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Abstract

Characterization and Parameterized Generation of Digital Circuits

Michael D. Hutton

Ph.D. Thesis 1997

Department of Computer Science

University of Toronto

The development of new architectures for Field-Programmable Gate Arrays (FPGAs)

and other forms of digital circuits, and the computer-aided design (CAD) software tools for

these devices is greatly hampered by the lack of realistic test circuits or benchmarks that

exercise them properly. Benchmarking is a crucial process in the design of CAD algorithms,

as layout problems are typically NP-hard and heuristic algorithms are required.

This thesis investigates combinatorial structure in digital circuits. We de�ne and ana-

lyze a series of graph-theoretic properties of combinational and sequential circuits, including

a theoretical characterization of reconvergent fanout and metrics to capture the inherent

locality found in hand-made or synthesized circuits, and propose a new model for describ-

ing sequential and hierarchical circuits. By measuring these characteristics on public and

proprietary industrial circuits, we determine a realistic pro�le of circuits.

From our set of new characteristics, we de�ne the new combinatorial problem of pa-

rameterized random circuit generation, advancing a new paradigm for benchmarking in

computer-aided design. We then present a heuristic algorithm which solves it, fully imple-

mented in a publicly available tool, gen. Heuristic methods can only be judged on their

actual results, and a key feature of the research is the empirical validation of the generated

circuits. We compare standard post-layout metrics for the circuits produced by gen with

existing benchmark circuits and with random graphs, showing conclusively both that the

generated circuits are very good proxies for real circuits and that random graphs are not.
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Chapter 1

Introduction

In an ideal world, a �eld-programmable gate array (FPGA) vendor would use hundreds or

thousands of benchmark circuits in determining the architecture of a next generation de-

vice, and in developing the associated automatic placement and routing software for it. In

this way, the architectural design space would be adequately explored and the best software

algorithms would be used and well tested. Similarly, a commercial developer of general

computer-aided design tools would require quality benchmark circuits to evaluate the ef-

fectiveness and e�ciency of various new algorithmic techniques. The use of benchmarks

is crucial for all facets of computer-aided design because the vast majority of interesting

and practical problems are NP-hard and can only be solved by heuristic or approximate

techniques. Similarly, FPGA design is inherently inexact, so architectural questions must

also be answered empirically.

A fundamental problem exists for CAD and FPGA research: Because the device and

its tools are new, there are few large (or correctly sized) designs available to perform these

kinds of exploration and evaluation. In the case of FPGAs, some circuits will always exist

by purchasing benchmarks from customers migrating from larger gate-arrays or synthesis

from high-level design languages but these rarely su�ce. Cutting-edge CAD vendors have

no such luxury, and are forced to expend considerable e�ort creating benchmarks internally.

The proprietary nature of benchmarks, and the rarity of commonly accepted benchmark

standards means that it is often very di�cult to compare competing heuristic solutions for a

given problem. In an e�ort to address this issue, researchers at the Microelectronics Centre

of the University of North Carolina (MCNC) [74] have collected approximately 200 public

1



CHAPTER 1. INTRODUCTION 2

benchmarks and have made them freely available by anonymous ftp. These circuits are very

popular for empirical validation in academic research, but largely spurned by industry as

too small (about half are 100 nodes or fewer).

A related e�ort by the PREP Corporation [56] has de�ned a number of small represen-

tative benchmarks, with the goal of evaluating the logic capacity and speed of FPGAs. The

metric is \how many" of the individual (but joined) circuits can be packed in a given device,

and how fast the resulting compound circuit will run. Most researchers believe that this

method does not address how logic characteristics change with size, especially with respect

to interconnect usage, nor does it yield interesting test-cases for CAD software.

Random graphs are another possibility, particularly attractive because there is an in�nite

supply. Random graphs have often been used for the evaluation of partitioning algorithms

for large circuits (where there are no available benchmarks). In particular, a number of

classic partitioning papers [45, 46, 48] have done empirical validation with random graphs.

One of the contributions of this thesis is to show that arbitrary random graphs are not

realistic proxies for real circuits, and exhibit increasingly bad behaviour as the problem size

increases.

A traditional graph-theoretic approach to NP-hard problems is to restrict the input

domain, then identify an e�cient deterministic algorithm for a subclass of graphs. For

example, it is NP-hard to exactly determine the minimum number of colours �(G) required

to form a \proper colouring" of an arbitrary input graph G [29]. But, if G is known to be

P4-free|for any path xyzw in G it is always the case that one of the edges xz, xw or yw

also exists in G|it has been shown [14] that a straightforward greedy algorithm exists to

determine �(G) exactly in linear time.

One could claim that domain restriction is not directly applicable to practical CAD

problems because a boolean network really is just an arbitrary graph: \for any G, an

orientation of its edges and labeling of its nodes with primitive boolean functions (e.g. ^,

_, :) provides a boolean network computing some function." However, our fundamental

belief, as we will discuss further, is that such an arbitrary labelling of a general graph does

not result in a practical or realistic boolean network as would be produced by a human

designer or an automated synthesis tool. Without necessarily ruling out certain types of

graphs as possible inputs to a software tool, we can perform data analysis to identify the

expected structure of realistic inputs, and tune our tools to the distribution of expected
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inputs.

It is a well known fact that relatively simple heuristics can often perform well|in prac-

tice the di�culty associated with random or arbitrary graphs does not occur, because real

circuits exhibit much more structure than would be found randomly. For example, channel

routing is known to be NP-hard [33, 50], but the search for more complicated algorithms or

a guaranteed approximation scheme for the basic algorithmic problem is no longer \inter-

esting" because existing heuristic algorithms work well and quickly [50] for all known data.

This situation is analogous to the conclusions of Shew [63] who studied the application of

graph colouring to scheduling with a conict graph. He found that, even though arbitrary

conict graphs are always possible, real-life input tends to have P4-free or nearly P4-free

structure: the heuristic algorithm was working well in practice because it was optimal for

large subgraphs of the input it was given.

In the design and evaluation of good inexact architectures and heuristic algorithms it

is crucial to understand the type of data that the FPGA or algorithm will be required

to handle and thus to trust the test data that are used in its creation. The goals of this

research are to provide a greater understanding of the graph-theoretic structure of real-life

digital circuits and to apply this knowledge to the generation of high quality benchmark

circuits.

In this thesis, we present a careful methodology for dealing with the benchmarking

problem. We de�ne a number of new graph-theoretic properties of combinational and

sequential circuits. These properties are based on well known and important features of

digital logic such as combinational delay, fanout, and reconvergent fanout. We also propose

metrics that capture the inherent local structure of circuits not seen in random graphs.

Given this better understanding of the combinatorial structure of circuits, we de�ne the

new problem of \parameterized circuit generation" and solve this problem by proposing

and fully implementing a new algorithm. Since both of these e�orts contain a large body of

empirical and heuristic work, the �nal proof is in the resulting circuits themselves. We give

conclusive evidence that the circuits we produce are realistic benchmarks by contrasting

them both to existing benchmarks and to random graphs. As a byproduct of this validation

step, we show the non-viability of purely random graphs as benchmarks.

The software tools circ and gen arising from this work are freely available, and them-

selves form an important contribution to the community. Circ is a tool for performing
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analysis on an input circuit, and producing statistical and structural information about it.

Gen takes a list of parameters (discussed in Chapters 3 and 4) and produces a circuit which

satis�es the user's speci�cation.

Circ and gen have been downloaded under an academic license by more than 30 persons

representing more than 20 companies and academic institutions, and have been installed by

the author for use at Xilinx, Altera, Actel, and Hewlett Packard Corporations.

1.1 Overview of the Thesis.

The research described in this thesis has three distinct aspects: characterization of digital

circuits, generation of parameterized random benchmarks, and validation of circuit quality.

In Chapter 2, we provide further context and motivation for this work, and discuss

previous work on circuit characterization and wireability, and circuit generation.

Chapters 3 and 4 address the characterization issue, asking the question \What is a

circuit?" Chapter 3 deals with combinational circuits, introducing new characteristics of

circuits based on combinational delay, and proposing a new theoretical characterization of

reconvergent fanout and metrics for capturing the inherent local structure in combinational

circuits. In Chapter 4, we investigate the more complex sequential circuit. We give an

abstract model of a sequential circuit, de�ned in terms of combinational building blocks,

and add a number of new characteristics speci�c to sequential circuits.

In Chapter 5 we formally de�ne the parameterized circuit generation problem for com-

binational and sequential circuits, and give an algorithm to solve it. The algorithm has

been fully implemented in the tool gen, and we discuss a number of implementation details

from this experience.

Chapter 6 deals with the �nal research topic, empirical validation. Using gen to \clone"

existing benchmarks from their parameterization, we can compare post-place and global

route metrics of wireability between real circuits, their gen-clones, and random graphs

of the same size. We use this method to give strong empirical evidence both that our

algorithm and tool provide good benchmarks, and that standard models and methods for

random graphs do not.

We conclude and describe areas for future work in Chapter 7.

The historic development of the research di�ers from how it will be presented herein.



Chapter 2

Background and Previous Work

2.1 Terms and De�nitions.

A graph G = (V;E) has n nodes (vertices) and m edges, unless otherwise speci�ed.

A boolean network G is a directed graph whose nodes, also called gates, are labeled as

primitive boolean functions: typically ^ (and), _ (or) and : (not). Edges are also referred

to as wires. A boolean network is combinational if it is acyclic. A sequential network is

traditionally de�ned as a circuit with memory. We will assume that memory is implemented

by atomic ip-op nodes in the representation of the circuit as a graph, rather than built

from gates. All sequential circuits discussed in this thesis will be single-clock synchronous

networks, unless stated otherwise, which means that all directed cycles must be \broken"

by one or more ip-ops. We will ignore the issue of pipelining, whereby ip-ops are added

for timing reasons but logically function as bu�ers, so we assume that all sequential circuits

have back edges1. When referring to the graphical representation of a practical boolean

network, we will use the term circuit graph or circuit. The term graph will refer to an

arbitrary graph which may or may not arise from a boolean network. A random graph is

one drawn from some natural distribution by a stochastic process. For example, a random

graph G(n; p) is a graph on n nodes such that each potential edge exists with independent

probability p.

