE) {

while (counter == 0)
; /* EMPTY - do nothing */

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}
producer consumer
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Machine-level Implementation

• Implementation of “counter++”
register1 = counter
register1 = register1 + 1
counter = register1

• Implementation of “counter—”
register2 = counter
register2 = register2 – 1
counter = register2
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Bounded Buffer

• If both the producer and consumer attempt to 
update the buffer concurrently, the 
assembly language statements may get 
interleaved.

• Interleaving depends upon how the producer 
and consumer are scheduled. producer consumer
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Possible Execution Patterns

Producer

Consumer

Context Switch

Producer

Consumer

Context Switch

Context Switch

Context Switch

Context Switch
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Interleaved Execution
• Assume counter is 5 and one interleaved 

execution of producer and consumer code (i.e., 
counter++ and counter--):
P: r1 = counter (register1 = 5)
P: r1 = r1 + 1 (register1 = 6)
C: r2 = counter (register2 = 5)
C: r2 = r2 – 1 (register2 = 4)
P: counter = r1 (counter = 6)
C: counter = r2 (counter = 4)

• The value of counter may be either 4 or 6, 
where the correct result should be 5.

context
switch
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Race Condition

• Race condition: The situation where several 
processes or threads access and manipulate
shared data concurrently, while the final 
value of the shared data depends upon which 
process finishes last.

• In our example for P last, result would be 6, 
and for C last, result would be 4.

• To prevent race conditions, concurrent 
processes must be synchronized.
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The Moral of this Story

• The statements
counter++;
counter--;
must be performed atomically.

• Atomic operation means an operation that 
completes in its entirety without interruption.

• This is achieved through synchronization 
primitives (semaphores, locks, condition 
variables, monitors …).
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Synchronization: Overview

• More formal definition of problem (the critical 
section problem)

• Simple solutions to this problem
• Software solutions to this problem (defer till later)
• Hardware support for synchronization (defer till later)
• Locking, semaphores, condition variables
• Higher-level synchronization primitives
• Common synchronization problems
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The Critical-Section Problem
• n processes all competing to use some 

shared data.
• Each process has a code segment, called 

critical section, in which the shared data is 
accessed.

• Problem: ensure that when one process is 
executing in its critical section, no other 
process is allowed to execute in its critical 
section.

• Sometimes also called critical region – don’t 
confuse this with our book’s critical region 
construct.
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A Simple Solution: Disabling of Interrupts

• Context switches come about through interrupts 
(e.g., clock or other interrupts)

• So how about disabling interrupts while 
counter++ is executed?
– Should user really be allowed to do that?
– What does that mean in a multi-CPU context?

• Inside kernel code this may be acceptable
• This is the mechanism employed by OS/161 to 

achieve atomicity in the kernel – for short pieces of 
code 

• Your mission – should you accept it ☺ - is to implement 
higher-level synchronization mechanisms in OS/161 
(locks and condition variables)
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Meta Comment

• We will skip a number of sections in the book 
at this point and come back to them later

• We are skipping software-based solutions to 
the critical section problem for now (read 
them)

• We are skipping hardware features in support 
of critical section

• These solutions are based on mechanisms 
that require busy waiting
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Semaphores

• Higher-level synchronization mechanism
• Higher than disabling interrupts

– Fine for short sequences of code in kernel
– Not fine for application-level use
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Semaphores

• Semaphore S, integer variable
• can only be accessed via two indivisible (atomic) 

operations

1. wait (S):  // historically a.k.a. P(S)
while    S≤ 0 do nothing;
S--;

2. signal (S): // historically a.k.a. V(S)
S++;

atomic busy waiting
loope.g., by

disabling
interrupts

atomic for S > 0
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wait(S)

loop: DI
if  S < = 0 then { 

EI; 
goto loop

}
else {

S—;
EI;

}

EI – enable interrupt
DI – disable interrupt

critical section
for S <= 0

critical section
for S > 0
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Critical Section of n Processes

