Audio Controller

Audio Controller

Audio Controller

Contents

1 Introduction

2 Controller interface
2.1 Port Descriptions i i i e e e e e e

2.2 Interface description L. e e e
3 Controller operation

4 Audio data format and analog-digital conversion
4.1 Digital to analog conversion Lo e e e e e e e e e e e e e

4.2 Analogtodigital conversion e e e

5 Audio controller demonstration

Audio Controller

List of Figures

1 Audio controller (by default, AUDIO_DATA_WIDTH isequalto32)

Protocol for sending audio data
Protocol for receiving audio data

Digital to analog audio conversion process

wn A W

Analog to digital audio conversion process

Audio Controller

1 Introduction

The audio controller provides a simple interface to the Audio CODEC chip present on the DE2 board. The controller handles the
data transmission to and from the chip. The chip configuration is handled by the separate configuration module. The configuration

module must be instantiated separately when using the audio controller.

This document will describe the interface and operation of the audio controller and give an overview of the audio data format
required to encode the sound waves.

You can download the source code (in Verilog) for the audio controller here.

2 Controller interface

2.1 Port Descriptions

——————Jp| CLOCK_50 AUD_BCLK |efme———pp-
= | AUD_ADCDAT AUD_ADCLRCK |l
————P| reset AUD_DACLRCK |
_} ;
clear_audio_out_memory AUD_ XCK
_b clear_audio_in_memory
AUD_DACDAT _>

— left_channel_audio_out[AUDIO_DATA_WIDTH:1]
ﬁ right_channel_audio_out[AUDIO_DATA_WIDTH:1]
———’ write audio out

audio_out_allowed jr——

Ports for receiving data - Ports for sending data Ports to be connected to the pins

Figure 1: Audio controller (by default, AUDIO_DATA_WIDTH is equal to 32)

Il other ports

The audio controller interface is illustrated in Figure 1, with inputs shown on the left, outputs and bidirectional lines on the right.
Ports are used as follows:

* CLOCK_50 - system clock input, must be SOMHz for the timing control to work properly.

* reset - the active-high reset.

e AUD_ADCDAT, AUD_DACDAT, AUD_BCLK, AUD_ADCLRCK, AUD_DACLRCK, I2C_SDAT, I2C_SCLK and AUD_XCK -

off-chip lines to be connected to the correspondingly named pins, as defined in this file.

* clear_audio_in_memory - clear the audio input buffer.

* clear_audio_out_memory - clear the audio output buffer.

PORTS FOR RECEIVING DATA

e left_channel_audio_inand right_channel_audio_in - Audio data received from the external source.

file:../avconf/avconf.html
file:src/Audio_Controller.zip
file:src/Audio_Controller.zip
file:src/Audio_Controller.zip
file:../DE2_pin_assignments.csv

Audio Controller
2/4

e read_audio_in - Read enable signal. The audio input data, if available, will be placed on the data lines on the next
clock cycle. This is a level-sensitive signal, which means a new sample of data will be retrieved on every edge, as long as
read_audio_in is high.

* audio_in_available - indicates whether the input data is available or not. Reads will have no effect unless this signal is
high.

PORTS FOR SENDING DATA

* left_channel_audio_out and right_channel_audio_out - Audio data for playback.

* write_audio_out - enable signal for writing the new data. Level-sensitive, data is written on every clock edge when this
signal is high.

* audio_out_allowed - indicates when the data may be written. Write will have no effect unless this signal is high.

2.2 Interface description

The audio controller is capable of a full-duplex audio input and output. The data ports are 32-bit wide by default and are
connected to the data buffers. The clear_audio_in_memory and clear_audio_out_memory signals may be used to
clear the buffers, and the audio_in_available and audio_out_allowed signals indicate the availability of the data (in
the case of input) or the free space (in the case of output) in the buffers. The data itself is a signed integer representing one audio
sample. All the signals are synchronized to the same clock. The interface protocol for sending and receiving data is illustrated in
Figure 2 and Figure 3, respectively.

