
Page 1 of 19

University of Toronto

Faculty of Applied Science and Engineering
Edward S. Rogers Sr. Department of Electrical and Computer Engineering

Final Examination
ECE 241F - Digital Systems

Examiners: S. Brown, J. Rose, and B. Wang

December 2007

Duration: 2.5 Hours

 ANSWER ALL QUESTIONS. USE ONLY THESE SHEETS, USING THE BACKS IF
NECESSARY.

• Exam Type D, these specific aids allowed:

i. Original Versions (no photocopies) of the course text, Fundamentals of Digital Logic
with Verilog Design (1st or 2nd edition), by Brown & Vranesic, ISBN 0-07-282315-1.

ii. One 8.5 x 11” two-sided aid sheet.

• The amount of marks available for each question is given in square brackets [].

LAST NAME: ___

FIRST NAME: ___

STUDENT NUMBER: ___

Question 1 2 3 4 5 6 7 8 9 Total
Maximum
Mark

12 10 10 12 8 8 8 8 10 86

Mark
Obtained

Page 2 of 19

 [12] Q1. For this question you are to use algebraic manipulation to prove some Boolean relations using

the identities in the textbook. The identities are in Chapter 2 of the book and are labeled from
10a to17b. Note that identity 17, called consensus, is listed in the second edition of the
textbook, but is not shown in the first edition. It is:

 zxxyzxyzxy +=++ 17a
))(())()((zxyxzxzyyx ++=+++ 17b

 An example problem and solution is given below. Note that

Example:

(e.g.) The following Boolean relation can be proved using algebraic manipulation in two steps, using

one identity in each step. Specify which identity is used in each of your two steps.

 Relation: xzxzxyx =++)(

 Proof: zxzxyx ++)(Identity Used

 zxzx +=)((13a)

 x= (14a)

ANSWER PARTS (i) to (v) below.

(i) The following Boolean relation can be proved using algebraic manipulation in one step, using

exactly one identity. Specify which identity can be used.

 Relation: zyxwzxwyxw +⊕=+⊕⋅+⊕)())(())((

 Proof:))(())((zxwyxw +⊕⋅+⊕ Identity Used

 = ()

(ii) The following Boolean relation can be proved using algebraic manipulation in two steps, using

one identity in each step. Specify which identity is used in each of your two steps.

 Relation: yxyxyzxz +=+++

 Proof: yxyzxz +++ Identity Used

 = ()

 = ()

Page 3 of 19

(iii) The following Boolean relation can be proved using algebraic manipulation in two steps, using

one identity in each step. Specify which identity is used in each of your two steps.

 Relation: zyxzyx ⋅+=+)(

 Proof:)(zyx + Identity Used

 = ()

 = ()

 (iv) The following Boolean relation can be proved using algebraic manipulation in three steps,

using one identity in each step. Specify which identity is used in each of your three steps.

 Relation: zxwyxwzxwyzxywy ⋅++⋅+=⋅+++)()()(

 Proof: zxwyzxywy)(⋅+++ Identity Used

 = ()

 = ()

 = ()

(v) The following Boolean relation can be proved using algebraic manipulation in three steps,

using one identity in each step. Specify which identity is used in each of your three steps.

 Relation: yxzyxzyx ⋅=+⋅+⋅))(()(

 Proof:))(()(zyxzyx +⋅+⋅ Identity Used

 = ()

 = ()

 = ()

Page 4 of 19

[10] Q2. Consider the logic ∑=)14,13,12,11,10,9,7,6,5,2,1,0(),,,(mzyxwf . A Karnaugh map for f is
shown below.

 w x

y z

 0 0 0 1 1 1 1 0

 0 0 1 0 1 0

 0 1 1 1 1 1

 1 1 0 1 0 1

 1 0 1 1 1 1

You are to derive a number of covers for f from its K-map, but not necessarily of the lowest
cost. All covers are required to be either sum-of-products or product-of-sums. The cost is
calculated as (the number of gates) + (the number of inputs to gates). Inversion of an input
variable has a cost of zero.