• Shared data:
semaphore mutex; // initially mutex = 1

• Process Pi: 

do {
wait(mutex);

critical section
signal(mutex);

remainder section
} while (TRUE);

wait(m)

wait(m)
m ≤ 0 ?
m-- //m=0

P1: m=1

signal(m)
m++ //m=1

time

Timeline:

P2: m=1
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semaphore m=1

wait(m)

wait(m)
m ≤ 0 ?
m-- //m=0

P4: m=1

signal(m)
m++ //m=1

P3: m=1

wait(m)

P2: m=1

wait(m)

P1: m=1

m ≤ 0 ?

m ≤ 0 ?
m ≤ 0 ?

wait (S):

while    S≤ 0 do nothing;
S--;
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semaphore m=3

wait(m)
m ≤ 0 ?
m-- //m=2

P4: m=3

signal(m)
m++ //m=1

P3: m=3

wait(m)

P2: m=3P1: m=3

m ≤ 0 ?

wait (S):

while    S≤ 0 do nothing;
S--;

wait(m)
m ≤ 0 ?
m-- //m=1

wait(m)
m ≤ 0 ?
m-- //m=0

1

2
34
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semaphore m=0

wait(m)

P4: m=0P3: m=0

wait(m)

P2: m=0

wait(m)

P1: m=0

m ≤ 0 ?

m ≤ 0 ?
m ≤ 0 ?

wait (S):

while    S≤ 0 do nothing;
S--;

wait(m)
m ≤ 0 ?

Rien ne va plus!
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Semaphore Implementation

• Variant that avoids busy waiting
• Define a semaphore as a record (shared data)

typedef struct {
int value;
struct process *L;

} semaphore;
• Assume two simple operations:

– block() suspends the process that invokes it.
– wakeup(P) resumes the execution of a blocked 

process P.
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Implementation Alternative
wait(S):

S.value--;
if (S.value < 0) { 

add this process to S.L;
block();          }

signal(S): 
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);          }

atomic

atomic
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Example (expressed as timeline)

wait(m)
m.v-- //m.v= 0
m.v < 0 ?

Semaphore m;
m=1; // shared data

signal(m)
m.v++ //m.v= -1
m.v ≤ 0 ?
dequeue + wakeup

time

P i P j

Semaphore m;
do {     \\ Pi

wait(m);
critical section

signal(m);
remainder section

} while (TRUE);

wait(m)
m.v-- //m.v= -1
m.v < 0 ?

enqueue + block
wait(m)
m.v-- //m.v= -2
m.v < 0 ?

enqueue + block

P k

P i

P iPk

m

m

1

3

2
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Semaphores in OS/161

• Defined in src/kern/thread/synch.c
and src/kern/include/synch.h

• Based on Dijkstra semantic with P/V 
(proberen (try) / verhogen (increase)) 
operations instead of wait/signal
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Semaphore Implementation in OS/161
void P(struct semaphore *sem)
{

int spl;
assert(sem != NULL);
spl = splhigh();
while (sem->count==0) {

thread_sleep(sem);
}
assert(sem->count>0);
sem->count--;
splx(spl);

}

Puts 
thread to 
sleep and 
… (?)

Why is there 
a while loop?

Is like our wait(sem).
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Semaphore Implementation in OS/161
void V(struct semaphore *sem)
{

int spl;
assert(sem != NULL);
spl = splhigh();
sem->count++;
assert(sem->count>0);
thread_wakeup(sem);
splx(spl);

}

Wakes up 
all threads 
waiting on 

sem

Is like our signal(sem).
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Semaphore as Synchronization Tool

• Execute B in Pj only after A executed in Pi

• Use semaphore flag initialized to 0
• Code:

Pi Pj

A wait(flag)
signal(flag) B
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Careful: Deadlock and Starvation
• Deadlock – two or more processes are waiting 

indefinitely for an event that can be caused by only one 
of the waiting processes.

• Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

Μ Μ
signal(S); signal(Q);
signal(Q) signal(S);

• Starvation – indefinite blocking.  A process may 
never be removed from the semaphore queue in which it 
is suspended.

wait(S)
wait(Q)

wait(Q)

// S=0
// Q=0

// Q=-1 wait(S)
// S=-1

Timeline:
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Bounded Buffer with Semaphores

• Shared data:
semaphore mutex = 1;  // exclusive access
semaphore empty = N; // number of empty slots
semaphore full = 0;       // number of full slots

• Semaphores initialized to 1 and used to serialize access to 
a critical section are sometimes called binary semaphores 
≠ locks

0 1
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Bounded Buffer: Producer 

item nextProduced;
while (TRUE) {

wait (empty);
wait (mutex);
insert(nextProduced);
signal (mutex);
signal (full);

}

item nextConsumed;
while (TRUE) {

wait (full);
wait (mutex); 
nextConsumed = remove();
signal (mutex);
signal (empty);

}

• Buffer implemented as a linked list
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Bounded Buffer: Producer (broken) 

item nextProduced;
while (TRUE) {

while (counter == BUFFER_SIZE)
; /* FULL - do nothing */

buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}



Semaphores & Locks
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Semaphores, Locks & Mutexes

• Counting semaphores vs. binary semaphores
– semaphore integer takes on various values
– semaphore integer takes on values 0 and 1
– Can a counting semaphore be implemented 

based on a binary semaphore?
• A binary semaphore is not a lock

– But maybe used just like a lock (other use 
patterns also possible)
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Semaphores, Locks & Mutexes

• Mutex often refers to a locking mechanism
available in user-space (user-level threads)
– Various different kinds …

• Term lock is used to also refer to a locking 
mechanism (remember presentation of 
semaphores in class – lock/unlock – wait/signal)
– However, wait/signal can be used by two 

different processes
– Lock/corresponding unlock must be called 

from same process
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Mutex – Mutual Exclusion

• A semaphore that allows only one process inside 
the critical section is often called a mutex

• Semaphores’ ability to count not required in the 
application semantic

• Mutexes are used exclusively to manage mutual 
exclusion of critical section (i.e., lock and unlock)

• Easy and efficient to implement (therefore 
attractive for user-level thread packages)

• Mutex knows one of two states, 0 or 1 –
unlocked, locked

• If TSE instruction available, mutexes can be easily 
implemented in user space (discussed later)

(What the assignment calls a lock.)
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Semaphores in OS/161

• For implementing locks/CVs it maybe helpful 
to study the semaphore implementation in 
OS/161

• Defined in src/kern/thread/synch.c
and src/kern/include/synch.h

• Based on Dijkstra semantic with P/V 
(proberen (try) / verhogen (increase)) 
operations instead of wait/signal
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Desirable & Undesirable Properties of 
Lock Implementations

• Improper use of locks
– Locking a non-initialised mutex (lock)
– Locking a mutex that you already own
– Unlocking a mutex that you don’t own

• As always in this context, it’s the user’s 
responsibility to prevent this from happening

• Some thread implementations do check for these 
conditions and signal the problem

• Note, that for semaphore (binary semaphores) the 
above properties are not meant to be enforced
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Mutexes/Locks in OS/161

struct lock{
char * name;
struct thread *holder;

};
struct lock *

lock_create (const char *name);
void lock_acquire (struct lock *);
void lock_release (struct lock *);
int lock_do_i_hold (struct lock *);
void lock_release (struct lock *);
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Towards Higher-level Synchronization 
Constructs

• Getting the wait/signals correct is not easy
• Higher-level languages help programmer 

synchronize the applications, e.g.,
– Java’s synchronize (single threaded access of 

methods of class guaranteed)
– 1975 introduction of monitor by Hoar et al.
– See also “critical region construct” in our 

text book
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Monitor
• High-level synchronization construct that allows 

the safe sharing of an abstract data type among 
concurrent processes.
monitor monitor-name {

shared variable declarations
procedure body P1 (…) { . . . }

…
procedure body P2 (…) {. . . } 
procedure body Pn (…) { . . .} 

{ initialization code }  
}

• Access to monitor code is mutually exclusive for 
caller
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Schematic View of a Monitor
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Condition Variables
• To allow a process to wait within the monitor, a 

condition variable must be declared, as 
condition x, y;