cockso L[VLV VAV ALV
audio_out_allowed | e |
write_audio_out _ [\ [
left_channel_audio_o I DOOOOCT D ata [0 -+ IR Data [EROOGE
right_channel_audio_ ROOOOCRNNID ata [--- I Dot JERCRXKXE

Figure 2: Protocol for sending audio data

cocksso WU YULYUUYULULTY

audio _in_available | L
read_audio_in _ [[

left_channel_audio_in IDOOOOCI] Sample #1 left | Sample#2let

right_channel_audio_ I DOOOOCT Sample #1 right Jsample #2 right

Figure 3: Protocol for receiving audio data

3 Controller operation

The audio controller consists of two main parts: the input module and the output module. This section will provide a short
overview of each.

Audio Controller
3/4

The audio input and output modules consist of the shift registers connected to the data buffers.

In the case of the audio output, the data received from the user is buffered and then shifted-out to the audio chip at the appropriate
rate. The audio chip then feeds this data directly to the DACs.

In the case of the audio input, the process is reversed: the data received from the audio chip is shifted-in and placed in the data
buffers. The data comes directly from the ADCs on-board the audio chip.

4 Audio data format and analog-digital conversion

The audio controller uses the raw PCM data streams, both for the input and for the output. The PCM data stream is essentially a
sequence of numbers representing the intensity of the signal at a given moment. Each of these numbers is called a sample. The
sound may be represented (i.e., sampled) by a sequence of the samples. This sequence has a frequency associated with it, which
tells the rate at which the original signal was sampled. This sampling rate is necessary for the correct signal reconstruction.

For the audio controller the default sampling rate is 48kHz with a default sample size of 32 bits. Furthermore, there are 2 channels
both for the input and for the output. The sampling rate and sample size may be changed at configuration time if necessary. The
audio samples are presented as the 2’s-complement signed integers.

4.1 Digital to analog conversion

For the audio playback, the PCM data is fed directly to the DACs, which convert the value to a voltage. This analog voltage
output is connected to the Line-out jack on the DE2 board which can then drive the headphones or the speakers. This process is
illustrated in Figure 4.

Audio data is received Data is transmitted 1 i 1 3 Audio chip feeds the data
from the user serially to the audio chip > ‘qw Wﬂ 1“1 > to the DACs
= Voltage signal drives DACs convert the 1
G the speakers < numbers to the voltage < 3 %

Figure 4: Digital to analog audio conversion process

4.2 Analog to digital conversion

For the audio input (or recording), the process is reversed. You can have either the microphone connected to the Mic jack on the
DE?2 board, or some other device connected to the Line-in jack (but not both at the same time). These jacks are connected to the
inputs of the ADCs, which convert the voltage to the digital value. This value is then transmitted to the audio controller. This
process is illustrated in Figure 5.

http://en.wikipedia.org/wiki/PCM

Audio Controller
4/4

s

=) o N
Microphone converts N Voltage signal is amplified
’Gﬂ > the sound to voltage » and fed to the ADCs > \ [
=

These numbers are transmitted 'h, ki h Voltage is converted into
serially to the audio controller < ‘w ‘]‘“ <a sequence of numbers

Figure 5: Analog to digital audio conversion process

5 Audio controller demonstration

The sample circuit using the audio controller is available here. You are provided with the full Quartus project and the .sof file
already compiled and ready to be programmed.

The purpose of the circuit is very simple. Its main function is to generate a few different frequency signals and play them using
the audio controller. The signal frequency is selected with the switches O to 3 on the DE2 board. Upon connecting the Line-out
output to the speakers, you should be able to hear the sounds with a few different frequencies, depending on how the switches
are set. When all four switches are off, there is no sound generated.

The secondary function of the circuit is to superimpose the microphone input on the generated signal. If you connect the
microphone to the Mic jack, you should be able to hear the sound from the microphone superimposed on the signal that the
circuit is generating.

file:src/Audio_Demo.zip

	Introduction
	Controller interface
	Port Descriptions
	Interface description

	Controller operation
	Audio data format and analog-digital conversion
	Digital to analog conversion
	Analog to digital conversion

	Audio controller demonstration