(i) Derive three expressions for f that each has a cost of 25. For the first two answers below we give

part of the solution and you have to fill in the rest. For the third answer (on the next page), derive
the whole solution yourself.

1) +⋅⋅+⋅⋅= yxwyxwf __

2) +⋅⋅+⋅⋅= yxwzxwf __

(You can use the K-map given at the top of this page and the one below for rough work)

 w x

y z

 0 0 0 1 1 1 1 0

 0 0 1 0 1 0

 0 1 1 1 1 1

 1 1 0 1 0 1

 1 0 1 1 1 1

Page 5 of 19

3) =f ___

(You can use the K-map given below for rough work)

 w x

y z

 0 0 0 1 1 1 1 0

 0 0 1 0 1 0

 0 1 1 1 1 1

 1 1 0 1 0 1

 1 0 1 1 1 1

(ii) Derive two expressions for f that each has a cost of 31. For the answers below we give part of the
solution and you have to fill in the rest.

1) +⋅⋅+⋅⋅= zyxzxwf __

2) +⋅⋅+⋅⋅= zywzywf __

(You can use the two K-maps given on the next page for rough work)

Page 6 of 19

K-MAPS for ROUGH WORK

 w x

y z

 0 0 0 1 1 1 1 0

 0 0 1 0 1 0

 0 1 1 1 1 1

 1 1 0 1 0 1

 1 0 1 1 1 1

 w x

y z

 0 0 0 1 1 1 1 0

 0 0 1 0 1 0

 0 1 1 1 1 1

 1 1 0 1 0 1

 1 0 1 1 1 1

Page 7 of 19

[10] Q3. Consider a sequential digital system with an input x and a clock, and the output z. Starting from

an initial reset state, this system examines the value of x in three successive clock cycles, and if
exactly two “1” bits are detected out of these three bits, then the system has to set the output z to
1 in the following clock cycle. Otherwise z has to be 0. The system then resumes checking the
next 3-bits of the data stream x. You are to give a Moore-type state diagram for this FSM. You
can assume that the system is reset to start the process. Use as few states as possible in your
design.

ANSWER:

Page 8 of 19

[12] Q4. Consider the Moore-type finite state machine, with input x and output z, specified by the state

assigned table given below:

Current State Next State
Output, z

Name

y2 y1 y0

x = 0 x = 1
Y2 Y1 Y0 Y2 Y1 Y0

A 000 000 001 0
B 001 001 100 0
C 010 010 001 0
D 011 001 010 1
E 100 011 100 1

(i) Draw the State Diagram that corresponds to this table.

ANSWER:

Page 9 of 19

Q4, continued.

(ii) You are to derive an optimized portion of the gate-level design of this machine: the output

logic function, and the next state logic for only state bit Y0. Using another copy of the state
assigned table given below and the two Karnaugh maps determine the optimized sum-of-
products expression for the output logic and the next-state logic for state bit Y0.

Current State Next State
Output, z

Name

y2 y1 y0

x = 0 x = 1
Y2 Y1 Y0 Y2 Y1 Y0

A 000 000 001 0
B 001 001 100 0
C 010 010 001 0
D 011 001 010 1
E 100 011 100 1

ANSWER:

Optimized logic expression for the output logic, z:

z = ___

Optimized logic expression for the next state bit Y0:

Y0 = ___

Page 10 of 19

(iii) Give a circuit diagram for this FSM that shows all three state flip-flops, but just the next-state

logic for state flip-flop y0 and the output logic.

ANSWER:

Page 11 of 19

[8] Q5. Consider the CMOS circuits below.

(i) For the CMOS circuit shown below, write a logic expression for the output f.

VDD

f

x3

x2

x1

ANSWER: f = __

__

Page 12 of 19

ii) The pull-up network (PUN) of a logic function is given below. Complete the CMOS logic network by
drawing the correct pull-down network (PDN) in the same diagram.

