
SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 1 of 18

University of Toronto

Faculty of Applied Science and Engineering
Edward S. Rogers Sr. Department of Electrical and Computer Engineering

Final Examination
ECE 241F - Digital Systems

Examiners: S. Brown, J. Rose, and B. Wang

December , 2007

Duration: 2.5 Hours
 ANSWER ALL QUESTIONS. USE ONLY THESE SHEETS, USING THE BACKS IF

NECESSARY.

• Exam Type D, these specific aids allowed:
i. Original Versions (no photocopies) of the course text, Fundamentals of Digital Logic

with Verilog Design (1st or 2nd edition), by Brown & Vranesic, ISBN 0-07-282315-1.
ii. One 8.5 x 11” two-sided aid sheet.

• The amount of marks available for each question is given in square brackets [].

LAST NAME: ___

FIRST NAME: ___

STUDENT NUMBER: ___

Question 1 2 3 4 5 6 7 8 9 Total
Maximum
Mark

12 10 10 12 8 8 8 8 10 86

Mark
Obtained

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 2 of 18

[12] Q1. For this question you are to use algebraic manipulation to prove some Boolean relations using

the identities in the textbook. The identities are in Chapter 2 of the book and are labeled 10a,
10b ... 17a, and 17b. Note that identity 17, called consensus, is not in the first edition of the
textbook. It is:

 zxxyzxyzxy +=++ 17a
))(())()((zxyxzxzyyx ++=+++ 17b

 An example problem and solution is given below. Note that

Example:

(e.g.) Prove the following Boolean relation using algebraic manipulation in two steps, using exactly

two identities. Specify which identity is used in each of your two steps.

 Relation: xzxzxyx =++)(

 Proof: zxzxyx ++)(Identity Used

 zxzx +=)((13a)

 x= (14a)

ANSWER PARTS (i) to (vi) below.

(i) The following Boolean relation can be proved using algebraic manipulation in one step, using

exactly one identity. Specify which identity can be used.

 Relation: zyxwzxwyxw +⊕=+⊕⋅+⊕)())(())((

 Proof:))(())((zxwyxw +⊕⋅+⊕ Identity Used

 zyxw +⊕=)((12b) 1 mark

(ii) Prove the following Boolean relation using algebraic manipulation in two steps, using exactly

two identities. Specify which identity is used in each of your two steps.

 Relation: yxyxyzxz +=+++

 Proof: yxyzxz +++ Identity Used

 yxzyx +++=)((12a) or yyzx ++= (13a) 1 mark

 yx += (13a) or yx += (13a) 1 mark

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 3 of 18

(iii) Prove the following Boolean relation using algebraic manipulation in two steps, using exactly

two identities. Specify which identity is used in each of your two steps.

 Relation: zyxzyx ⋅+=+)(

 Proof:)(zyx + Identity Used

)(zyx ++= (15a) 1 mark

 zyx ⋅+= (15b) 1 mark

 (iv) Prove the following Boolean relation using algebraic manipulation in three steps, using exactly

three identities. Specify which identity is used in each of your three steps.

 Relation: zxwyxwzxwyzxywy ⋅++⋅+=⋅+++)()()(

 Proof: zxwyzxywy)(⋅+++ Identity Used

 zxwyzyxw)()(⋅+++= (12a) 1 mark

 zxwyzyxw)()(++++= (15a) 1 mark

 zxwyxw)()(+++= (17a) 2 marks

(v) Prove the following Boolean relation using algebraic manipulation in three steps, using exactly

three identities. Specify which identity is used in each of your three steps.

 Relation: yxzyxzyx ⋅=+⋅+⋅))(()(

 Proof:))(()(zyxzyx +⋅+⋅ Identity Used

))(()(zyxzyx ++⋅+⋅= (15a) 1 mark

)()(zyxzyx +⋅⋅+⋅= (15b) 1 mark

 yx ⋅= (14b) 1 mark

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 4 of 18

 [10] Q2. Consider the logic ∑=)14,13,12,11,10,9,7,6,5,2,1,0(),,,(mzyxwf . A Karnaugh map for f is

shown below.