In a circuit graph G, nodes with no incoming edges are called primary inputs and nodes

with no outgoing edges primary outputs. The fanin (fanout) of a node is the number of

1A back edge is a \feedback" edge which goes from one sequential level to a previous level. Sequential

levels are formally de�ned later.

6



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 7

incoming (outgoing) edges. The depth of a circuit is the longest input to output directed

path. In a combinational circuit, this distance is the unit combinational delay, delay(G),

of the circuit. The length of a shortest directed path from an input to a particular node x

de�nes the unit combinational delay for x, delay(x). In a sequential circuit, the combina-

tional delay of a node is the length of the shortest directed path from either an input or

a ip-op, and the combinational delay of the circuit is the maximum combinational delay

over all nodes.

A circuit is often modeled as a hypergraph, H = (VH ; EH), particularly for the partition-

ing problem. VH = VG and each node and its set of fanouts collectively form a hyperedge in

EH , usually called a net. Electrically, this is the more correct model of a circuit, but most

problems are more easily de�ned in terms of graphs.

The recursive fan-in (fan-out) of a node, also called a cone, is the set of all preceding

(following) nodes in the partial order underlying G (unde�ned for sequential networks).

When two disjoint directed uv paths exist in G, we say that G is a reconvergent network and

that G is \reconvergent at v." In a non-reconvergent combinational network every fanout-

cone is a tree. The increasing presence of reconvergence is known to introduce di�culty

into many CAD problems, as the input graphs become less and less \tree-like."

Circuits are often classi�ed into two distinct types. Datapath circuits are repetitive,

simple sequences where each node is often connected only to immediate physical neighbours.

Arithmetic functions such as an adder or multiplier are typical datapath circuits. Random

logic or control circuits are loosely de�ned as everything else. They typically lack the

regularity of datapath circuits. Since the structure of a datapath circuit is usually well-

known to the designer, and the type of functions computed are typically more generic

(rather then application speci�c), they are often treated as special cases for layout. It is

relatively easy to synthesize a datapath using commercial CAD tools, so we will be primarily

interested in circuits in the random-logic category. Figure 2.1 shows examples of datapath

and random logic, taken from the MCNC benchmark collection.

We will occasionally refer to qualitative size of circuits (small, medium, large). Current

generation FPGAs have one to four thousand 4-input lookup tables (or LUTs)2, and next

2A k-input lookup table is a logic element which can be programmed to implement any single-valued

boolean function on k inputs. Though an FPGA could have a more restrictive type of logic block, or have
di�erent logic functions available throughout the architecture, the industry standard is to use the k-input

LUT uniformly across the chip.
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Figure 2.1: Datapath vs. random logic.

generation devices will have double that. So we will use \small" to refer to circuits with 500

LUTs or fewer, \medium" for 500 to 5,000 LUTs, \large" for up to 10,000 LUTs, and very

large for beyond 10,000 LUTs. Gate-array technology typically quanti�es logic in terms of

standard 2-input gates. Industry typically translates one LUT/ip-op pair as comprising

about 12 such gates. State of the art gate arrays are currently in the 1,000,000 gate range,

or about ten times the capacity of current FPGAs.

2.1.1 Computer-Aided Design for Digital Circuits.

It is important to have a common view of what is implied by a particular computer-aided

design software problem. We give enough detail here to be self-contained, and refer the

interested reader to Lengauer's comprehensive book [50] for more detail.

Technology-independent optimization refers to the manipulation of a network to achieve

some common basic requirements for all technologies (such as constraining fan-in/out [32,

38]) or to e�ect a result deemed to be of value for any destination technology; e.g. isolating

and merging common boolean expressions to reduce the size of the network.

Partitioning refers to separating the nodes of a graph into two or more disjoint sets

or modules to minimize some graph-theoretic measure, usually the number of edges or

hyperedges which cross the partition boundaries, subject to such constraints as the minimum

or maximum module size. An equivalent notion to the number of inter-module edges is the

number of vertices in each module that have external connections, often referred to as the

number of logical pins in the module. Standard formulations of the problem are NP-hard.

Various heuristic algorithms exist. One popular approach is the Kernighan-Lin-Fiduccia-
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Mattheyses (KLFM) [46, 26] algorithm, which performs incremental improvements (swaps)

from an initial solution until some predetermined tolerance is reached. In practice, such

algorithms can perform reasonably well, despite theoretical proofs of pathological non-

optimality.

Though primitive boolean functions (^, _, :) are the basic blocks of the abstract de-
scription of a circuit, hardware implementation typically draws from a larger library of

available basic functions, often determined by physical design concerns. Technology map-

ping is the process of converting from a circuit whose nodes are basic blocks of one (e.g. the

generic) type into one whose basic blocks are of another (the technology speci�c) type. For

�eld-programmable gate arrays the basic block is usually a k-input lookup table (LUT), in

which case the problem of �nding a size or depth optimal mapping is somewhat di�erent

from the subgraph matching problem of typical library based mapping. Existing software

to compute such a mapping includes owmap [13], chortle [27], rmap [60], xnfmap [73] and

mis/sis-pga [54]. For a general reference, see the textbook by Brown et. al. [11].

Placement is the embedding of a graph G into the physical, geometric, world. This is

often abstracted as a mapping of the nodes of G into the nodes of the N � N grid-graph

GN;N (the \host") to minimize some approximation of channel width (see below) or a total

wirelength metric (e.g. sum of Manhattan distances between adjacent nodes in G). In this

thesis we will use both this model, which closely resembles a number of Xilinx FPGAs,

and hierarchical variations such as occur in the Altera 10K programmable device. Once

placement has taken place, we can de�ne the length of a particular edge and the total wire-

length R , average wire-length �R , and distribution of wire lengths R = fRlg , with respect

to the placement. Wireability, which refers to the types and distributions of wire-lengths

which can be supported by a given host (e.g. GN;N) independent of any particular circuit,

will be discussed in more detail in Section 2.2.23. By the term routability we refer to the

\ease" of successfully placing and routing a speci�c network G into a host, using these and

other related metrics.

Given the placement, a global routing is an assignment of the edges of G to paths in

GN;N . Then we have the notion of channel width, W , de�ned as the maximum over all

3Note that the term \wireability" refers mostly to the process of determining statistical relationships on

the connectivity and distribution of wires once circuits are already placed on a grid-like architecture. It
is not usually used in the sense of a quality judgement on a network. In general, we don't use the terms

wireable and unwireable in that sense, rather we use routable and unroutable.



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 10

edges in GN;N of the number of paths using that grid edge. The optimal channel width over

all placements is denoted W �. A detailed routing assigns the paths of the global routing

to realizable electrical connections with respect to the technology. In the case of mask-

programmable technology this means physical wires which can interact (cross) other wires

in only speci�c ways. Field-programmable gate arrays have preexisting wires laid out in

tracks in each channel, each track is broken up into segments (actual wires) connected by

programmable connections with which to select a given path within a track or between

tracks. A detailed routing is then a re�nement of the global routing which speci�es the

settings of the programmable switches to code a physical path in the segments of the coarse

routing (channels only). It is possible to consider global and detailed routing together as

a single problem. For some FPGA architectures the concept of detailed routing makes less

sense, and this approach is taken.

Since known deterministic algorithms for NP-hard problems are considered infeasible,

existing practical algorithmic solutions often have no provable performance (correctness or

quality). For evaluation of competing techniques the community uses various \standard"

benchmark suites. By running a new algorithm on the benchmark circuits a quantitative

measure (run-time, channel width, percent of routable connections, speed of the circuit)

can be obtained for comparison with existing algorithms. The currently accepted standard

in academia is to use the the MCNC benchmarks [74]. We will occasionally refer to and

take examples from this collection of circuits; two such examples have already been shown

in Figure 2.1. Industry would typically use proprietary benchmark sets, and would not

announce results of their experiments.

Some terms with respect to implementation technologies: full-custom VLSI refers to

the layout of a design (transistors and wires) on a totally empty and unconstrained space.

Standard-cell refers to a technology where the basic blocks come from a library of prede-

termined logic elements which can be placed in rows at the speci�cation of the designer.

Detailed routing then reduces to channel routing (with feed-through cells) in the horizontal

channels between the rows. A gate array technology constrains the logic elements to lie on

a rectangular grid with both horizontal and vertical routing channels. Mask programmable

gate array (MPGA) technology then allows the wires to be freely placed on a separate

fabrication layer at manufacturing time.
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2.1.2 Field-Programmable Gate Arrays.

The design of an application speci�c integrated circuit (ASIC) using either gate array or

standard cell technology requires that the wiring is added as one step in the fabrication

process. A recent technological alternative to this type of ASIC is the �eld-programmable

gate array, which has both programmable logic elements and a programmable routing net-

work to connect the logic. FPGAs can be programmed using just a personal computer

and simple hardware interface, giving them exibility and time-to-market advantages over

traditional ASICs, which must have all wiring completed in a fabrication plant. However,

programmability typically incurs a factor of ten in decreased chip density and a factor of

three in decreased speed for the resulting hardware. This tradeo� is increasingly more ac-

ceptable to designers, and the FPGA industry has grown from an insigni�cant portion of

the ASIC business in 1984 to a 1.4 billion US dollar industry today.

The advent of FPGAs spawns a host of new problems for CAD designers. Because

FPGAs have a �xed routing network instead of \open real estate" the layout problem

becomes more graph theoretic than geometric in nature. For rapid prototyping, it is common

to implement a single design on multiple FPGAs or even boards of FPGAs, creating new

variations on the partitioning problem which do not arise in higher capacity, more �nely

grained, ASICs. While the routing problem for gate arrays is one of minimizing channel

width, CAD software for FPGAs deals with a binary �t/no-�t problem. Because of the

programming logic, FPGAs also produce new challenges for timing estimation.

In addition to these new software problems, there is the issue of the FPGA architecture.

Numerous choices exist in the design of an FPGA: Do I organize the logic and routing

architecture hierarchically, or in a at grid? How big should logic elements be? How many

tracks should be placed in each row/column and how should they be connected together?

