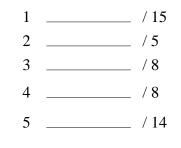
University of Toronto

Department of Electrical and Computer Engineering

ECE241- Digital Systems

Midterm Examination

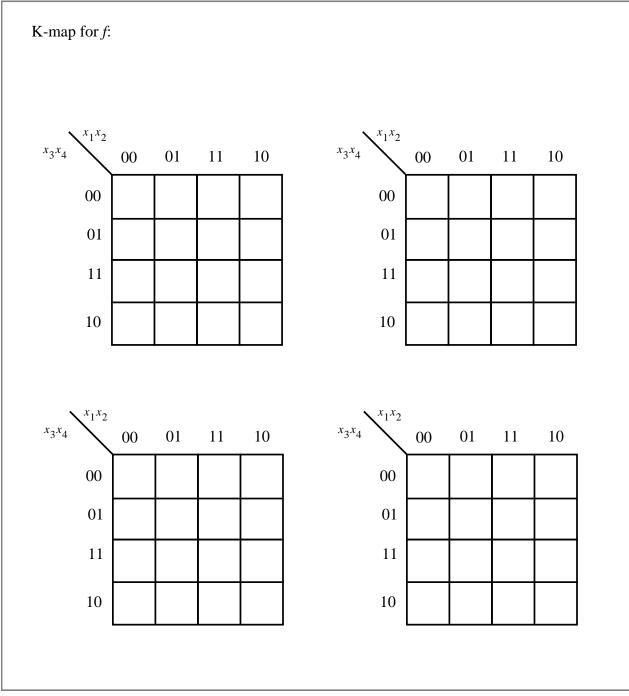
October 1999

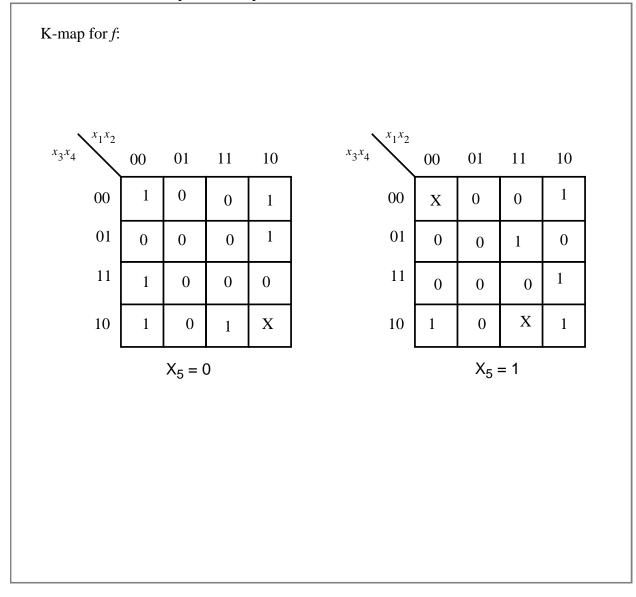

Last Name:	
First Name:	
Student Number:	
Signature:	

Duration: 1.5 Hours

No aids permitted.

Answer ALL questions on this test paper. There is extra space at the end if you need it.


EXAMINER's REPORT



TOTAL: _____ / 50

Question 1 — [15 marks]

a Derive the truth table for the following 6-input 1-output function. The six inputs are the variables X_1, X_2, X_3, X_4, X_5 , and X_6 . The output, *f*, should be a 1 when the majority of the inputs (i.e. **more** than half) are a 1. You must put your answer into the K-maps provided below.

b For the five-input logic function specified in the below Karnaugh map, determine the minimal cost two-level sum-of-products expression.

Give the minum cost sum-of-products expression for f:

Give the cost, as defined in class, **counting the NOT gates and their inputs**, of this expression:

Cost = _____

Question 2 — [5 marks]

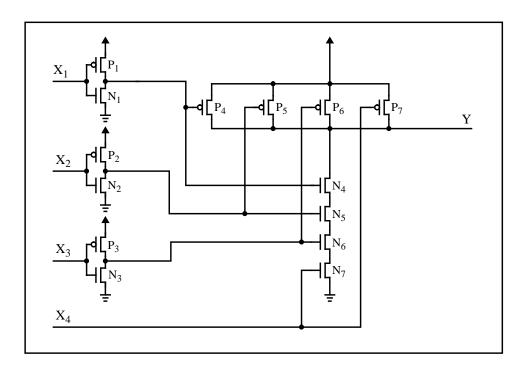
a A timing diagram from an Altera maxplus2 timing simulation is shown below. What function was implemented? **Give your answer only as a sum of minterms**.

[1] × [1] y [1] z [0]f	140.0ns 16
[] z	
[0]f	
	3i
NSWER:	

b Write the single line of VHDL code necessary to implement the function $f = xyz + x\bar{y}\bar{z}$.