 You are to derive a number of covers for f from the above K map, but not necessarily of the

lowest cost. All covers are required to be either sum-of-products or product-of-sums. The cost is
calculated as (the number of gates) + (the number of inputs to gates). Inversion of an input
variable has no cost.

(i) Derive three expressions for f that each has a cost of 25. For the first two answers below we give

part of the solution and you have to fill in the rest. For the third answer (on the next page), derive
the solution yourself.

1) +⋅⋅+⋅⋅= yxwyxwf zxwxzwzy ++ (2 marks; -1 for each wrong term, or extra term)

2) +⋅⋅+⋅⋅= yxwzxwf zwxyxwzy ++ (2 marks; -1 for each wrong term, or extra term)

(You can use the K-map below for rough work)

 w x

y z

 0 0 0 1 1 1 1 0

 0 0 1 0 1 0

 0 1 1 1 1 1

 1 1 0 1 0 1

 1 0 1 1 1 1

 w x

y z

 0 0 0 1 1 1 1 0

 0 0 1 0 1 0

 0 1 1 1 1 1

 1 1 0 1 0 1

 1 0 1 1 1 1

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 5 of 18

3)))()()((zyxwzyxwzyxwzyxwf ++++++++++++= (2 marks; -1 for each wrong

 term, or extra term)

(You can use the K-map below for rough work)

(ii) Derive two expressions for f that each has a cost of 31. For the answers below we give part of the
solution and you have to fill in the rest.

1) +⋅⋅+⋅⋅= zyxzxwf yxwxywzyxzxw +++ (2 marks; -1 for each wrong term,

 or extra term)

2) +⋅⋅+⋅⋅= zywzywf xzwyxwywxzxw +++ (2 marks; -1 for each wrong term,

 or extra term)

(You can use the two K-maps on the next page for rough work)

 w x

y z

 0 0 0 1 1 1 1 0

 0 0 1 0 1 0

 0 1 1 1 1 1

 1 1 0 1 0 1

 1 0 1 1 1 1

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 6 of 18

K-MAPS for ROUGH WORK

 w x

y z

 0 0 0 1 1 1 1 0

 0 0 1 0 1 0

 0 1 1 1 1 1

 1 1 0 1 0 1

 1 0 1 1 1 1

 w x

y z

 0 0 0 1 1 1 1 0

 0 0 1 0 1 0

 0 1 1 1 1 1

 1 1 0 1 0 1

 1 0 1 1 1 1

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 7 of 18

[10] Q3. A system checks an incoming serial bit stream, x. It examines the value of x in three successive

clock cycles, and if exactly two “1” bits are detected, then the system has to set an output z to 1
in the following clock cycle. Otherwise z has to be 0. The system then resumes checking the
next 3-bits of the data stream x. You are to give a Moore-type state diagram for this FSM. You
can assume that the system is reset to start the process. Use as few states as possible in your
design.

ANSWER:

A
Z=0

E
Z=0

F
Z=0

B
Z=0

C
Z=0

H
Z=1

D
Z=0

G
Z=0

0

0
0

0
0

0

0 1

1

1

1

1

1
1

-1 mark for each extra state
-1 mark for each wrong link between states

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 8 of 18

[12] Q4 Consider the Moore-type finite state machine, with input X and output Z, specified by the state

assigned table given below:

Current State Next State
Output, Z

Name

y2 y1 y0

X = 0 X = 1
Y2 Y1 Y0 Y2 Y1 Y0

A 000 000 001 0
B 001 001 100 0
C 010 010 001 0
D 011 001 010 1
E 100 011 100 1

(i) Draw the State Diagram that corresponds to this table.

ANSWER:

Marking Scheme: Worth 4 marks total; -0.5 for every error to max of 4. An error can be a missing arc,

wrongly labeled arc, missing output, or wrongly labeled state. Exceptions – if forget the outputs
entirely, just take off a maximum of 2.

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 9 of 18

Q4, continued.

(ii) You are to determine an optimized portion of the gate-level design of this machine: the output

logic function, and the next state logic for only state bit y0. Using another copy of the state
assigned table given below and the two Karnaugh maps determine the optimized sum-of-
products expression for the output logic and the next-state logic for state bit y0.