Should the programming be permanent, or stored in a way which is recon�gurable? All

of these issues must be addressed in the context of device cost, routability, timing, power

consumption, noise, and the ability to write e�cient CAD software. The architectural

design process is inherently approximate, so many of these questions can only be answered

empirically with benchmarks.

It is by no means clear which architectural choices are correct, or even if there are correct

choices. The Actel Corporation manufactures FPGAs using a standard-cell like architecture,
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Figure 2.2: Di�erent FPGA architectures.

and uses anti-fuse technology for permanent programmability (the only major vendor to do

so). Altera's 10K series of devices organize logic elements into a shallow hierarchy: cliques

of fully connected logic and a more sparse interconnection structure between cliques. Xilinx

uses a \at" architecture reminiscent of a gate array, with a routing architecture consisting

of multi-track channels with \switch" (S) block modules at the intersection of channels, and

\connection" (C) block modules where logic-block pins enter the routing network (P and L

stand for pin and logic block, respectively). Abstract representations of Xilinx and Altera

architectures are shown in Figure 2.2. Both Altera and Xilinx use SRAM bits to program

the parts, which means the logic can be re-programmed repeatedly, in some cases during

the computation itself though this is not commonly done.

The research described in this thesis applies both to the ASIC and the FPGA world,

but it is of particular interest for FPGAs. As mentioned previously, hardware and software

architects of a \new" 1,000 LUT FPGA have to deal with the discrete �t/no-�t issue rather

than more �ne-grained optimization problems. Typically this means a large number of

circuits in the 900-950 LUT range would be required to exercise the device, while neither

a 400 LUT circuit nor a 1,200 LUT circuit would be an interesting test case. The circuits

must also be representative enough to deal with the vastly di�erent types of circuits that a

user might wish to implement. Thus FPGA vendors consider their benchmark suites to be

closely guarded proprietary information, and universally feel that there are \never enough

benchmarks."
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2.1.3 Graph Classi�cations.

A class of graphs is a set of graphs which are related in some way. A class can be de�ned

by some speci�c graph-theoretic property, for example \A graph is regular if all vertices

have the same degree." The members of the class can sometimes be de�ned by recursive

construction: \A single vertex is a tree, a tree T with a new vertex x and an edge from x to

some vertex v of T is also a tree." The class can be determined by virtue of what it does not

contain, for example a forbidden con�guration or subgraph: \A tree is a connected graph

with no cycles."; \A planar graph is a graph which contains no subgraph \homeomorphic"

to the graphs K5 or K3;3." Any other well de�ned mathematical de�nition would also be

appropriate. Note that often a graph class can be de�ned in multiple equivalent ways. For

example a planar graph is commonly de�ned geometrically as \a graph for which there

exists a embedding which maps vertices to points in the plane and edges to Jordan curves

connecting their respective endpoints that do not intersect except at those endpoints."

If G = (VG; EG) is a graph then any graph H = (VH ; EH) where VH � VG and EH � EG

is a subgraph of G. If xy is an edge of G, and xy is in H whenever both x and y are in H ,

then we say that H is an induced subgraph of G, otherwise it is a partial subgraph. It is

often interesting when the de�nition of a class is closed under the taking of subgraphs; that

is, the de�nition of the class is hereditary. Planarity is hereditary, because any subgraph of

a planar graph is clearly planar.

2.2 Previous Work.

2.2.1 Rent's Rule.

The commonly accepted relationship called \Rent's rule" dates back [49] to E. F. Rent of

IBM, who made an empirical observation regarding the partitioning problem:

Rent's rule: Let G be a circuit with n blocks (nodes) and m wires (edges). Consider a

\reasonable" partition of the blocks of G into modules M1;M2; � � � ;Ml where the modules

each satisfy a pin constraint: the number of external vertices in any Mi is constrained

to some value P �, and the number of modules is no less than �ve. Then the empirical

relationship

P = kBr (2.1)
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is found to hold in general, where

k = the average number of edges incident on a block,

P = the average number of pins (external vertices) in a module,

B = the average number of blocks in a module, and

r = the \Rent exponent", empirically 0:5 � r � 0:8.

Satisfyingly enough, for the trivial \total" partition of G into modules of one block each

Rent's rule with B = 1 correctly gives the average number of pins as the average degree

over the blocks in the network. This does not hold empirically for partitions into only a few

modules, as stated in the de�nition and discussed later.

The algorithm for separating the circuit into modules is unde�ned in the standard

formulation of Rent's rule. Later re�nements by Feuer [25] specify that placement provides

such a \good" partition into modules in terms of geometric proximity in the sense that

from any circle (closed set of grid points of Manhattan distance r from a �xed centre point)

the number of external connections will follow Rent's rule on average. So we can think of

Rent's rule as both a law that holds for a given partition, on average, and at the same time

as the expected relationship for a speci�c module in terms of its terminal and non-terminal

vertices.

It is crucial to note how closely the notion of Rent's rule is tied to that of a good

empirical modularization. For example, it is possible to self-embed GN;N (equivalently, give

a partition) badly so that every wire is of length N
2
, yielding a channel width of O(N)

and Rent exponent r = 1, even though the trivial embedding has W = 1 and r = 0:5.

Thus any discussion of Rent's rule holding in an abstract sense must capture somehow

the existence of some modularization, either in a non-constructive sense or by exhibiting

the modularization directly. Hagen et. al. [35] investigated this in detail, and de�ned the

intrinsic Rent parameter of a circuit as the minimum possible Rent parameter over the set of

all partitioning algorithms. They gave empirical evidence to show that di�erent algorithms

do yield di�erent values for the Rent parameter. We also stress that Rent's rule applies to

modules on average and does not address maximum or minimum behaviour for a particular

module.
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Empirical calculations.

Landman and Russo [49] discuss the historical origins of Rent's rule. They calculate P =

4:17B0:65 for Rent's initial data and cite various other independent con�rmations: A study

by Meade and Geller [52] yields P = 4B0:7. Notz et al. [55] �nd P = kB
2

3 where k is one

plus the average fan-in of the network. Radke [57] also mentions the \common knowledge"

of the rule (attributing it to Rent), noting observations of p varying from 0:5 to 0:7 with

values of k between 3 and 5.

The typical method for calculating r is to perform an empirical partition, sample

modules for values (Pi; Bi), and perform a linear regression on logPi = log k0 + r logBi

(Pi = ck
0

Br
i ), usually constraining k = ck

0

as a constant. Landman and Russo speci�cally

point out that Rent's Rule is unstable when the number of modules is less than 5. One

reason that this would be true is that the number of pins on a chip is usually a hard con-

straint in practice, and the engineer must build the design within the given number of I/Os.

Hierarchy inside the chip does not su�er from these hard constraints, and should exhibit

more consistent behaviour.

Russo [58] notes that more parallel \high performance" circuits tend to exhibit larger

r, because they tend to have a higher pins-per-gate ratio, hence Rent exponent.

Theoretical Issues.

In an attempt to understand the determinants underlying Rent's rule, and also to investigate

the tradeo� between logic (control) and memory, Donath [17] developed a model of the

process of designing computer hardware. He models the modular decomposition process

of hardware design, and argues that Rent's Rule is a natural consequence of a structured

design methodology. Donath also investigated the \information content" involved in trading

memory bits for logic (i.e. implementing logic functions as lookup-tables in ROM), and

derived a rough rule of thumb which states that one basic logic element (gate) is equivalent

to 8.5 bits of memory4.

Landman and Russo cite an old unpublished manuscript of Donath [20] in which he

proves that a random graph G, de�ned as \a graph with edges distributed randomly among

4This suggests that a 2K ROM, used as a lookup table, would be expected to implement a boolean

function comprising about 1900 2-input NAND gates (on average). Similarly, a 2K truth table could be

expected (on average) to optimize into about 1900 gates of combinational logic.
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its vertices," exhibits a linear relationship between P and B (i.e. r = 1). The statement is

di�cult to interpret without a concrete random graph model, but the basic property will

also be visible in the theoretical wirelength studies of the next section.

Discussion.

Rent's Rule works well as a predictor of I/O to logic ratios for internal connections to a chip.

Most researchers would use a safe overestimation of r to predict the number of pins required

for a chip, or to generate a theoretical \envelope" on the number of tracks or wirelength

but, in practice, would combine this with empirical analysis.

For our purposes, Rent's Rule is not a good \characterization" of circuits, because of its

reliance on an existing parameterization and on its reference to the average-case behaviour of

the partition hierarchy. However, Rent's Rule is a well accepted guideline in the community,

and important to keep in mind as a general rule of thumb about circuits.

2.2.2 Stochastic Wireability Models.

Routability refers to estimating the wirelength or �ttability of a circuit on a given host graph

or architecture. Early research on gate-arrays gave us a number of statistical properties and

distributions which can be used to predict routability for circuits.

Wire length distributions.

Using random placements [16, 36, 59], or assumptions about stochastic properties of place-

ment [24, 61] and Rent's rule [18, 19, 25] various theoretical models of wire-length have

been proposed.

Donath [16] studied the statistical properties of randomly placing a random graph on a

grid. He developed a lower bound on the average wire-length �R, over all placements, for an

embedding of a given G into GN;N . He showed that this lower bound is dependent only on

n and m (the number of edges), and is independent of the structure of the graph:

�R =
mn

1

2
�

n

2m

e1�
n

2m

(2.2)

=
mn

1

2
�

1

2k

e1�
1

2k

(average vertex degree k): (2.3)
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The bound provides some information, since we expect that any reasonable algorithm does

better than the expected random placement. However, the bound implies an �R of ap-

proximately N
3
and W = O(N) [18], so the bounds are too loose to have any practical

utility: studies have shown both �R and W � to be roughly proportional to logN in prac-

tice. Note that this result also implies the unit Rent exponent for the random graphs in

Donath's construction.

Donath [18] later developed a formula for the upper bound on expected average wire

length �R based on a \pseudo-random" placement. The placement is partly stochastic, but

attempts to \reect both the characteristics of logic complexes as they are designed by

engineers and the e�ect of the placement procedure." By assuming that Rent's rule holds

recursively, he developed a new upper bound for the expected average wire-length.