• Condition variables can only be used with the 
operations wait and signal.
– x.wait() means that the process invoking this 

operation is suspended until another process 
invokes x.signal();

– x.signal resumes exactly one suspended 
process.  If no process is waiting, then the 
signal operation has no no effect effect ((unlike a unlike a 
semaphoresemaphore’’s signals signal((……)).)
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Monitor With Condition Variables
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Dining-Philosophers Problem
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Dining Philosophers Example

monitor dp {
enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i) 
void putdown(int i) 
void test(int i) 
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}
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Dining Philosophers

void pickup(int i) {
state[i] = hungry;
test[i];
if (state[i] !=  eating)

self[i].wait();
}

}

void putdown(int i) {
state[i] = thinking;
test( (i+4) % 5 );
test( (i+1) % 5 );

}

1

34
20i
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Dining Philosophers

void test(int i) {
if ( (state[(i + 4) % 5] != eating) &&

(state[i] == hungry) &&
(state[(i + 1) % 5] != eating) ) 

{
state[i] = eating;
self[i].signal();

}
} (i+4)%5

i

(i+1)%5

//left neighbour

//right neighbour

//I am hungry

Not eating
Not eating

Hungry Eating

1

34
20

i
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Example: Putdown

A

i

(i+1)%5

test((i+4)%5)
Thinkingvoid putdown(int i) {

state[i] = thinking;
test((i+4) % 5);
test((i+1) % 5);

}
(2): putdown(i)

test(A) …
test(A):
If left ng. not eating and

“A” is hungry and
right ng. not eating then
set “A” to eat 
signal(A) // wakeup A

Hungry

(1):  pickup(A)
• A tried picking up a ch.stick
• Failed and put itself to sleep

putdown(i)
Eating

B

Hungry
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NB: OS/161 CVs

• The notion of CVs in the context of monitors correspond 
to the notion of CVs asked from you in this current
assignment (i.e., in OS/161)

• The difference between a monitor CV and an OS/161 
CV is
– For a monitor the lock that protects the monitor data 

structure (i.e., realizes mutual exclusion) is implicit – by 
virtue of the construct being a monitor

– For the OS/161 / second assignment CV the lock is 
explicit and is passed as argument to the CV API / 
function calls you have to implement
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Condition Variables

• Monitor’s signal & wait are condition variables
• CVs also exist outside monitors, e.g., in Pthreads

and in OS/161, at least, hopefully soon …
• CVs are a way for threads to notify each other (a 

notification system for threads)
• Instead of CVs threads could poll variables (I.e., 

lock, query, unlock, which is not efficient)
• Read the specification in synch.h, which tells 

you how to implement CVs
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CV Example
#include <stdio.h>
#include <pthread.h>
#define NUM_THREADS  3
#define TCOUNT 10
#define COUNT_THRES 12

int count = 0;
int thread_ids[3] = {0,1,2};
pthread_mutex_t

count_lock=PTHREAD_MUTEX_INITIALIZER; 
pthread_cond_t

count_hit_threshold=PTHREAD_COND_INITIALIZER; 

• This is an example based on 
pthreads.

• Here the “monitor” lock is made 
explicit

• This is not a monitor
• This is very similar to the 

OS/161 API of CVs
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CV Example
main(void) {
int i;
pthread_t threads[3];

pthread_create(&threads[0], NULL, inc_count, (void 
*)&thread_ids[0]);

pthread_create(&threads[1], NULL, inc_count, (void 
*)&thread_ids[1]);

pthread_create(&threads[2], NULL, watch_count, (void 
*)&thread_ids[2]);

for (i = 0; i < NUM_THREADS; i++) {
pthread_join(threads[i], NULL);

}
return 0;