Current State Next State
Output, Z

Name

y2 y1 y0

X = 0 X = 1
Y2 Y1 Y0 Y2 Y1 Y0

A 000 000 001 0
B 001 001 100 0
C 010 010 001 0
D 011 001 010 1
E 100 011 100 1

ANSWER:

Optimized Logic Expression for the Output Logic, Z:

Optimized Logic Expression for the State Bit y0:

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 10 of 18

SOLUTION:

y0X 00 01 11 10

00

01

11

10

00 01 11 10

0

1

y2y1 y2y1

S0

Y0 = y0X’ + y2'X’ + y2'y0'X

Z = y2 +y1y0

0

0

0

1

1X

X X

0 0

1 1

0 0

1 1

X

X

X

X

X

X

1

0

Total marks – 5 - 3 for y0 and 2 for Z. Note this table has different labels than the one in the question.

(iii) Give the Circuit Diagram for this FSM that shows all three state flip-flops, but just the next state

logic for state bit S0 and the output logic.

ANSWER:
SOLUTION:

Worth 3 marks – 1 for the three flip-flops, 1 for the next state logic, 1 for output logic
-0.5 for each mistake in each of the three areas.

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 11 of 18

[8] Q5. Consider the CMOS circuits below.

(i) For the CMOS circuit shown below, write the logic expression for the output function, f.

VDD

f

x3

x2

x1

[5])(32121 xxxxxf ++=

ii) The pull-up network (PUN) of a logic function is given below. Complete the CMOS logic network by

drawing the correct pull-down network (PDN) in the same diagram.
Solutions:

VDD

x1

x2

x3

f

VDD

x1

x2

x3

f

[3] 1 marks for each correctly drawn transistor

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 12 of 18

[8] Q6. Consider the logic function f (a, b, c) = ∑m(2, 4, 6, 7)

(i) Implement the function f using one 2-to-1 multiplexer, one 2-input AND gate, and one 2-input OR
gate.

Solutions: f (a, b, c) = ∑m(2, 4, 6, 7) = cbacbacbacba ••+••+••+••
 = () ()abcabbabac +++
 = () ()abcbac ++

[3]

(ii) Implement the function f using only 2-to-1 multiplexer(s) and/or 4-to-1 multiplexer(s) and use as few
as possible.

Solutions: f (a, b, c) = ∑m(2, 4, 6, 7) = cbacbacbacba ••+••+••+••
 = () () () ()10 bacbacbaba •+•+•+•

[5]

a

0
1

c

0
1a

0
1

b

b

f

 4 marks

-1 mark for each extra mux used
-1 mark for each logic gate used

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 13 of 18

 [8] Q7. Consider the circuit below for which the maximum and minimum propagation delay parameters

of the gates and flip-flops are given in the table, and for which the setup time (TSU) of the flip
flops is 3 ns; the hold time (THOLD) is 2 ns.

Timing
Parameter

Propagation
Delay (ns)
Max Min

TINV 1 0.5
TNAND 2 1
TAND 3 1.5
TOR 4 2

TClock-to-Q 2 1

(i) What is the minimum period that the clock in the above circuit can have at which this circuit will
operate correctly? Show how you arrive at your answer.

ANSWER:
Solution:
Must look at path to both FF3 and FF4

 FF3 min = T(clock-to-q) + max(Tinv, Tnand) + Tor + 2 x Tinv + Tsetup
 = 2 + max(2,1) + 4 + 2x1 + 3
 = 2 + 2 + 4 + 2 + 3
 = 13 ns

 FF4 min = T(clock-to-q) + max(Tinv, max(Tinv, Tnand) + Tor) + Tand+ Tsetup
 = 2 + max(1, max(1,2) +4) + 3 + 3
 = 2 + 6 + 3 + 3

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 14 of 18

 = 14ns Which is greater than 13ns, so this is the answer.
Marking scheme – 3 marks for correct answer, 1 more if calculation showing DA is given. Part marks if

some of the correct path is shown.

Q7, continued

(ii) Are the hold time requirements for flip-flops FF3 and FF4 met? Show how you arrive at your

answer.

