\qquad
\qquad

University of Toronto

Faculty of Applied Science and Engineering

Midterm Examination

ECE 241F - Digital Systems
Wednesday October 15, 2003, 6:00pm

Duration: 90 minutes

Examiners: J. Rose and B. Wang

ANSWER ALL QUESTIONS ON THESE SHEETS, USING THE BACK SIDE IF NECESSARY
No calculator is allowed.
2. The number of marks available for each question is indicated in the square brackets []
3. There are two extra blank pages at the end of the test for rough work.

Last Name:
First Name:
Student Number:

Lecture Section: $\quad \begin{aligned} & \text { Section } 01 \text { (Rose) } \\ & \text { Section } 02 \text { (Wang) }\end{aligned}$ []

Total Available Marks: 71

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	Total
Marks Available	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{3}$	$\mathbf{7}$	$\mathbf{1 0}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{7 1}$
Marks Achieved												

\qquad
\qquad
[10] Q2. Using only 2-input NOR gates, give the circuit diagram for the function:

$$
f=\bar{x}_{1} x_{2}+x_{1} x_{3}+\overline{x_{1}} \bar{x}_{3}
$$

using as few gates as possible. Do not assume that the inputs are available for free in complemented (inverted) form.
[3] Q3. Complete the Karnaugh map below to represent the following logic function:

$$
f=\bar{x}_{1} \bar{x}_{3} \bar{x}_{4}+x_{2} \bar{x}_{3} x_{4}+x_{1} x_{3} x_{4}+x_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} \bar{x}_{4}+x_{1} x_{2} \bar{x}_{3} \bar{x}_{4}+x_{1} \bar{x}_{2} \bar{x}_{3} \bar{x}_{4}
$$

\qquad
[10] Q5. Synthesize the following 3-input, 3-output logic function (the inputs are a, b and c and the outputs are f_{1}, f_{2}, and f_{3}) to obtain a minimum overall (total) cost implementation using only AND, OR and NOT gates. Do not assume that inputs are available in the complemented (inverted) form. Show all of your work. Your final answer should be a circuit diagram.

a	b	c	f_{1}	f_{2}	f_{3}
0	0	0	0	1	1
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	1	1	0
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	0	0
1	1	1	0	0	x

b) Compute the cost of implementing both in two levels of logic. Assume that only the non-inverted inputs are available (i.e. you must include the cost related to inverters).

Cost of SOP form $=$

Cost of POS form $=$
\qquad
[5] Q7. Give the schematic diagram for the following Verilog code. Be sure to label your schematic with the same names as given in the code.
module q7 (x1, x2,x3,f1,f2,clock);
input $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{clock}$;
output f1,f2;
reg f1,f2;
always @(posedge clock)
begin
$\mathrm{f} 1<=\mathrm{x} 1$ \& x 2 | (!x3);
f2 <= x1 | x3;
end
endmodule
\qquad

\qquad
a) Give the sequence of the 5 binary numbers that the counter steps through:
b) Give the design of the circuit:
\qquad
[5] Q10. The following schematic represents a programmable logic device that has been programmed. Assume that when two wires that cross are annotated as follows:

it means that the wires are connected, while wires that cross without the " X " are not connected. Also, assume that gates whose inputs are not connected to anything will take that inputs as a logical " 1 ".

Determine the logic function for \mathbf{f} and \mathbf{g} in terms of $\mathbf{x 1}, \mathbf{x} \mathbf{2}$, and $\mathbf{x 3}$. Do not simplify or optimize the function.

$\mathbf{f}=$ \qquad
$\mathrm{g}=$ \qquad
Page 11 of 14

Last Name
[5] Q11.
Consider the following negative edge-triggered D-type flip-flop. It has a set-up time of 4 ns , a hold time of 2 ns and a clock-to-Q time of 3 ns .

The following timing diagram (in which the dashed lines are spaced by 1 ns of time) shows the signals incident on the flip-flop over a period time.
a) Fill in the correct timing for the output Q (across the entire page). Assume that Q starts at the value 1 . If the value of Q is not known at any point in time, put an \mathbf{X} in that 1 ns time slot.
b) Indicate on the timing diagram any point at which the flip-flop will not operate correctly, and give the name of the problem.

1 ns
1 ns

Page 12 of 14