�R � Br� 1

2 ; r > 1

2

�R � logB; r = 1

2

�R � f(r); r < 1

2
(independent of B.)

(2.4)

An important note is that the estimator under the Rent assumption di�ers from that of a

purely random placement, which yields �R �
p
B=3 as mentioned earlier. Donath compares

his upper bound to experiments on �ve real circuits and �nds that the estimate is about

double the average wire length found in practice. The dependence on both B and p is

supported by the experiments.

Feuer [25] does a similar analysis to develop wire length estimators from Rent's rule,

and also calculates the distribution of wire lengths. He derives, from Rent's rule and several

simple geometric assumptions about the placement, an expression

Rl = c(r; B)l2r�4 (2.5)

for the expected number of connections between any two grid points of Manhattan distance

l apart in a placed circuit. The parameters r and B are from Rent's rule, and c is a constant

function of these parameters only, hence constant for a given graph.

This distribution leads to expressions for the average wire length of connections internal

and external to a region of radius d:
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�Ri =
p
2

�(5� �)

(3� �)(4� �)

Br�0:5

(1�Br�1)
; (2.6)

and

�Re =
p
2
(1� �)(5� �)

(3� �)(4� �)
Br�0:5 (2.7)

where � = 2� 2r.

The overall average wire length predicted by the model is

�R =
p
2
(2� �)(5� �)

(3� �)(4� �)

Br�0:5

(1 +Br�1)
: (2.8)

Since (1+Br�1) vanishes for large B, the latter is proportional to Br� 1

2 ; exactly as derived

by Donath for r > 1

2
(Equation 2.4).

Feuer's analysis yields justi�cation that geometric proximity after placement is itself

a \good modularization" for application of Rent's rule, as mentioned earlier, because the

derivation from the proximity assumptions generates Rent's rule, which is then itself as-

sumed for the derivation of the wire-length estimators.

El Gamal and Syed [24] de�ne a purely stochastic model in which wire lengths are

distributed Poisson(�) and wire trajectories are parameterized by ; �; �; p; u. They develop

a formula for average wire length in terms of these parameters, and estimate the parameters

using empirical data. As an application of their model they vary the parameter u, the

percentage of utilized gates, holding other parameters �xed and �nd that \it is better to

use an array of size n
:8
with more tracks (channel width) than a larger array of size n

:5
with

fewer tracks." It is stated that 100% utilization (u = 1) is unrealistic, and implied that the

model bears this out as well.

Sastry and Parker [59] show that \any placement which satis�es Rent's rule, or any

similar pin-to-block relationship," will have a wire-length distribution which is Weibull:

Rl = ��l��1e��l
�

(2.9)

with mean

�R =
1

�

�
1

�

� 1

�

�

�
1

�

�
: (2.10)
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The parameters � and � are calculated from the empirical data by log-linear regression on

empirical data. Though there is de�nitely a relationship between r and these parameters,

the authors do not develop a closed formula, and instead rely on the regression to give

empirical values.

Channel Width.

Wire length alone does not capture the e�ect of di�cult areas or \hot-spots" with high

channel width. What we often would like is to have a prediction of the greatest channel

width in the array. This, of course, would have to be less than the available channel width

if routing is to take place.

El Gamal [23] gives such a model. He calculates W in terms of �R assuming that the

distribution of lengths is geometric and adding the additional assumptions of trajectory

along a minimum (Manhattan) distance path in the array: each lattice point emits Xi

wires of length Lij|given an initial trajectory (up-right, up-left, down-right, down-left) ip

Lij coins and move up or down on heads and left or right on tails, as appropriate.

The conclusions to be drawn vary with �R. If �R is �nite, then the distribution of channel

densities is Poisson:

Wt = P
 
� �R

2
; t

!
(2.11)

where Wt is the number of channel segments with width t. The expected maximum channel

density converges to O(lnN) (almost always) when �R � O(lnN) and O( �R) (almost always)

otherwise. Since the former seems the most reasonable occurrence the primary conclusion

is that channel densities are distributed Poisson with a mean channel density of � �R
2
. Brown

et. al. [10, 11] �nd the accord between this prediction and several actual circuits to be very

good. They note, however, that the model becomes less accurate if the FPGA model is

expanded to give segments of more than unit length.

Applying Routability.

Chan, Schlag and Zien [12] recently combined several of the results just discussed to pre-

dict routability for a Xilinx 3000 series FPGA. Circuits are classi�ed as \unroutable",

\marginally routable" and \easily routable" based on the Feuer's expectation of channel

width for the circuit vs. the available channel width, an estimator for the Rent parameter



CHAPTER 2. BACKGROUND AND PREVIOUS WORK 20

r using mincut partitioning and El Gamal's estimator for W .

Another (earlier) model for routability was given by Brown [10]. Here, routing is a

stochastic process with parameters specifying the network for the FPGA (e.g. the number

of connections in the switch and connection blocks, the channel width), several model-

parameters (event probabilities) and basic properties of the circuit to be routed (size, con-

nections and expected wire length �R (from El Gamal)). An expression for the expected

percentage of unrouted connections is generated. The model has been used both as an

indicator of routability and as a vehicle for determining good settings for the parameters

which specify the FPGA; e.g. to determine how much exibility (how many switches) to

put in a Xilinx C-block or S-block.

Discussion.

The stochastic results cited in this section are the traditional approaches to characterizing

circuits and determining theoretical bounds for architectural parameters. The goals of this

thesis are quite di�erent, in that we want to determine graph-theoretic characteristics taken

from analyzing the circuit graph itself. The purpose of including this previous work is more

to provide context for the current research, and because the terms introduced here are used

elsewhere in the thesis.

2.2.3 Other Generation E�orts.

Random Graphs.

In this thesis, the term a random graph will refer to graphs generated by stochastic methods

which do not take into account the properties of digital circuits. Such random graphs are

drawn uniformly from the set of all graphs, or uniformly from a partially restricted set

of all graphs, such as \all regular graphs." The most common such model is the random

undirected graph G(n; p), de�ned as a graph on G nodes in which each potential edge exists

with uniform independent probability p. These graphs can be easily generated, but are

not realistic as circuits: for p < n logn they are disconnected and otherwise they contain

O(n logn) edges and have most nodes with degree logn, almost always. The former makes

the graph uninteresting, and the latter makes it electrically infeasible as a circuit.

There are also well-known methods for generating random degree-constrained graphs
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uniformly. We use one such method (with modi�cations) for comparison to our circuits

in Chapter 6. However, there are no known methods to uniformly generate directed I/O

constrained graphs, or to generate directed graphs with restricted path-lengths, or which

properly satisfy the electrical constraints of a synchronous sequential circuit.

There is a long history of using random undirected graphs as benchmarks. Kernighan

and Lin [46], Johnson et. al. [45], Krishnamurthy [48] and Hagen and Kahng [34] (for others

see [50]) used random graphs to compare and evaluate partitioning algorithms. Vargese et.

al. [68] and Hauk et. al. [37] also used random graphs to study architectural parameters

and algorithmic issues for logic emulation systems with FPGAs, which require very large

circuits. Random graphs are currently unavoidable for experimentation beyond the size of

existing circuits.

Generating Circuits by Transformation.

Iwama et. al. [43], in independent work, discuss how to apply transformation rules to a

initial seed circuit and create a di�erent structural circuit with the same logic function. This

work applies only to combinational circuits, and is limited to generating variations on the

initial circuit. In a paper to appear later this year [44], they will discuss an improvement

on the work which generates seed circuits from random truth-tables, rather than requiring

an input circuit.

This work is primarily aimed at benchmarking for logic synthesis (logic independent

optimization) algorithms. The authors do not describe any applications of the approach to

dealing with physical design algorithms or architectural issues.

Generating Circuits with Rent's Rule.

In independent work, Darnauer and Dai [15] have recently given an algorithm for generating

random undirected graphs to meet a given Rent parameter. The basic idea is to generate a

random partition hierarchy, and recursively generate a graph from it. The approach has an

obvious attraction for partitioning, which was its primary application. Darnauer and Dai

showed the empirical validity of their algorithm for relatively small combinational circuits

on partitioning problems.

The primary drawbacks of the method are that the tool loses control over combinational

delay and does not have the ability to generate sequential circuits with the properties which
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we concentrate on in this thesis and which are important for FPGA architectures and

all other physical-design CAD problems. We believe it would be possible to incorporate

the most important aspects of the Rent-based method into the high-level hierarchy of our

sequential generation; one area for further work would be to investigate combining our

approach for generating medium-size circuits with a high-level partition hierarchy. We will

remark further on this in Chapter 7.

2.3 \Obvious" Properties of Circuit Graphs.

Based on common knowledge of digital circuits, we can make a number of preliminary

observations about their combinatorial structure.

One obvious property is that the class of circuit-graphs is hereditary: if G is a circuit

then any induced subgraph of G will also be a circuit. Because electrical fanin and fanout are

constrained in all but special circumstances, we observe that the number of edges should be

linear in the number of nodes. For convenience, we will assume that any complete circuit is

connected, since a CAD algorithm could easily check connectivity and signi�cantly decrease

the problem complexity on disconnected graphs.

From Rent's rule, we can expect that circuits exhibit some type of \hierarchical" struc-

ture. However, this is an abstract notion only, since Rent's rule and the wireability studies

mentioned earlier do not give any applicable graph-theoretic restrictions which we can use

directly.

Also from empirical studies of Rent's rule, we note that the number of inputs and outputs

in a circuit is sub-linear in the number of nodes (unless r = 1 for the circuit, which is not

seen empirically). For a chip with a reasonable aspect ratio and packaging constraints this

follows independently of Rent's rule, since the number of I/Os can only be a small constant

multiple of the perimeter.



Chapter 3

Characterization of Combinational

Circuits

This chapter describes the statistical and structural characteristics that we have identi�ed

for combinational circuits.

Parts of this work are directly motivated by the generation problem. In order to generate

benchmark circuits, we will need a default parameterization �le, so we want to develop a

statistical pro�le for relationships between parameters. For example, if the user asks simply

for a circuit with 1000 nodes, we will need to choose a reasonable number of primary inputs

and outputs, and a reasonable value for combinational delay. The complete set of default

equations is in the �le \comb.gen" shown in Appendix A of this dissertation.