}
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CV Example
void *inc_count(void *idp) {
int i=0, save_state, save_type;
int *my_id = idp;
for (i=0; i<TCOUNT; i++) {
pthread_mutex_lock(&count_lock);
count++;
printf(“ … “);
if (count == COUNT_THRES) {
printf(“ … “);
pthread_cond_signal(&count_hit_threshold); } // ends if

pthread_mutex_unlock(&count_lock); } // ends for
return(NULL); } // ends inc_count procedure

However, if predictable 
scheduling behavior is required, 

then that mutex should be locked 
by the thread calling 

pthread_cond_signal(). 
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CV Example

void *watch_count(void *idp) {
int i=0, save_state, save_type;
int *my_id = idp;
printf("watch_count(): thread %d\n", *my_id);
pthread_mutex_lock(&count_lock);
while (count < COUNT_THRES) {

pthread_cond_wait(&count_hit_threshold, 
&count_lock);
printf(“ … “);

}
pthread_mutex_unlock(&count_lock);
return(NULL);  // ends watch_count  }



Synchronization

Recap on Semaphores/Locks and 
CVS
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Synchronization Mechanisms: Overview
• Semaphores (binary, counting)

– Enforce mutually exclusive use of resources
– Enforce arbitrary execution patterns (e.g., sequential or 

ordering constraints)
– Enforce synchronization constraints (e.g., full, empty, ..)

• Locks and mutexes
– Enforce mutually exclusive use of resources, exclusively

• Condition variables
– Enforce waiting for events and conditions (e.g., value of 

data)
• Monitors (& critical region construct)

– Higher-level synchronization primitives
– Condition variables introduced in this context
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Common Use-patterns of the Above

wait(mutex);
… critical section

signal(mutex);

wait (empty);
wait (mutex);

insert(…);
signal (mutex);
signal (full);

A signal(flag)
wait(flag) B

lock(l)
… critical section

unlock(l);
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Classical Problems of 
Synchronization

• (Bounded-Buffer Problem)
– Already covered based on semaphores

• Readers and Writers Problem

• Dining-Philosophers Problem
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Readers-Writers Problem

• The problem
– Many readers may access critical section 

concurrently
– Writer requires exclusive access to critical section

• If readers are in CS and a writer comes along, CS 
is drained

• If readers are in CS and a writer comes along, 
writer waits until there are no further readers

• Shared data
semaphore mutex, wrt;

• Initially
mutex = 1, wrt = 1;   
int readcount = 0;
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Readers-Writers Problem Writer Process

• Exclusive access to critical section must be 
enforced via the semaphore, wrt

wait(wrt);   //write lock
…

writing is performed
…

signal(wrt);
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Readers-Writers Problem Reader Process
wait(mutex);
readcount++;
if (readcount == 1)

wait(wrt);
signal(mutex);

…
reading is performed

…
wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex);

•Concurrent access by other readers
•Counts the number of readers in CS

For 1st reader:
• If CS is not locked, enter and read
• …otherwise, wait on writer exiting,
i.e., lock writer lock (wrt)

For last reader exciting CS:
• unlock writer lock
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Dining-Philosophers Problem

• Shared data 
semaphore chopstick[5];

• Initially all values are 1
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Dining-Philosophers Problem 
do { // Philosopher  i

wait(chopstick[i])
wait(chopstick[(i+1) % 5])

…
eat

…
signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

…
think

…
} while (TRUE);
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Example Execution

1 2

3

4

5

wait(1)
wait(2)

1
2

3

45
wait(5)
wait(1)

wait(2)
wait(3)
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Example Execution: Problem Case

wait(5)
wait(1)
… wait(2)

…

wait(3)
wait(4)

1

2
signal(2)
signal(3)

signal(5)
signal(1)



Hardware-based Solutions for 
Synchronization
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Atomicity
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Semaphore Implementation in OS/161
void P(struct semaphore *sem)
{

int spl;
assert(sem != NULL);
spl = splhigh();
while (sem->count==0) {

thread_sleep(sem);
}
assert(sem->count>0);
sem->count--;
splx(spl);

}

Puts 
thread to 
sleep and 
… (?)

Why is there 
a while loop?

Is like our wait(sem).



ECE 344 Operating Systems 77

Semaphores

• Semaphore S, integer variable
• can only be accessed via two indivisible (atomic) 

operations

1. wait (S):  // historically a.k.a. P(S)
while S≤ 0 do nothing;
S--;

2. signal (S): // historically a.k.a. V(S)
S++;

atomic busy waiting
loope.g., by

disabling
interrupts
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Implementation Alternative
wait(S):

S.value--;
if (S.value < 0) { 

add this process to S.L;
block();          }

signal(S): 
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);          }

atomic

atomic
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Our Atomicity Assumption in Semaphores
• Our assumption was not obvious and not fully true
• Now, with a little help from the hardware

– TSE RX, Lock // Atomic test-and-set
– Read Lock into register, RX
– Store a non-zero value into 

memory location Lock
– i.e., no other process can access memory location until 

the operation has completed
– CPU executing TSE, locks the memory bus to prevent 

access of memory from other CPUs (if multi CPU sys.) 
• Supported by many hardware platforms (not by MIPS-

1, ☺; but there we have splhigh/splx)

} Atomicity 
guaranteed by

hardware !
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Synchronization Hardware

• TSE modifies the content of a word atomically
• As pseudo code below
• Implemented by one hardware instruction, TSE

Boolean TestAndSet(Boolean &target) {
Boolean rv = target;
target = true;
return rv;

}

} Atomicity 
guaranteed by

hardware !
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User-level Implementation

Lock: //enter_section
TSE R, MUTEX //cpy M. to R and set M to 1
CMP R, #0 //was mutex 0?
JZE ok //if 0, M. unlocked, jmp to ok
CALL thread_yield //M. busy, invoke scheduler
JMP Lock //try again later

ok  RET

UN_Lock: //exit_section
MV MUTEX,#0 //store 0 in mutex, i.e., unlock
RET //return to caller

Applies to threads discussion only.
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Mutual Exclusion with Test-and-Set

• Shared data: 
Boolean lock = false;

• Process Pi

do {
while (TestAndSet(lock)) ;
critical section

lock = false;
remainder section

}

enter_section:
TSE R, Lock
CMP R, #0
JNE enter_section
RET

leave_section:
MOVE Lock, #0
RET

Busy waiting
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Example: Timeline

while(TestAndSet(Lock))

P1:

lock = false

time

Shared data: lock = false;

P2:

while(TestAndSet(Lock))
//=false

//lock=true

}

busy waiting
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Atomicity Requirement Revisited

• Our assumption should now be clear; it was 
correct

• TSE could be used to enforce atomicity for 
semaphore implementation

• Disabling of interrupts could be used to enforce 
atomicity for semaphore implementation

• How are semaphores implemented in OS/161?
• Is the semaphore implementation based on 

block() & wakeup() always busy waiting free?



Software-based Solutions for 
Synchronization
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Implementation Alternatives

• Disabling of interrupts
• Atomic instructions (e.g., TSE, SWAP, …)
• If neither of the above is available, can the 

critical section problem still be solved?
• This comes down to solving the critical 

section problem in software, i.e., 
algorithmically.
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Model Process to Study Problem

• Our model process for looking at this problem
• 2  processes, P0 and P1

• General structure of process Pi (other process Pj)

do {
entry section

critical section
exit section

remainder section
} while (TRUE);



ECE 344 Operating Systems 88

Requirements for Solutions
1. Mutual Exclusion
2. Progress
3. Bounded Waiting

Assume that each process executes at a 
non-zero speed 
No assumption concerning relative speed 
of the n processes.
For the following algorithms 1 to 3, we 
assume two processes P0 and P1
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Algorithm 1
Shared variables: 

int turn;  turn = 0; // initialization
turn == i ⇒ Pi may enter CS

Pi:

do { 
while (turn != i) ;

critical section
turn = 1 - i;
remainder section

} while (TRUE);

busy wait loop

Entry section

Exit section
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Algorithm 1
Shared variables: 

–int turn;  turn = 0; // initialization
–turn - i ⇒ Pi may enter CS

Pi:
do { 

while (turn != i) ;
critical section

turn = j;
reminder section

} while (TRUE);

P0 P1

turn = 0

while (0 != 0)

while (0 != 1);
busy wait loop
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P0 P1
turn = 0

while (0 != 0)

while (0 != 1);

turn = 1

turn = 1 – 1 // =0

while (1 != 0)

Critical section

Critical section

Critical section

turn = 1

while (1 != 0)

Remainder section

do { 
while (turn != i) ;

critical section
turn = j;

reminder section
} while (TRUE);
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Algorithm 1

• Enforces a strictly alternating pattern
between both processes
– P0, P1, P0, P1, P0
– P0, P1, P1 is not possible

• That is mutual exclusion is guaranteed
• Progress is not (see previous case)
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Algorithm 2
Shared variables

– Boolean flag[2]; 
– flag [0] = flag [1] = false 
– flag [i] = true ⇒ Pi ready to enter its critical section

Pi
do {
flag[i] = true;
while (flag[1 - i]) ;
critical section

flag [i] = false;
remainder section

} while (TRUE);

Entry section

Exit section
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P1P0

flag[1] = true
while( flag[0] );

flag[1] = false

flag[0] = true
while( flag[1] );

flag[0] = false        flag[1] = false 
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P0 P1

flag[1] = true

while( flag[0] );

flag[0] = true

while( flag[1] );

• Lacks progress requirement

flag[0] = false        flag[1] = false 
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Algorithm 3
• Combined shared variables of algorithms 1 and 2.
• Process Pi

do { //  P0’s perspective
flag [i]:= true; // “I want to enter CS”
turn = 1 - i; // ”Let P1 go ahead”
while ( flag [1-i] and turn == 1 – i ) ;

critical section
flag [i] = false;
remainder section

} while (TRUE);

P0
flag [0]:= true;  turn = 1;
while ( flag [1] and turn = 1 ) ;
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P0 P1

flag[1] = true

flag[0] = true
turn = 1

while( flag[1] && turn == 1 );

turn = 0

turn = 0

Depending on scheduling
Decision turn is either 1 or 0

flag[0] = false        flag[1] = false
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Bakery Algorithm 
(synchronization of n processes)

• Before entering its critical section, process 
receives a number. 

• Holder of the smallest number enters the 
critical section first (Bakery analogy).

• If processes Pi and Pj receive the same 
number (“due to scheduling accident ☺”)
– if i < j, then Pi is served first
– else Pj is served first (based on unique PIDs)

• The numbering scheme always generates 
numbers in increasing order of enumeration; 
i.e., 1,2,3,3,3,3,4,5...



ECE 344 Operating Systems 99

Bakery Algorithm 

• Notation < corresponds to lexicographical order 
– (a,b) is (ticket #, process id )
– (a,b) < (c,d) if a < c or if a = c and b < d
– max (a0,…, an-1) is a number, k, such that k ≥ ai

for i = 0, …, n – 1
• Shared data  // initialization

boolean choosing[n]; // all false
int nr [n]; // all 0 
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High-level Description of Algorithm

• Indicate that you are choosing a number
• Choose a number

– This may occur concurrently and therefore 
result in two chosen numbers being equal 
(i.e., kind of race condition)

• Indicate that you have completed choosing a 
number

• Select the process with the smallest number 
to proceed into the critical section
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Bakery Algorithm: Process Pi

do { 
choosing[i] = true;   // indicate choosing a number
nr[i] = max( nr[0], nr[1], …, nr[n – 1] ) + 1;
choosing[i] = false;   // has chosen a number
for (j = 0; j < n; j++) { // process with smallest nr.

while (choosing[j]) ; // wait if Pj chooses a nr
while (  (nr[j] != 0) && ((nr[j], j) < (nr[i],i))  );

}
critical section

nr[i] = 0;
remainder section

} while (TRUE);

{

If Pj has a number, 
check it out 

Is it smaller
than my own nr.?
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Why May Two Numbers Be Equal?

