PADRES (Publish/Subscribe Applied to Distributed Resource Scheduling) is an enterprise-grade event driven infrastructure designed for large-scale system management applications.

Applications Enabled

- Inter-enterprise supply chain management
- Distributed event management
- Business activity monitoring
- Business process execution
- SLA monitoring and management
- Distributed system management and control
- Data management in RFID-based systems
- Sensor network management
- Distributed surveillance and sensor fusion

Example

Unpredictable, asynchronous, distributed events in supply chain and logistic applications are easily handled with publish/subscribe middleware.

Summary

Enterprise applications are often based on tightly coupled, centralized architectures. This results in performance bottlenecks, single points of failures, and poor response to changing requirements. The PADRES system provides a secure, scalable, and resilient infrastructure for loosely coupled applications, and allows flexibility in reacting to changing business and technological requirements.

- Reliable and secure business process execution in Service-Oriented Architectures (SOA) and Event-Driven Architectures (EDA)
- Distributed Enterprise Service Bus (ESB) for scalable application messaging integration
- Flexible and open infrastructure for global business intelligence management and large-scale, distributed business activity monitoring
- Robust and enterprise-grade event management supporting diverse application domains
- Powerful middleware for building a real-time event-driven enterprise

Contact Info

Research on the PADRES project is conducted by the Middleware Systems Research Group (MSRG) at the University of Toronto.

E-mail padres@microsoft.ca
Website padres.msrsg.utoronto.ca

Sponsors

© Middleware Systems Research Group (MSRG) 2007
Overview

An enterprise-grade event management infrastructure

- Designed for flexibility and responsiveness to changing business and technological requirements

Distributed content-based publish/subscribe system

- Intelligent rule-based routing and scalable matching
- Powerful correlation of future and historic publications
- Automatic failure detection, recovery and dynamic load balancing
- Flexible security framework and encrypted message routing
- Distributed system administration and monitoring

Integrated system and process management

- Decentralized transformation, deployment and execution
- Distributed monitoring and control
- Goal-oriented resource discovery and scheduling

Content-based Publish/Subscribe

A PADRES overlay network consists of brokers and clients. Brokers use content-based message routing to provide scalable and reliable ESB infrastructure services. Clients are application components that interact through the overlay using the publish/subscribe paradigm.

Benefits

- Simplifies IT development and maintenance by decoupling enterprise components
- Supports sophisticated interactions among components using expressive subscription languages - going beyond the limits of topics
- Allows fine-grained queries and event management
- Achieves scalability with in-network filtering and processing

Features

Enterprise-grade features

- Complex, in-network event detection
- Failure detection and recovery
- Dynamic load-balancing
- Content-based policy and security framework
- Unified future and historic data access

PADRES features

- Powerful content-based routing
- Graphical system monitor
- Flexible client binding support (Native, RMI, JMS, Web-based AJAX)
- Standards-based proof-of-concept workflow execution engine (BPEL and Web-Services)

Project roadmap

- Establish open source license, model, and distribution
- Serve as reference implementation for Web services Brokered Notification specification
- Support for Advanced Message Queuing Protocol (AMQP) specification
- Establish emulation testbed for rapid prototyping and testing
- Support Web-based broker management interface

The publish/subscribe paradigm: (1) publishers advertise a template of their event space, (2) subscribers subscribe to events of interest, and (3) publications are routed to interested subscribers.