Characterizations which describe the combinatorial structure of circuits, however, are of

interest in their own right, and we propose a number of them here. Combinational shape,

reconvergence and locality are all structural characterizations that are introduced in this

thesis, and deal with the inherent structure in circuits which separates them from arbitrary

graphs. In addition to becoming data for the circuit pro�le, the structural ideas will form

the basis for the generation algorithm of Chapter 5.

For the empirical work here, we use the MCNC circuits. However, it is important to point

out that the tool circ that we have produced to extract the characterization of a circuit is

independent of the data; the user could use it on any collection of benchmark circuits, then

rede�ne the default pro�le accordingly. Circ is implemented to read circuit netlists in the

Berkeley BLIF format [74], and output numerous statistical and structural characteristics.

23
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As well, circ is able to do netlist translation, and output circuits in a number of other

netlist formats (including Actel ADL [1], Altera AHDL/TDF [4] and Xilinx XNF [73]).

3.1 Empirical Data.

A large portion of the work in Chapters 3 and 4 is empirical, and for this we use the MCNC

benchmark circuits. The use of the MCNC circuits is largely unavoidable, since they are

the only large set of public benchmarks. We note that a user of the tools could pro�le their

own (internal) circuits as the basis for an alternative defaults �le. (See Appendix A.)

The MCNC benchmark circuits are a well-known set of combinational and sequen-

tial benchmarks available from http://www.cbl.ncsu.edu/. The circuits were converted

from EDIF1 to BLIF2 using a modi�ed conversion tool from MCNC. We did technology-

independent optimization with sis [62] (keeping the better result of script.rugged and

script.algebraic) then technology mapped using flowmap [13] into k-input lookup tables,

for k = 2::8. Speci�cally, each circuit was mapped 7 times, into 2-input LUTs, 3-input LUTs

up to 8-input LUTs. We chose to use lookup-tables because of their simplicity, functional

completeness and the ease of changing to di�erent LUT-sizes. We believe that the struc-

tural properties of circuits are su�ciently captured by the use of LUTs to determine valid

characterizations without the added complexity of more technology-dependent libraries.

One issue that we do not fully explore in this work is the e�ect of this early optimization

(CAD ow) on the exact statistical characterization which follows. For example, flowmap

is a delay based technology mapper, and it is not clear whether a di�erent mapper would

have changed some of our statistical results. Similarly, due simply to the volume of data,

we spend most of our analysis on 4-LUT mapped MCNC circuits, largely because this is

the most popular choice in the FPGA industry.

3.2 Basic Parameters of Combinational Circuits.

The characteristics in this �rst section are more for statistical purposes than to provide any

new structural information about circuits.

1EDIF is a \standard" netlist format used in industry.
2BLIF is a format used by the Berkeley sis tool, and commonly used in academia.
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Figure 3.1: Size (2-LUTs) vs. I/O for MCNC circuits.

3.2.1 Circuit Size and I/O.

The most basic characteristic of a circuit is the relationship between the size of the circuit

(number of LUTs n) and the number of primary inputs (nPI) and outputs (nPO). (De�ne

nIO=nPI + nPO.) Using linear regression and experimentation, we have determined that

a Rent-like functional relationship, log(nIO) = a + b � log(n) best captures the relationship

between IOs and circuit size3. A simple linear relationship best describes the division of

I/Os between inputs and outputs: nPI = c + d � nPO. Figure 3.1 shows a plot of n vs.

nIO, and a least-squares regression line for the log-linear Rent relationship4. We note that

simply determining values for the coe�cients a; b; c; and d does not capture the increase in

variance with n so we model these coe�cients as truncated5 Gaussian distributions around

the best-�t line6. The actual equations are shown in the IOFrame section of comb.gen in

Appendix A.

3Note that Rent's Rule explicitly does not apply uniformly for the circuit as a whole (i.e. to predict I/O

given n), so we use di�erent functional forms for ranges of n, determined empirically. The actual relationship

is a piecewise combination. See Appendix A for the exact equations.
4Notice that the X-axis is shown with a log scale so that all points can be displayed with reasonable

precision. Thus the visual variance around the regression line is deceptively large.
5Though the mean and variance can be determined exactly from the data, we shield ourselves from

outliers by truncating the distribution before unrealistic values (in particular, negative values). It is also

necessary for us to generate reasonably tame values, because a circuit which is an outlier in one parameter is

often an outlier in all parameters, and choosing the parameterization independently cannot model this well.
6The regression line itself is not a strong predictor of the relationship between size and I/O, but this is

not the point. Together with the Gaussian distribution of variance, we get a good probabilistic sample of

a reasonable number of I/Os for a given size. Given the actual variance in the data, this is all that can be
expected.
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3.2.2 Nodes and Edges.

Two other dependent parameters of a circuit are the number of edges and the average fanin

of the circuit. Looking at the data for 4-LUT mapped circuits, we see that average fanin

varies from 2 to nearly 4, with a close to (truncated) Gaussian distribution centered around

3, and this is how we model it in the default pro�le. It is well known from technology-

mapping literature that a circuit mapped to k-LUTs will not use all the inputs in each LUT

unless k = 2, so this is to be expected.

As a byproduct of our experiments, we have observed that the �nal wirelength of a

circuit after placement and global routing is much more highly correlated to the number of

edges (equivalently average fanin) in the circuit than it is to the number of nodes. Though

this might be easy to believe, it is quite interesting that utilization results for FPGAs are

almost always speci�ed in terms of the typical gate size of circuits which �t completely

independent of the number of wires in the circuit. This suggests that a more accurate

metric of \typical utilization" in an FPGA might be the wire utilization used, rather than

the logic utilization, meaning that nedges is probably a more indicative measure of circuit

size than the number of nodes n.

3.2.3 Fanout Distribution.

Recall fanout(x) is the number of edges leaving a node x. A circuit's maximum fanout and

fanout distribution (the number of nodes with fanout 0, 1, 2, etc.) is an important structural

parameter which cannot be modeled by known methods in the theory of random directed

acyclic graphs. Note that the fanin distribution is less interesting for technology-mapped

circuits because they have an a priori constraint on fanin.

The maximum fanout and the fanout distribution for a selection of MCNC circuits is

shown in Table 3.1. The �rst component gives the number of fanout zero nodes, which is

less than or equal to the number of primary outputs (a primary output is not necessarily

of fanout zero). A large proportion of the remaining nodes are fanout 1, with decreasing

incidence as the fanout value gets higher. Most circuits with a reasonable number of nodes

have some higher fanout values. Since these circuits are combinational, we do not have

high-fanout clock, clear or reset signals to deal with, but even when discussing sequential

circuits later we will ignore these special signals.
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Using data from the entire benchmark set, we have developed a simple heuristic algo-

rithm to generate reasonable fanout distributions given the circuit size, number of edges,

max fanout and number of I/Os. Essentially, we choose the n individual fanout values prob-

abilistically from a discretized exponential distribution which is modi�ed online to ensure

that
P

i i � fanout[i] = nedges at completion.

Name Size Max out Fanout Distribution

cht 102 46 36 32 28 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 ...

9symml 106 34 1 94 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 ...

C1355 115 16 32 24 8 32 8 0 0 0 1 8 0 0 0 0 0 0 2

bw 137 66 25 72 17 9 1 4 1 2 0 0 0 0 0 0 0 1 0 0 0 0 ...

C1908 178 25 25 51 31 33 7 11 5 2 3 2 1 1 0 1 0 0 1 1 2 0 ...

C3540 481 66 21 235 88 37 11 21 15 3 9 5 1 1 2 0 1 1 14 2 3 4 ...

x3 512 122 99 250 80 29 12 3 7 2 6 3 3 0 0 0 1 1 3 1 1 1 ...

ex4p 514 26 14 360 27 16 15 11 22 2 5 2 5 5 4 2 5 4 0 1 0 1 ...

C6288 559 43 32 35 450 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

alu4 1536 249 8 1267 67 41 32 33 14 13 11 3 2 9 9 5 4 0 0 1 1 0 ...

Table 3.1: Fanout distribution for selected MCNC circuits.

Though we take a relatively simplistic approach to modeling the fanout distribution,

we note that this type of distribution is nothing like what is seen for random graphs.

For random directed acyclic graphs of the same size (nodes and edges) as the MCNC

circuits cht and ex4p, we see fanout distributions of (23 19 18 23 19) and (79 67 75

66 83 77 67) respectively, which are nearly uniform. We point out that this is largely

by construction, since natural models for such random directed graphs result in bounded

fanin + fanout in order for the graphs to both be connected and to have a linear number

of nodes. However, there are no known ways of generating random directed graphs having

exponentially distributed fanout vectors which are connected and have a reasonable number

of edges.

The heuristic algorithm mentioned above is the model for fanout distribution that we

use in the default pro�le.

To some extent, the average fanout and the distribution of fanout values is dependent

on the LUT size k used in technology mapping. A circuit mapped to 2-LUTs will have a

much lower average fanout than a circuit mapped into 7-LUTs, in general: though more

logic is stored in a LUT (reducing the overall number of edges), the computed value is then

used by more other LUTs in the netlist, increasing the fanout value. As a basic rule, the
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average fanout follows the average fanin, with variations occurring based on the distribution

of I/Os and ip ops.

Circ outputs a number of other degree-related statistics about a circuit, such as the

average fanin and fanout for each combinational delay level, and the average fanout for

primary inputs (and later ip-ops) as opposed to internal nodes. These are not used in the

default pro�le, but we note that the information they provide is useful in the debugging of

CAD tools, and in analyzing place and route anomalies occurring when the tool encounters

outliers in the input.

3.3 Delay-Based Parameters of Combinational Circuits.

For a combinational circuit, de�ne d(x), the delay of node x, as the maximum length over

all directed paths beginning at a PI and terminating at x, corresponding to the unit delay

model. The delay, d(G) (or just d), of a circuit is the maximum delay over all nodes in

G. Using a similar empirical analysis to that previously mentioned, we have determined

a stochastic relationship between delay d and circuit size n in which d is roughly logn on

average.

Figure 3.2 shows a plot of size vs. combinational delay for 83 combinational MCNC

circuits. The dashed function is the line d = log(n), representing the expected delay for a

circuit with n nodes. The lower dotted line is d = log(log(n)), and the upper dotted line is

d = 3 � log(n) + log(log(n)). Together these represent the lower and upper bounds on delay

as modelled in the circuit pro�le7.

3.3.1 Circuit Shape.

Combinational delay is very important in the characterization of circuits, precisely because it

is so important in the design and synthesis process. De�ne the shape distribution, shape(G),

of a circuit as the number of nodes at each combinational delay level. Figure 3.3 shows a

small example circuit (cm151a), and its shape distribution (12, 4, 2, 2) displayed as a

7The dashed line is a best-�t regression line for the expected delay, and the default is to choose from a
Gaussian distribution centered on this line. The two dotted lines represent the imposed truncation on the

Gaussian distribution, i.e. the imposed upper and lower bound on the values which will be chosen. The

imposed lower bound is log(log(n)) and the imposed upper bound is n=3. These upper and lower bounds
given above and shown pictorially in the graph are chosen to include a majority of the points which are

feasible, while excluding outliers (such as negative delay) which might otherwise occur. Note that modeling

in this way underestimates the number of outliers often seen in practice, as evidenced in Figure 3.2.
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Figure 3.2: Size vs. combinational delay for MCNC circuits.

histogram. Note that even though the primary outputs are shown in circuit drawings we do

not count them in determining delay or the shape distribution. Rather, we de�ne \primary

output" as a property on the fanin node. While these examples are mapped to 4-LUTs, the

basic form of the distribution changes only proportionately for di�erent LUT-sizes.
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Figure 3.3: Shape distribution.

A characterization such as shape is not an obvious one to a circuit designer, who typically

thinks of a design in terms of block diagrams, physical layout, or a set of boolean equations.

However, looking at circuits from a graph-theoretic point of view, it is natural to try to

draw the circuit in the plane with nodes divided into delay levels, and the importance of

shape becomes clear.

The interesting thing about shape is that most circuits tend to have similar shapes.

Random directed acyclic graphs from natural distributions tend, as a group, to have a

di�erent typical shape. Table 3.2 shows a sample of shape distributions for MCNC circuits,
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Figure 3.4: Di�erent shape distributions.

along with a qualitative classi�cation of di�erent shape functions. Figure 3.4 shows four

shape classes and an example of each. Of the 109 combinational multilevel circuits in the

MCNC set, 36 have a shape which is strictly decreasing from the primary inputs (as comp),

53 have a conical shaped histogram, fanning out from the inputs to an extreme point, then

strictly decreasing (as rd73), 12 have the conical shape with a \bump" (as sqrt8ml) and

only 8 did not �t into these categories. This distribution of shapes is fundamentally di�erent

from degree-constrained random graphs (discussed earlier in Section 2.2.3 and in Chapter

6) which tend, as a group, to almost always have a basically \at" shape.

We performed experiments to determine whether there is any relationship between shape

and routability metrics such as wirelength per edge. However, no signi�cant correlation was

found to exist for the MCNC data.

Name Size Delay Shape Distribution

cht 102 2 47 44 11

9symml 106 6 9 57 24 7 6 2 1

C1355 115 4 41 24 8 10 32

bw 137 4 5 57 46 17 12

C1908 178 10 33 23 13 14 22 27 20 6 10 8 2

C3540 481 12 50 82 104 76 44 29 24 22 17 16 10 5 2

x3 512 5 135 202 123 40 10 2

ex4p 514 5 84 245 124 42 14 5

C6288 559 28 32 76 30 30 30 30 30 30 30 30 30 30 30 30 30 29 7 2 2 2 2 2 2 2 2 2 2 3 2

alu4 1536 7 14 692 518 198 80 21 11 2

Table 3.2: Shape distribution for selected MCNC circuits.

Though the example of Figure 3.3 shows both primary inputs at the last combinational
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delay level and having zero fanout, neither is typical. We also extract and use the shape

distribution of primary outputs (POShape) in the default pro�le of circuits. POShape is a

vector of the number of output nodes at each combinational delay level.

3.3.2 Edge-Length Distribution.

Since nodes have a well-de�ned delay, we can de�ne the length of a directed edge by

length(x; y) = d(y) � d(x). Clearly, the edge length is always between 1 and delay(G),

and we de�ne a related edge length distribution.

In the example of Figure 3.3 there are 24 edges of length 1, and 2 each of length 2 and

3, so the edge length distribution is (0,24,2,2,0). (Note the placeholder for absent length-0

edges; this is just so that we can have all vectors indexed similarly from 0).

Table 3.3 shows a sample of edge-lengths from the MCNC circuits. We �nd that almost

all circuits have an edge-length distribution with a very similar structure: a large number

of edges of length 1, and a quickly falling distribution over the combinational delay of the

circuit. This type of distribution is not at all what one would expect of a random graph

where the probability of any two pairs of edges being connected is the same. Empirically,

such an edge length distribution is not common for random directed graphs arising from

natural models (see Section 6.1.).

In the default pro�le, we model the edge length distribution by probabilistically sampling

a discretized exponential distribution, which closely approximates this behaviour8

Name Edges Delay Edge-Length Distribution

cht 102 2 0 202 0

9symml 106 6 0 271 41 6 6 0 0

C1355 115 4 0 216 32 0 32

bw 137 4 0 349 93 11 6

C1908 178 10 0 319 78 37 14 11 11 8 16 15 0

C3540 481 12 0 1017 317 143 28 18 13 14 13 6 0 5 1

x3 512 5 0 1071 139 49 8 2

ex4p 514 5 0 1248 167 8 3 0

C6288 559 28 0 1094 70 66 66 66 66 66 66 66 66 68 70 65 62 63 2 0 0 0 0 0 0 0 0 0 0 1 0

alu4 1536 7 0 4494 757 125 23 1 0 0

Table 3.3: Edge-length distribution for selected MCNC circuits.

8There are no appropriate statistical techniques to formalize this, so \closely approximates" means that

the distributions appear reasonable when compared by hand.
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3.3.3 Fanout Shape.

Another natural shape characterization is the distribution of total fanout by combinational

delay level. The fanout distribution by delay level for our sample circuits is shown in

Table 3.4. It is interesting that fanout by delay level is close to a strictly decreasing function

for all of the circuits sampled. (However, note the exceptions in C1908 and C6288.) Since

the shape is conical for many of these circuits, we make the observation that the average

fanout of primary inputs is higher than for other nodes. In fact, this is largely true when

the number of nodes on a level is smaller than that of its succeeding level in the shape

function.

Even though this distribution provides interesting information about the structure of

combinational circuits, in practice it results in over speci�cation in the pro�le. This is

because the shape, edge-length and fanout distributions already mentioned constrain the

delay-fanout enough that we can calculate tight bounds algorithmically. Thus, we do not

currently generate delay-fanout as part of the statistical pro�le of combinational circuits.

Name Edges Delay Delay-Fanout Distribution

cht 102 2 157 1 0

9symml 106 6 226 60 24 7 6 1 0

C1355 115 4 112 32 72 64 0

bw 137 4 267 124 56 12 0

C1908 178 10 167 53 36 87 67 51 17 19 10 2 0

C3540 481 12 558 338 204 142 85 74 53 42 37 21 18 3 0

x3 512 5 874 297 82 14 2 0

ex4p 514 5 868 376 135 33 14 0

C6288 559 28 1056 119 58 58 58 58 58 58 58 58 58 58 58 58 62 61 6 2 2 2 2 2 2 2 2 2 3 2 0

alu4 1536 7 2867 1700 529 197 79 20 8 0

Table 3.4: Delay-fanout distribution for selected MCNC circuits.

3.4 Reconvergence in Combinational Circuits.

Reconvergence occurs when multiple fanouts from a single node x in the circuit branch back

together at a later point y|we say the circuit is reconvergent at y. Many circuits exhibit

reconvergent fanout, but in widely varied degree, so an appropriate characterization is to

quantify this amount.

De�ne the out-cone of a node x (in a circuit with no directed cycles) to be the recursive
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fanout of x: the subgraph induced by all nodes reachable on a directed path from x.

Figure 3.5 shows out-cone(a). Edges which are not in the out-cone, but are incident with

nodes which are, are shown as bold dashed lines.

a

bc

d

e

f

g

h
i

j

k

m

Figure 3.5: Reconvergence in combinational circuits.

For circuits mapped to 2-LUTs, de�ne the reconvergence number of node x, R(x), as

the ratio of the number of fanin-2 (i.e. \reconvergent") nodes in out-cone(x) to the size of

out-cone(x):

R(x) =
j fy 2 outcone(x) s.t. y has fanin 2 in outcone(x)g j

joutcone(x)j
(3.1)

This value arises from its combinatorial interpretation. By Kircho�'s theorem [31, pp.

49-54], the numerator counts the log2 t where t is the number of spanning out-trees9 rooted

at x in the directed graph representation of the circuit. Essentially, each reconvergent node

represents a choice of two alternatives in the construction of a spanning out-tree, which

multiplies the number of trees by two (adds 1 to log2(t)). Each non-reconvergent node

represents a \required" in-edge, hence does not a�ect the number. The purpose of taking

the logarithm is simply to obtain tractable numbers when dealing with large graphs. The

denominator then scales that value with the size of the out-cone so that di�erent graphs

can be compared based on their relative amount of reconvergence, which otherwise would

be dominated by the size of the circuit10.

The intuitive argument for counting spanning out-trees is clear: a single spanning out-

tree has zero reconvergence, and the number of spanning out-trees scales with the number

9A spanning out-tree rooted at r is a spanning tree such that each node, except the designated root node,

has exactly one fanin. Hence each node lies on a unique directed path from the root.
10Analysis shows that there is no signi�cant statistical correlation between R and n, so this adjustment

is su�cient.
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of ways that reconvergent fanout occurs in the circuit. This is even more compelling when

we generalize the reconvergence calculation to sequential circuits in the next chapter.

For circuits mapped to k-LUTs, k > 2, the reconvergence calculation generalizes, both

algorithmically and combinatorially, if we set the numerator as the sum, over all nodes y in

the out-cone of x, of log2(fanin(y)). Thus 0�R(x)� log2(k).

R(x) =

P
y2outcone(x) log2(fanin(y))

joutcone(x)j
(3.2)

To identify the reconvergence R(G) present in an entire circuit G, we compute the

weighted (by out-cone size) average of R(x) for all primary inputs x in G. Thus 0�R(G)�

log2(k) continues to hold for circuits. In this way, highly reconvergent small portions of a

circuit will not unduly a�ect the overall quanti�cation.

The observed reconvergence numbers for the 198 combinational and sequential 2-LUT-

mapped MCNC circuits vary between 0.0 and 0.92, with a relatively even distribution of

circuits through the range 0.0 to 0.85. R is somewhat a measure of complexity of the

logic|we �nd that intuitively simple, tree-like, logical functions have low R (e.g. parity:

R = 0:00, decod: R = 0:00, mux: R = 0:15), and more complex functions have higher

R (e.g. alu2: R = 0:52, sqrt8ml: R = 0:53). Combinational logic and the combinational

parts of sequential arithmetic logic fall mostly in the range 0.0 to 0.6, whereas the combi-

national parts of �nite state machines are mostly in the range 0.5 to 0.85 (9 of the 10 most

reconvergent circuits are �nite state machines). Table 3.5 shows the reconvergence numbers

for a sample of combinational MCNC circuits for which we have some functionality informa-

tion. Note that this information is inherently biased, because most circuits have no listed

description and were left out of the table. Thus we can make only the vague observations

about relative complexity of the logic.

In a physical sense, there is a high degree of correlation between R and the other char-

acteristics of a circuit; in particular, the number of edges (when k>2), and the shape and

out-degree functions. Using the examples of Figure 3.4, circuits which have an exaggerated

conical shape, such as rd73 (R=0:40) and sqrt8ml (R=0:53) tend to have higher recon-

vergence values, whereas circuits like comp (R=0:22) are lower. This also tends to explain

the di�erence between combinational and sequential circuits because the �rst \sequential

level" of most �nite state machines tends to be very conical. A conical shape arises because
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Name R Description

parity 0.00 parity tree

decod 0.00 simple decoder

count 0.15 counter

mux 0.15 multiplexor

C1355 0.19 error correcting

my adder 0.21 adder

C5315 0.26 ALU and selector

dsip 0.27 sequential encryption

des 0.30 data encryption

z4ml 0.30 2-bit adder

9symml 0.31 count ones in inputs

C2670 0.32 ALU and control logic

C7552 0.34 ALU and control logic

C880 0.36 ALU and control logic

s208 0.38 sequential multiplier

s838 0.41 sequential multiplier

s1196 0.41 sequential \logic"

C1908 0.44 error correcting

i10 0.47 combinational \logic"

sbc 0.47 sequential snooping bus controller

C3540 0.50 ALU and control logic

alu2 0.52 ALU

sqrt8ml 0.53 square root function

mult16a 0.54 sequential 16 bit multiplier

mult32b 0.54 sequential 32 bit multiplier

C432 0.58 priority controller

C6288 0.63 16 bit multiplier

apex4 0.63 combinational logic from a PLA

s400 0.63 sequential FSM: tra�c light controller

clma 0.63 sequential bus interface

bbtas 0.76 �nite state machine

pdc 0.79 �nite state machine

s1488 0.83 �nite state machine (controller)

dk16 0.89 �nite state machine

Table 3.5: Reconvergence for selected MCNC circuits.

of a low I/O to logic ratio, natural because I/Os are \reused" over time in a sequential

circuit.

Figure 3.6 shows examples of three di�erent small circuits. The �rst, cm42a is a decoder,

and has no reconvergence at all. The second, rd53, is combinational control logic, and has

a reconvergence number of 0.40. The third is the �rst level of a �nite state machine (we

just converted ip-ops to primary inputs and primary outputs and dropped any logic past

the ip ops). Its computation of reading the inputs and producing an encoded state has

a reconvergence number of 0.69, the largest of the three.
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Figure 3.6: Circuits with Varying Reconvergence.

3.5 Locality in Combinational Circuits.

To this point we have concentrated on delay as the fundamental characteristic of a circuit.

Both the shape and edge length functions are delay based. This di�ers from previous

work on wireability analysis, outlined in Section 2.2.2, which uses Rent's Rule and other

stochastic measures of wirelength to describe the physical characteristics of a circuit.

In the generation process, it is clearly necessary to introduce some form of local clustering

into a synthetic circuit. In this section we visit the issue of local structure in combinational

circuits, with the goal of better understanding wirelength issues in the context of our existing

delay based combinational model. Speci�cally, we will de�ne metrics for wirelength and edge

connections between delay levels and give an algorithm for ordering and positioning nodes

within their combinational delay which allows us to calculate these metrics.

The best method of measuring the real wirelength and other routability parameters

would likely be to execute placement and global routing on a gate array and measure the

Manhattan wirelength, as would be performed by layout tools such as vpr [8], Altera's

max+plus2 [4] or Xilinx ppr [73]. However, our purpose is to quickly determine a small

amount of information necessary to characterize the locality in a circuit, not to do a complete

and expensive physical layout.

Our process for extracting locality information is to determine an ordering of the nodes

within each combinational delay level, and then an integer x-coordinate positioning for each

node which respects the order: in other words, an embedding of the circuit graph on the

integer grid, where the y-coordinate is constrained to be the node's combinational delay.

Given such a positioning u:x for each node u, we can establish a number of metrics:

De�ne spread(i) as the di�erence between the maximum and minimum x coordinates of
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nodes on level i (i.e. the \width" of level i). De�ne span(u) for node u as the maximal dis-

tance between the coordinates of its fanins. De�ne wirelength(u,v), for edge e = (u; v) to be

ju:x�v:xj, wirelength(u), for node u, to be the sum over all fanins u of v of wirelength(u; v),

and wirelength(C) for a combinational circuit C to be the sum, over all nodes u in C, of

wirelength(u).

We note that the wirelength of a circuit in this sense is a layout into a shape structure.

Thus it would be related to, but not necessarily the same value as, wirelength after embed-

ding into a standard cell array, a gate array, or an FPGA. Empirically, though there is a

strong linear relationship between the two forms of wirelength, the variance is large enough

that the version based on shape would not, in itself, be a valid predictor of wirelength or

routability in a gate array or FPGA.

To order and position the nodes for these wirelength and span calculations, we use an ap-

proach similar to that used by Gasner, North and Vo in the DOT package [30], used to draw

many of the pictures in this thesis. The basic approach for ordering is to use the barycentric

heuristic [22] to iteratively reduce crossing number between delay levels. We then diverge

from the DOT approach to perform a more straightforward method of positioning nodes

with integral coordinates which maintain the ordering but reduce wirelength. Sections 3.5.1

and 3.5.2 discuss these two aspects of the algorithm, then Section 3.5.3 discusses the results

of executing the algorithm on combinational MCNC circuits.

3.5.1 Node Ordering Within Delay Levels

The problem of node ordering on a DAG G with delay d is to compute \good" orderings

of the nodes at each level i, 0 � i � d. The word \good" in the context of graph drawings

is itself a new area of research, and there is no uniformly accepted metric of goodness.

However, previous research [5, 22, 47] has determined that minimizing the crossing number

not only yields drawings which are more viewable, but it also tends to illustrate symmetry

and minimize the length of the drawn edges. Furthermore, since our ordering problem is

similar to the placement problem of standard-cell layout, minimizing the crossing number

is clearly desired. The crossing number of a graph and a given ordering is the number of

pairwise crossing edges in the straight-line drawing of the graph when nodes are constrained

in the y coordinate to their delay level and in the x coordinate to the determined ordering.

Figure 3.7 shows a drawing (by dot [47]) of the MCNC circuit comp which illustrates
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Figure 3.7: Minimizing crossings for a better \drawing."

the local e�ects of minimizing the crossing number. Though this drawing retains many

crossings, a natural e�ect of the algorithm is to separate the loosely connected portions of

logic. Our goal in this section is to take advantage of this separation in order to determine

the amount of local structure present in a circuit. Because a drawing in this way corresponds

to our delay-based model of circuits, this is also a natural way to impose local structure on

a circuit later in the generation algorithm.

The problem of layout to minimize the crossing number is known to be NP-hard [21],

even when d = 1 (i.e. the graph is bipartite and has two levels). Thus only heuristic

algorithms are possible.

We will use a method similar to that originally used by Sugiyama et. al. [65], analyzed

by Eades and Wormald [22] and used by Gasner et. al. [30] for the dot program.

The basic algorithm is as shown in Figure 3.8. Note that \current order" and \best order"

refer to data structures which hold the ordering for all levels of the graph.

On even passes, we treat level i� 1 as �xed, and resort the nodes at level i based on the

average ordinal value of their fanins. For odd passes we use level i+ 1 as �xed and look at

fanouts. The initial order is simply a random ordering of nodes for each level.

The algorithm converges very quickly|about 10 iterations su�ce for even large circuits

(this is pointed out by Gasner et. al. [30] as well). The crossing number typically decreases

by about a factor of 10 from the randomized to the \placed" version. We note that in

random graphs generated as per Section 6.1, the crossing number decreases only by a factor

of about 3.
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best order = a random order

compute crossing(best order)

current order = best order

iter = 0

loop

/* Compute a new current order */

for (j = 0; j < d; j ++)

/* Working on combinational delay level j */

if (iter is even)

compute the average fanin index of each node at level j

resort nodes at level j based on average fanin index

else

compute the average fanout index of each node at level j

resort nodes at level j based on average fanout index

end if

end for

iter++

compute crossing(current order)

exit loop if crossing(current order) > crossing(best order)

best order = current order

end loop

Figure 3.8: Algorithm to compute the crossing number.

Computing the crossing number.