Nr[0] = max(0, …0) 

+ 1

= 1

Nr[k] = max(0, …0) 

+ 1
= 1

If this happens concurrently both numbers may be equal

Context switch

Both are equal to 1 at this point.
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Bakery Algorithm (without choosing)

do { 
nr[i] = max( nr[0], nr[1], …, nr[n – 1] ) + 1;
for (j = 0; j < n; j++) {
while (  (nr[j] != 0) && ( (nr[j], j ) < ( nr[i],i) )  ) ;

}
critical section

nr[i] = 0;
remainder section

} while (TRUE);
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Problem Case

nr[0] = max(0, …0) … nr[1] = max(0, …0) +1
= 1

Critical section= 1
Does P1 have a smaller number? Both are 1.
Well, break ties by looking at PID (0 & 1, here),

(nr[1],1) < (nr[0],0) //  (1,1) < 1,0) - false
therefore enter CS (violation of mutual exclusion)

Context switch

Context switch

Critical section Critical section

nr[0]=0!
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Adding choosing[i] back in

choosing[0] = true
nr[0] = max(0, …0) …

choosing[1] = true
nr[1] = max(0, …0) +1

= 1

for (…)
while (choosing[i]);

Here, we would have
waited for P0 to choose

a number.

Then we would have let
P0 proceed into its 

CS first

while (  …
( (nr[0], 0 ) < ( nr[1],1) )  ) ;

//      (1,0)         <  (1,1)  - true
// therefore busy wait



Binary Semaphore
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Two Types of Semaphores

• Counting semaphore – integer value can 
range over an unrestricted domain.

• Binary semaphore – integer value can 
range only between 0 and 1; can be 
simpler to implement.

• Is a binary semaphore the same as a lock?
• Can we implement a counting 

semaphore S as a binary semaphore?
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Implementing S as a Binary Semaphore

• Data structures:
binary-semaphore S1, S2;
int C:  

• Initialization:
S1 = 1
S2 = 0
C = initial value of semaphore S
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Implementing S
Wait(C) operation:

wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);          }

signal(S1);

Signal(C) operation:
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);
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Synchronization Mechanisms Summary

• Race conditions
• Semaphores (binary, counting)

– Enforce mutually exclusive use of resources
– Enforce arbitrary execution patterns (e.g., sequential or 

ordering constraints)
– Enforce synchronization constraints (e.g., full, empty, 

readers/writers constraint)
• Locks and mutexes

– Enforce mutually exclusive use of resources, exclusively
• Condition variables

– Enforce waiting for events and conditions (e.g., value of 
data)
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Synchronization Mechanisms Summary
• Monitors (& critical region construct)

– Higher-level synchronization primitives
– Condition variables introduced in this context

• Disabling of interrupts to enforce atomicity
• Test-and-Set Instruction
• Classical problems

– Bounded buffer problem
– Dining Philosophers problem
– Reader Writers problem (reader priority)
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Outlook

• Inter-process communication
• OS Architecture
• Scheduling
• Memory management
• …



Critical Region Construct
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Critical Region Construct

• High-level synchronization construct
• A shared variable v of type T, is declared as:

v: shared T
• Variable v accessed only inside statement

region v when B do S
where B is a Boolean expression.

• While statement S is being executed, no 
other process can access variable v. 
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Critical Regions

• Regions referring to the same shared 
variable exclude each other in time.

• When a process tries to execute the region 
statement, the Boolean expression B is 
evaluated. 
– If B is true, statement S is executed. 
– If it is false, the process is delayed until B

becomes true and no other process is in the 
region associated with v.



ECE 344 Operating Systems 116

Example – Bounded Buffer

• Shared data:

struct buffer {
int pool[n];
int count, in, out;

}
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Bounded Buffer Producer Process

• Producer process inserts nextp into the 
shared buffer

region buffer when( count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

}



ECE 344 Operating Systems 118

Bounded Buffer Consumer Process

• Consumer process removes an item from the 
shared buffer and puts it in nextc

region buffer when (count > 0) {
nextc = pool[out];
out = (out+1) % n;
count--;

}