ANSWER:

SOLUTION:

 FF4 min change = min of Tclock-to-Q + Tinv + AND
 = 1 + 0.5 + 1.5 = 2.5ns >2ns yes

 FF3 min change = min of Tclock-to-Q + min(Tinv,Tnand) + Tor + Tinv + Tinv + AND
 = 1 + min(0.5,1) + 2 + 0.5 +0.5
 = 1 + 0.5 + 2 + 0.5 +0.5
 = 4.5ns > 2ns YES

Both FF’s hold times are not violated.
Total marks – 4, worth 2 each – 1 for answer and 1 for work.

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 15 of 18

[8] Q8. A 3-bit ripple-carry adder is built using 3-input lookup tables (LUTs) as illustrated below. The

gray rectangles in the detailed FA block represent the 3-input LUTs.

FA

Y2 X2

S2S3

C3

FA

Y1 X1

S1

C2

FA

Y0 X0

S0

C1 C0

Si

Yi Xi

CiCi+1
FA

(i) Assume that the propagation delay through a 3-input LUT is 3ns and that all inputs to this adder (Xi,
Yi and C0) arrive at the same time. How long does it take to computer the 4-bit sum? Show how
you arrive at your answer, and be sure to identify all critical paths.

ANSWER:
SOLUTION: Both S3 and S2 have a 3 LUT delay x 3ns = 9ns; 1 for correct answer, 1 for
identifying S3 and S2 as critical.

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 16 of 18

Q8, continued.

(ii) Give the design of the fastest possible 3-bit adder that can be implemented using 5-input LUTs.

Assume that all inputs arrive at the same time, and that the propagation delay of a 5-input LUT is
4ns. You should also try to use as few 5-input LUTs as possible.

Draw a schematic show the labels of the inputs and outputs of the 5-LUTs, and then indicate the
function of the LUT by writing a logic expression. Your expression can employ both ANDs, ORs
and X-OR symbols.

Indicate clearly: (i) How long it takes your adder to compute the sum.

 (ii) How many 5-input LUTs you used (i.e. give the count).

ANSWER:
SOLUTION:

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 17 of 18

[10] Q9. Draw a schematic diagram using only D flip-flops, AND, OR, and NOT gates that corresponds

to the Verilog code given below. Show the inputs SW and outputs LEDR on your schematic.

 module some_thing (SW, KEY, LEDR);
 input [1:0] SW ;
 input [0:0] KEY ;
 output [3:0] LEDR;

 wire thing_1 = KEY[0];
 wire thing_2 = SW[0];

 wire [3:0] Z;
 wire [3:0] edgar;

 assign edgar[0] = SW[1];
 sub_circuit U1 (edgar[0], thing_1, thing_2, Z[0]);
 assign edgar[1] = Z[0] & edgar[0];
 sub_circuit U2 (edgar[1], thing_1, thing_2, Z[1]);
 assign edgar[2] = Z[1] & edgar[1];
 sub_circuit U3 (edgar[2], thing_1, thing_2, Z[2]);
 assign edgar[3] = Z[2] & edgar[2];
 sub_circuit U4 (edgar[3], thing_1, thing_2, Z[3]);

 assign LEDR = Z;

endmodule

module sub_circuit(in, edge_1, edge_2, out);
 input in, edge_1, edge_2;
 output reg out;

 always @(posedge edge_1)
 if (edge_2 == 1'b0)
 out <= 1'b0;
 else if (in)
 out <= ~out;

endmodule

PLEASE SHOW YOUR SCHEMATIC ON THE NEXT PAGE.

SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS SOLUTIONS

Page 18 of 18

SHOW SCHEMATIC HERE:

5 marks total for the D flip-flop details:
 1 mark for D FF itself
 2 marks for synchronous clear (AND gate is fine too)
 2 marks for mux that loads the FF with either Q or !Q

5 marks for overall circuit structure that connects the four FFs together:
 1 mark for the AND gates used as enables between FFs
 1 mark for showing that SW[0] is used as the reset input
 1 mark for showing that SW[1] is used as the counter enable
 1 mark for showing that KEY[0] is used as the clock
 1 mark for showing that LEDR is connected to the FF outputs