VDD

x1

x2

x3

f

Page 13 of 19

[8] Q6. Consider the logic function f (a, b, c) = ∑m(2, 4, 6, 7)

(i) Draw a circuit that implements the function f using only: one 2-to-1 multiplexer, one 2-input AND
gate, and one 2-input OR gate.

(ii) Draw a circuit that implements the function f using only 2-to-1 multiplexer(s) and/or 4-to-1
multiplexer(s) and use as few as possible.

Page 14 of 19

 [8] Q7. Consider the circuit below for which the maximum and minimum propagation delay
parameters of the gates and flip-flops are given in the table, and for which the setup time (tsu)
of the flip-flops is 3 ns; the hold time (th) is 2 ns.

Timing
Parameter

Propagation
Delay (ns)
Max Min

tINV 1 0.5
tNAND 2 1
tAND 3 1.5
tOR 4 2

tClock-to-Q 2 1

(i) What is the minimum period that the clock in the above circuit can have at which this circuit

will operate correctly? Show how you arrive at your answer.

ANSWER:

Page 15 of 19

Q7, continued

(ii) Are the hold time requirements for flip-flops FF3 and FF4 met? Show how you arrive at your

answer.

ANSWER:

Page 16 of 19

[8] Q8. A 3-bit ripple-carry adder is built using 3-input lookup tables (LUTs) as illustrated below. The

gray rectangles in the detailed FA block represent the 3-input LUTs.

FA

Y2 X2

S2S3

C3

FA

Y1 X1

S1

C2

FA

Y0 X0

S0

C1 C0

Si

Yi Xi

CiCi+1
FA

(i) Assume that the propagation delay through a 3-input LUT is 3ns and that all inputs to this adder (Xi,
Yi and C0) arrive at the same time. How long does it take to compute the 4-bit sum? Show how you
arrive at your answer, and be sure to identify all critical paths.

ANSWER:

Page 17 of 19

Q8, continued.

(ii) Give the design of the fastest possible 3-bit adder that can be implemented using 5-input LUTs.

Assume that all inputs arrive at the same time, and that the propagation delay of a 5-input LUT is
4 ns. You should also try to use as few 5-input LUTs as possible.

Draw a schematic of your circuit. Label the inputs and outputs of the 5-LUTs, and indicate the
function of each LUT by writing a logic expression. Your expression can use AND, OR, NOT,
and XOR operations.

Indicate clearly: (1) How long it takes (in ns) for your adder to compute the sum.

 (2) How many 5-input LUTs you used (i.e. give the count).

ANSWER:

Page 18 of 19

[10] Q9. Draw a schematic diagram using only D flip-flops, AND, OR, and NOT gates that corresponds

to the Verilog code given below. Show the inputs SW and KEY, and the outputs LEDR on
your schematic.

 module some_thing (SW, KEY, LEDR);
 input [1:0] SW ;
 input [0:0] KEY ;
 output [3:0] LEDR;

 wire thing_1 = KEY[0];
 wire thing_2 = SW[0];

 wire [3:0] Z;
 wire [3:0] edgar;

 assign edgar[0] = SW[1];
 sub_circuit U1 (edgar[0], thing_1, thing_2, Z[0]);
 assign edgar[1] = Z[0] & edgar[0];
 sub_circuit U2 (edgar[1], thing_1, thing_2, Z[1]);
 assign edgar[2] = Z[1] & edgar[1];
 sub_circuit U3 (edgar[2], thing_1, thing_2, Z[2]);
 assign edgar[3] = Z[2] & edgar[2];
 sub_circuit U4 (edgar[3], thing_1, thing_2, Z[3]);

 assign LEDR = Z;

endmodule

module sub_circuit(in, edge_1, edge_2, out);
 input in, edge_1, edge_2;
 output reg out;

 always @(posedge edge_1)
 if (edge_2 == 1'b0)
 out <= 1'b0;
 else if (in)
 out <= ~out;

endmodule

PLEASE SHOW YOUR SCHEMATIC ON THE NEXT PAGE.

Page 19 of 19

SHOW SCHEMATIC HERE:

