\qquad
\qquad
[6] Q1. This question concerns transistor-level circuit design of digital logic gates.

University of Toronto

Faculty of Applied Science and Engineering

Edward S. Rogers Sr. Department of Electrical and Computer Engineering

Final Examination

ECE 241F - Digital Systems

Examiners: S. Brown, J. Rose, K. Truong and B. Wang
December 12, 2005

Duration: 2.5 Hours
ANSWER ALL QUESTIONS. USE ONLY THESE SHEETS, USING THE BACKS IF NECESSARY.

- Exam Type D, these specific aids allowed:
i. Original Versions (no photocopies) of the course text, Fundamentals of Digital Logic with Verilog Design, by Brown \& Vranesic, ISBN 0-07-282315-1.
ii. One 8.5×11 " two-sided aid sheet
- The amount of marks available for each question is given in square brackets [].

LAST NAME: \qquad

FIRST NAME: \qquad

STUDENT NUMBER: \qquad
$\left.\begin{array}{lll}\text { Lecture Section: } & \left.\begin{array}{ll}\text { Section 01 (Rose) } & {[}\end{array}\right] \\ & \text { Section 02 (Wang) } & {[}\end{array}\right]$

Question	$\mathbf{1}$	2	3	4	5	6	7	8	9	Total
Maximum Mark	6	5	4	8	10	8	12	8	9	70
Mark Obtained										

(a) Write the logic function for \mathbf{y}, the output of the circuit below, in terms of $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ and \mathbf{e}.

ANSWER:

\qquad
\qquad
\qquad
\qquad
(b) Describe the operation of the circuit below in the simplest way.

ANSWER:

[5] Q2. Finite State Machine State minimization. Consider the following state diagram for a state machine that has x as its input and \mathbf{z} as its output:

(a) Give state transition table corresponding to this state diagram.

Present state	Next state		Output (z)
	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$	
\mathbf{A}			
B			
C			
D			
E			
F			
G			

\qquad -
(i) The minimum number of states $=$
(ii) The states that are equivalent in the original state machine are:

WORKING SPACE:

Last Name \qquad Student Number
[4] Q3. Complete the timing diagram for the circuit below for the outputs a, b, cand d. Assume that all the D-flip flops are initially cleared to 0 . Assume that all delays are zero (i.e. you are to provide the functional simulation of the circuit, rather than timing simulation).

\qquad
[8] Q4. Consider the following cross-coupled exclusive NOR circuit with inputs A and B and outputs C and D:

Describe the behavior of the circuit when $\mathrm{A}=1$ and $\mathrm{B}=0$ using words and by completing the iming diagram below. For the timing diagram assume that the propagation delay of the Exclusive OR gates are 1 ns , and that the initial values for the circuit nodes are: $A=0, B=0, C=0$ and $D=1$ Your answer must consist of a very short written description of the behavior of the circuit and the timing diagram.

Timing Diagram:

Written Description of Behavior:

[10] Q5. This question is about building a digital circuit that will add three 4-bit numbers, X, Y and Z . The individual bits of these three numbers will be represented as $\mathbf{X}_{\mathbf{i}}, \mathbf{Y}_{\mathbf{i}}$, and $\mathbf{Z}_{\mathbf{i}}$. To illustrate this clearly, the addition of three 4-bit numbers would be written on papers as follows:

		x_{3}	x_{2}	x_{1}	x_{0}
		y_{3}	y_{2}	y_{1}	y_{0}
	+	z_{3}	z_{2}	z_{1}	Z_{0}
	S_{4}	S_{3}	S_{2}	S_{1}	S_{0}

Recall the design of a Full Adder (FA) building block described in class (and on page 239 of the text) which is used as a building block to create an adder that adds two N-bit numbers. You will design the complete circuit in two steps, part (a) and (b) below.
(a) Using only FA building blocks give the design of a new building block that performs the function needed to implement the box surrounding $\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$, and s_{2}, (shown above). You will call this building block TNFA and use it in part (b) below. It computes the sum bit $\mathbf{S}_{\mathbf{i}}$, corresponding to the three inputs $\mathbf{X}_{\mathbf{i}}$, $\mathbf{Y}_{\mathbf{i}}$, and $\mathbf{Z}_{\mathbf{i}}$ and any other inputs and outputs that are necessary in the context of the full adder.
\qquad

Last Name

Student Number \qquad
(b) Using the building block of part (a), the TNFA, and any other logic gates you deem necessary give the design of the three 4 -bit number adder (which produces a 6 -bit sum, $\mathrm{s}_{5} \ldots \mathrm{~s}_{0}$). Your answer should show all the inputs (i.e. all $\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}$ and $\mathrm{Z}_{\mathrm{i}}, \mathrm{i}=0 \ldots 3$ and any carry inputs) and outputs necessary to make the complete adder function correctly.
[8] Q6. For the finite state machine state diagram given below:

(a) Fill in the blanks in the following state assignment (encoding) table. Assume D flip-flops are used to implement this FSM. Q_{1} and Q_{0} are the outputs of the flip-flops, and therefore, represent the current state. D_{1} and D_{0} are the inputs of the flip-flops, and therefore, represent the next state.
(S_{1})
(S_{2})
(S4)

Current State	Next	State	Outputs	
	$\mathrm{x}=0$	$\mathrm{x}=1$		
$\mathrm{Q}_{1} \quad \mathrm{Q}_{0}$	$\mathrm{D}_{1} \quad \mathrm{D}_{0}$	$\mathrm{D}_{1} \quad \mathrm{D}_{0}$	$\begin{array}{lll}\mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{Z}_{3}\end{array}$	Z_{4}
00				
$0 \quad 1$				
10				
11				

\qquad Student Number \qquad

Q6, continued.
(b) Write the logic expressions in the simplest (optimized) sum-of-product (SOP) form for all the nextstate variables (D_{1} and D_{0}) and the outputs ($\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ and z_{4}).

Answer:
$\mathrm{D}_{1}=$
$\mathrm{D}_{0}=$
$\mathrm{z}_{1}=$
$\mathrm{z}_{2}=$
$\mathrm{z}_{3}=$
$\mathrm{Z}_{4}=$
Working Space:
[12] Q7. Your boss, Mr. Touf, asks you to design a "temperature averaging" system. The system captures a binary number corresponding to a temperature reading every hour. Two hours after the system is turned on, it will have captured three temperature readings. Then, it will calculate and display the first average temperature ($\mathrm{T}_{\text {Avg }}$) of those three readings as a binary number. Subsequently, it will display the $\mathrm{T}_{\text {Avg }}$ of the three most recent temperature readings.

For example (Note: numbers would appear as binary in the system but are shown in decimal here):

Time elapsed	0 h	1 h	2 h	3 h	4 h	5 h	6 h
temperature reading	22	23	24	19	17	21	22
$\mathrm{~T}_{\text {Avg }}$	0	0	23	22	20	19	20

The company has the following digital hardware units available for this design project:

A junior engineer has already worked on this project and left you with an incomplete design. Your task is twofold: a) to complete the Data path diagram; and b) to draw a state diagram for the FSM, which will send out the appropriate signals to control the operation of the system represented by your completed Data path diagram. Assume that the temperature reading input signal is synchronized to the Clock.

You will need the following specifications of the FSM: the "Capture" signal tells the system to take a new Temperature Reading; and the "Display" signal tells the system to display a new $\mathrm{T}_{\text {Avg }}$.
(a) Complete the Data path diagram (given below), using only the digital hardware units given above in the dashed box.
\qquad
\qquad
[8] Q8. Consider the Verilog code shown below, which describes a counter similar to ones described in Section 7.13 of the textbook.

```
module thing (R, M, Clock, L, E, Q);
    input [1:0] R, M;
    nput Clock, L, E
    utput [1:0] Q
    reg [1:0] Q;
    always@ (posedge Clock)
    begin
        if (L == 1)
        Q <= R;
    else if (E == 1)
        if (Q == M)
            Q}<=0
        else
        Q}<=Q + 1
    end
endmodule
```

An incomplete circuit diagram that corresponds to this code is shown below. You are to complete the circuit diagram. Make the circuit as simple as you can.

[9] Q9. The circuit shown below produces the sum $S=X+Y$, with the carry-out C_{4}. To answer the questions below, assume the following flip-flop timing parameters: Set-up time, $\mathrm{t}_{\mathrm{su}}=0.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{rd}}=0.3$ ns (t_{rd} is also called $\mathrm{t}_{\text {clock-to-Q }}$), Hold Time $\mathrm{t}_{\mathrm{h}}=0.25 \mathrm{~ns}$. Also assume the following gate delays: exclusive-OR delay $=1.6 \mathrm{~ns}$, AND delay $=1.55 \mathrm{~ns}$, and multiplexer delay $=1.65 \mathrm{~ns}$.

a) For this part, consider only the path through the circuit from the X_{0} flip-flop to the S_{0} flip-flop (this path is highlighted with a thick line in the figure). Considering only this path through the circuit, and path is highlighted with a thick line in the figure). Considering only this path through the circuit,
ignoring the rest of the circuit, what is the maximum frequency of the Clock input for which the circuit would work reliably? Derive your answer in the space below (show your work).

ANSWER:

Last Name

Student Number
Q9, cont'd
b) For this part, you are to consider the whole circuit shown in the figure. If the data inputs are
$X_{3} X_{2} X_{1} X_{0}=1111$ and $Y_{3} Y_{2} Y_{1} Y_{0}=1111$, how much propagation time in total is needed from when a
positive clock edge occurs to when the carry-out C_{4} is produced? Derive your answer in the space
below (show your work). Hint: think about which multiplexers produce the carry-out.
ANSWER:
c) Again consider the whole circuit shown in the figure. If the data inputs are $X_{3} X_{2} X_{1} X_{0}=0111$ and
$Y_{3} Y_{2} Y_{1} Y_{0}=1011$, how much propagation time in total is needed from when a positive clock edge
occurs to when the carry-out C_{4} is produced? Derive your answer in the space below (show your
work). Hint: think about which multiplexers produce the carry-out.
ANSWER:

