University of Toronto
 Faculty of Applied Science and Engineering Final Examination

ECE 241S - Digital Systems 2003
Examiner: Belinda Wang, Jianwen Zhu
Duration: 2.5 Hours

ANSWER QUESTIONS ON THESE SHEETS, USING THE BACKS IF NECESSARY.

1. No calculator is allowed.
2. Weight for each question is indicated in []. Attempt all questions, since a blank sheet will certainly get a zero.

Last Name:

First Name:

Student Number:

\qquad

Lecture Section:

$$
\begin{array}{ll}
\text { Section } 01 \text { (Zhu) } & \text { [] } \\
\text { Section } 02 \text { (Wang) } & \text { [] }
\end{array}
$$

Maximum grade $=100$

Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
Total	

\qquad ID:

Problem 1 [20] A 2-bit digital output of each of two sensors along an assembly line conveyor belt is proportional to the number of parts that pass by on the conveyor belt in a $30-\mathrm{s}$ period. Design a logic circuit that reports an error if the outputs of the two sensors differ by more than one part per 30-s period.

1. Develop a truth table.
2. Express the error function (f) in SOP form by making use of a K-map.

$f=$
\qquad

$$
I D:
$$

\qquad
3. Use only 4-to-2 and/or 2-to-1 multiplexers, but as fewer as possible to implement the error function f.

Problem 2 [5] Flip-flop and counters.

Draw a timing diagram (four complete clock cycles) for Q_{0}, Q_{1} and Q_{2}. Assume that all initial values are 0 . Note that all flip-flops are negative edge-triggered.

Q_{0}
Q_{1}
Q_{2}

Name: \qquad ID:

Problem 3 [25] Given the state table as follows.

Present State	Next State/Z	
	$\mathrm{x}=0$	$\mathrm{x}=1$
A	$\mathrm{B} / 0$	$\mathrm{G} / 0$
B	$\mathrm{B} / 1$	$\mathrm{H} / 1$
C	F/1	$\mathrm{D} / 0$
D	B/0	$\mathrm{H} / 0$
E	F/1	$\mathrm{D} / 0$
F	F/0	$\mathrm{C} / 1$
G	E/0	$\mathrm{A} / 0$
H	E/0	$\mathrm{A} / 0$

1. Obtain a minimal reduced state table (letting new state A be the block in which the old state A appears and so on).
2. Draw the equivalent state diagram using the reduced states.
3. For the following input sequence (X) with the machine initially in state A , determine the resulting output sequence.

Name:
ID:

\[

\]

Name: \qquad ID:
4. Draw the state-assignment table.
5. Determine the minimum-cost expression for all next state variables and the output (Z).
\qquad
ID:

Problem 4 [10] A synchronous sequential circuit has two input lines, x_{1} and x_{2}, an output line, Z. The data line is x_{1} and x_{2} is reset line. Whenever $x_{2}=1$, the circuit is reset. When x_{2} becomes 0 , the first 4 bits on the data line constitute a message word. The output is to become 1 if the message received is 1010 . At the end of the fourth bit of any word received when $x_{2}=0$, the circuit is to enter a waiting state, where it remains until it is reset and where the output is 0 for any input bits after the fourth bit.

1. Construct an ASM chart.
2. Construct an equivalent state diagram.