ANSWER: _____

Question 3 — [8 marks]


a Prove the following theorem: $xy + yz + \bar{x}z = xy + \bar{x}z$. Use only boolean logic axioms and identities to simplify the right-hand side into the left-hand side. Show all your steps.

b Implement the function $f = x\bar{y} + \bar{x}z + \bar{y}z$, using only NOT and AND gates. Give the schematic diagram.

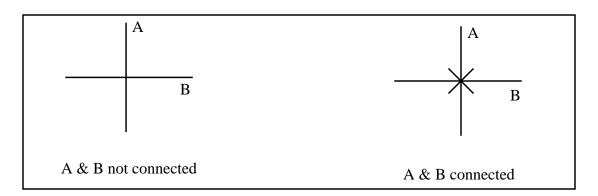
Question 4 — [8 marks]

•

a Consider the circuit shown below with the following logic inputs: $X_1 = X_2 = 1$, $X_3 = X_4 = 0$. Write the state of each transistor (i.e. ON or OFF) in the table below. Also, give the logic level at the output, Y

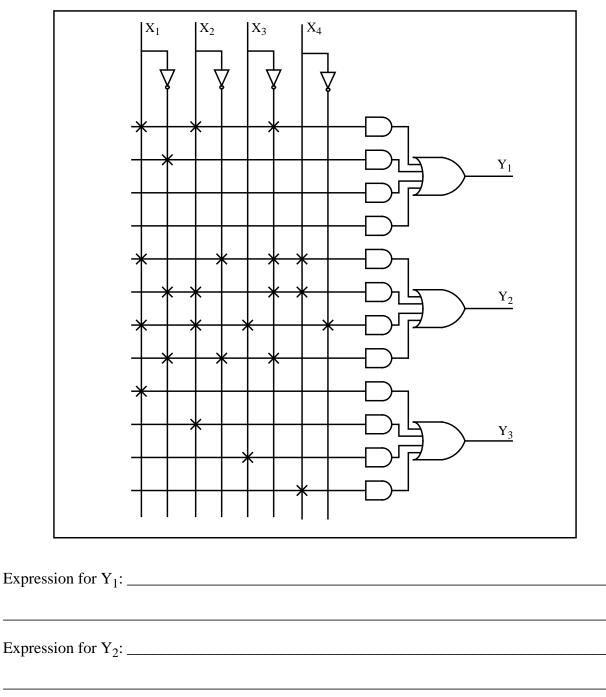
Transistor	State (i.e. ON or OFF)	Transistor	State (i.e. ON or OFF)
P ₁		N ₁	
P ₂		N ₂	
P ₃		N ₃	
P ₄		N ₄	
P ₅		N ₅	
P ₆		N ₆	
P ₇		N ₇	

Logic level at Y: ____


b For circuit above, write a logic expression for Y in terms of X_1 , X_2 , X_3 and X_4 .

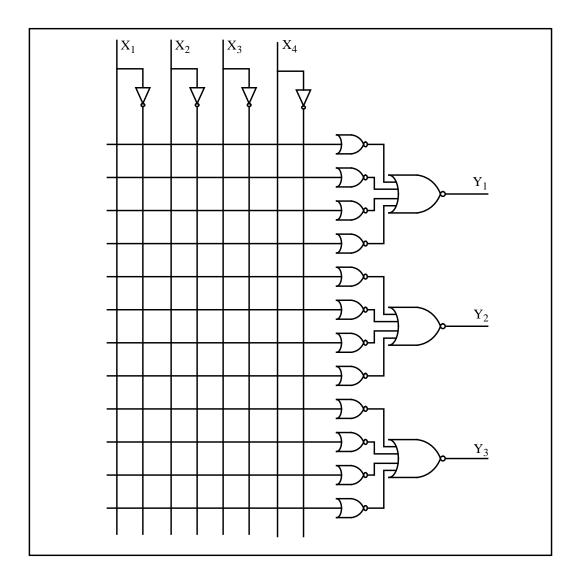
ANSWER:		

c Draw the transistor-level schematic of another **CMOS logic** network which implements the same truth table as the circuit above using the fewest possible transistors.


Question 5 — [14 marks]

READ THIS CAREFULLY: Throughout this question, the following convention will be used to represent the state of programmable switches in a Programmable Logic Device (PLD):

That is, in both cases there is a programmable switch attached between wire A and wire B.


a Write a simple **sum-of-products** expression for each output in the following PLD (no simplification is necessary).

Expression for Y₃: _____

- **b** Using the convention stated above, fill in the schematic diagram on the next page to iimplement the following logic specifications (**NOTE: the PLD has a NOR-NOR structure**):
 - Y_1 should be low (0) when all four inputs (i.e. X_1 , X_2 , X_3 , and X_4) are the same. Otherwise, Y_1 should be high (1).
 - $Y_2 = \overline{(\overline{X_1}X_4 + X_2\overline{X_3})}$
 - Y₃ is specified by the following truth table:

X ₁	X ₂	X ₃	X ₄	Y ₃
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

