University of Toronto
 Department of Electrical and Computer Engineering

ECE241- Digital Systems

Midterm Examination
October 1999

Last Name:

First Name:

Student Number:

Signature:

Duration: 1.5 Hours

No aids permitted.

EXAMINER's REPORT
1 / 15
2 / 5
3
4 _ / 8
5 / 14

TOTAL: \qquad / 50

Question 1 - [15 marks]

a Derive the truth table for the following 6-input 1-output function. The six inputs are the variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}, \mathrm{X}_{5}$, and X_{6}. The output, f, should be a 1 when the majority of the inputs (i.e. more than half) are a 1 . You must put your answer into the K-maps provided below.

K-map for f :

b For the five-input logic function specified in the below Karnaugh map, determine the minimal cost two-level sum-of-products expression.

K-map for f :

Give the minum cost sum-of-products expression for f :
\qquad
\qquad

Give the cost, as defined in class, counting the NOT gates and their inputs, of this expression:

Cost $=$ \qquad

Question 2 - [5 marks]

a A timing diagram from an Altera maxplus2 timing simulation is shown below. What function was implemented? Give your answer only as a sum of minterms.

ANSWER: \qquad
b Write the single line of VHDL code necessary to implement the function $f=x y z+x \bar{y} \bar{z}$.

ANSWER: \qquad

Question 3 - [8 marks]

a Prove the following theorem: $x y+y z+\bar{x} z=x y+\bar{x} z$. Use only boolean logic axioms and identities to simplifly the right-hand side into the left-hand side. Show all your steps.

ANSWER:

b Implement the function $f=x \bar{y}+\bar{x} z+\bar{y} z$, using only NOT and AND gates. Give the schematic diagram.

ANSWER:

Question 4 - [8 marks]

a Consider the circuit shown below with the following logic inputs: $X_{1}=X_{2}=1, X_{3}=X_{4}=0$. Write the state of each transistor (i.e. ON or OFF) in the table below. Also, give the logic level at the output, Y

Transistor	State (i.e. ON or OFF)	Transistor	State (i.e. ON or OFF)
P_{1}		$\mathrm{~N}_{1}$	
P_{2}		$\mathrm{~N}_{2}$	
P_{3}		$\mathrm{~N}_{3}$	
P_{4}		$\mathrm{~N}_{4}$	
P_{5}		$\mathrm{~N}_{5}$	
P_{6}		$\mathrm{~N}_{6}$	
P_{7}		$\mathrm{~N}_{7}$	

Logic level at Y: \qquad
b For circuit above, write a logic expression for Y in terms of $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ and X_{4}.

ANSWER:

\qquad
c Draw the transistor-level schematic of another CMOS logic network which implements the same truth table as the circuit above using the fewest possible transistors.

ANSWER:

Question 5 - [14 marks]

READ THIS CAREFULLY: Throughout this question, the following convention will be used to represent the state of programmable switches in a Programmable Logic Device (PLD):

That is, in both cases there is a programmable switch attached between wire A and wire B .
a Write a simple sum-of-products expression for each output in the following PLD (no simplification is necessary).

Expression for Y_{1} : \qquad

Expression for Y_{2} : \qquad

Expression for Y_{3} : \qquad
\qquad
b Using the convention stated above, fill in the schematic diagram on the next page to iimplement the following logic specifications (NOTE: the PLD has a NOR-NOR structure):

- Y_{1} should be low (0) when all four inputs (i.e. X_{1}, X_{2}, X_{3}, and X_{4}) are the same. Otherwise, Y_{1} should be high (1).
- $\left.Y_{2}=\overline{\left(\overline{X_{1}} X_{4}+X_{2} \overline{X_{3}}\right.}\right)$
- Y_{3} is specified by the following truth table:

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	$\mathbf{Y}_{\mathbf{3}}$
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

ANSWER:

EXTRA SPACE - USE ONLY IF NEEDED

Page 13 of 16

EXTRA SPACE - USE ONLY IF NEEDED

Page 14 of 16

EXTRA SPACE - USE ONLY IF NEEDED

Page 15 of 16

EXTRA SPACE - USE ONLY IF NEEDED

Page 16 of 16