In order to execute the heuristic algorithm above, we need to calculate the crossing number

for edges between two combinational delay levels. The obvious approach is to examine each

pair of edges to see if they cross, which can be accomplished in O(n2) time|we have O(n)

nodes and also O(n) edges between any two delay levels, under the assumption of constant

fanin (otherwise the obvious algorithm becomes O(n4)). For large circuits, a quadratic

algorithm is too expensive. Fortunately, we can give an easy to implement O(n logn)

algorithm. To our knowledge, no such algorithm has been previously given for computing

the crossing number.

Problem: Given a bipartite graph G(X; Y ) and sorted orders 1::jX j and 1::jY j for the

nodes of X and Y , determine the number of pairwise crossing edges, that is the number of

pairs of edges (x1; y1) and (x2; y2) such that x1 < x2 and y2 < y1 in the respective orderings

of X and Y .
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Our solution uses a divide and conquer approach which, interestingly enough, actually

allows us to count more crossings than we examine (i.e. we can count O(n2) crossings in

O(n logn) time.

Let nx = jX j and ny = jY j, and let xi (yi) denote the i'th node in the sorted order of

X (Y ).

De�ne the following sets of nodes:

A: nodes xi in X such that i � nx
2

B: nodes xi in X such that i > nx
2

C: nodes yi in Y such that i �
ny
2

D: nodes yi in Y such that i >
ny
2

Then we can classify each edge as AC, AD, BC or BD. There are 4 � 4 = 16 types

(combinations) of edge crossings.

We calculate the number of crossings from X (A + B) to Y (C + D) by dividing the

edges into their categories (trivially in O(n) time) and decomposing the problem as follows:

crossings(A+ B;C +D) =

crossings(A+ B;C) /* recursive call */

+ crossings(A+B;D) /* recursive call */

+ num cross(AC �AD) /* separate computation */

+ num cross(BC � BD) /* separate computation */

+ jADj � jBCj /* sizes only */

The recursive call \crossings(A + B;C)" refers to the sub-problem on the nodes (and

induced edges) not incident on D. The call to num cross(AC � AD) will be a separate

routine to count all crossings between an AC and an AD edge, and no others.

Since C and D partition Y evenly, each recursive call is on at most one half of the

maximum edges to the preceding call. Thus, as long as we can �nd a linear time algorithm

for num cross() the entire algorithm will be O(n logn).

The cases for num cross() are symmetric, so we will work on num cross(AC�AD) only.

Assume that the edges have been divided into AC and AD edges already (easily O(n) time),

and are still sorted by xi value in the ordering. Then an AC edge (xi,yj) and AD edge

(xk,yl) cross if and only if i > k. We know that j < l from the edge classes.

We take a single pass through A, and count the number of AC edges at each location i.

Then we scan again, summing, to calculate the number of AC edges to the right of location
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i. In a third pass, we look at every AD edge, which necessarily crosses the number of AC

edges with x coordinate to the right of the current location, which is the previous sum

vector. This correctly calculates num cross(AC �AD) in linear time. Note that we do not

count the AC � AC edges here, or we would be double counting them.

The proof that the algorithm works is a simple case analysis.

AC-AC { counted only in crossings(A+B;C)

AC-AD = AD-AC { counted only in num cross(AC �AD)

AC-BD = BD-AC { cannot cross

AC-BC = BC-AC { counted only in crossings(A+B;C)

AD-AD { counted only in crossings(A+B;D)

AD-BD = BD-AD { counted only in crossings(A+B;D)

AD-BC = BC-AD { must cross; counted in the product

BC-BD = BD-BC { counted only in num cross(BC � BD)

BC-BC { counted only in crossings(A+B;C)

BD-BD { counted only in crossings(A+B;D)

We conclude that crossings(A+ B,C +D) can be calculated in O(n logn) time.

3.5.2 Coordinate Positioning of Nodes

To position nodes, we perform another iterative step.

From the previous step, the order of nodes within each delay level is �xed. De�ne width

to be equal to the maximum size of any delay level, and coordinates u:x for every node u,

which equally proportions the nodes at level i across width.

The iterative step is similar to the ordering algorithm, except that we do not exchange

nodes, just move them closer together or further apart within the ordering. On even iter-

ations we de�ne the centre of a node u as the average x coordinates of its fanins. On odd

iterations we use its fanouts.

For each node u at level i, we compute centre(u), and move u:x as far as possible to

center(u), without going past u's neighbour.

Wirelength, as previously de�ned, is the sum of the lengths of each edge. The length of

an individual edge is the di�erence in the x coordinates of its endpoints.

As in the ordering step, it takes only a small number of iterations for the wirelength to
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Figure 3.9: Locality placement for rd73.
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Figure 3.10: Locality placement for C432.

hit a minimum. At that point, we can also calculate the other metrics (span and spread)

mentioned earlier.

3.5.3 Discussion

Though our goal in doing this pseudo placement is to extract metrics like spread and average

span, it is interesting to see the e�ects of the placement on real circuits. We note that a

complete algorithm that takes into account room for edges to be drawn would result in node

coordinates that mimic the results of dot.

Figure 3.9 shows a drawing of the nodes in rd73. A `.' indicates a node position, and

a `*' indicates a node which has fanout greater than ten. We see a very balanced local

structure below the inputs level, but a wide spreading of the primary inputs.

Figure 3.10, on the other hand, shows a circuit which has a slightly less balanced struc-

ture. In addition to high-fanout nodes, we see \holes" in the layout which indicate areas

where nodes are drawn apart from their neighbours by local structure.

Figure 3.11 shows a structure which is further from balanced. We observe the wide

spread of nodes at delay 1, for example.

Our �nal example is shown in Figure 3.12. This is a circuit which exhibits a great deal

of local structure. We observe the tree-like way that terms are collected from the inputs to
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Figure 3.11: Locality placement for rd84.
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Figure 3.12: Locality placement for i3.

outputs: a wide spread, with lots of holes, as the delay increases. This indicates that nodes

are more closely related to their close neighbours in index value.

The metrics of average in span and spread for each delay level values can be seen as

quanti�cations of the locality present in the circuits: A high average node span indicates

that nodes draw from a wider range of fanins, and that the circuit is less local than would

otherwise be the case. The spread of a level, compared to the number of nodes it has, gives

information about how closely the nodes at a level share fanins and are pushed together by

the wirelength minimization process.

An important aspect of locality that these particular metrics (span and spread) do

not capture is edge crossings, in particular the distribution of crossings over x coordinate

\slices" of the drawing. It would be very useful in the generation algorithm to have more

information of this type, but we leave this particular topic to future work. As well, though

we can extract this information from speci�c existing circuits, we have not yet investigated

methods to model this type of locality in the default pro�le (though this could be done).

Thus it is currently useful only for generating \clone" circuits, as will be discussed in later

chapters.

It is important that the locality algorithm is fast. Extraction of local information from

a medium sized circuit such as alu4 uses one tenth the cpu time of a complete place and

route11.

11This does not necessarily make the method a competitor for standard placement algorithms, because

we are not restricting the placement to a minimal size square grid.



Chapter 4

Characterization of Sequential

Circuits

Combinational circuits have limited application, and any general CAD tool or FPGA must

be able to deal with sequential circuits. In this chapter, we expand our characterization of

combinational circuits towards this goal.

Before we can proceed it is necessary to have a more detailed model of what we mean

by a sequential circuit. In Section 4.1 we describe such a model, de�ning sequential circuits

in terms of combinational building blocks. Section 4.2 describes the basic statistical char-

acterizations arising from the model and our empirical analysis with the MCNC benchmark

circuits, in particular the issue of \ghost" inputs and outputs arising in the decomposition of

a sequential circuit. Section 4.3 extends the combinational characterization of reconvergence

from the previous chapter to sequential circuits.

4.1 The Sequential Model.

We model a sequential circuit as a hierarchy of two or more combinational circuits connected

with ip-ops and \back-edges." A single level sequential circuit is simply a combinational

circuit.

For this work we consider only synchronous sequential circuits with a single global clock.

This ensures that there is a well-de�ned notion of time in the logical operation of the circuit,

and we can de�ne \sequential levels" on the basis of time increments.

In addition to a single clock restriction, we ignore reset/preset/clear lines, assume uni-

44
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directional I/O pins, and do not allow internal tristate bu�ers. None of these are major

restrictions in a theoretical sense: our model can be generalized to allow for circuits to be

analyzed or generated hierarchically, so multiple clocks could be hidden within sub-circuits

generated separately without a great deal of di�culty. (The generalized model has not

yet been implemented in circ and gen.) Similarly, bidirectional pins and tristates can be

simulated in standard logic.

In a practical sense, however, we point out that bidirectional pins and the correct phys-

ical layout of busses in a design are important, and a commercial system would certainly

deal with them explicitly. This is particularly true for FPGA architectural experiments, as

tristates or other bu�ers could be consumable resources and bidirectional pins may (depend-

ing on the architecture) introduce greater stress on the routing network than do separate

input and output pins. Also, though clocks are often special resources, FPGAs have a lim-

ited number of them, and the software may have to deal with some clocks or reset lines as

ordinary logic signals. We leave implementation of these detailed features for future work.

For simplicity we assume that the only registers allowed are D-type ip-ops (as is

common for most commercial FPGAs). Thus all nodes are of type PI (primary input),

LOG, (logic) or DFF (ip-op). Recall from the previous chapter that PO (primary output)

is a property of a logic node, not a separate node type.

Our abstract model of a sequential circuit is shown in Figure 4.1. The �gure shows

a 3-level sequential circuit. The de�nitions of primary input, primary output, and all

measures of fanout remain as described in Chapter 3. The sequential level, level(x) of node

x is de�ned as 0 if x is a primary input, 1 + level(y) for a ip-op x with input y, and

MIN(level(yi)) over all inputs yi to x otherwise. Notice that all primary inputs must thus

occur in sequential level 0. De�ne an edge (x; y) to be a forward-edge if level(x)= level(y)

and a back-edge if level(x) > level(y). By de�nition, any other edge is necessarily from a

node at sequential level i to a DFF at level i+ 1, and we call it a FF-edge.

It is important to point out that, though this model could appear to apply only to

certain types of circuits which have a pipelined appearance, it does not actually preclude

other views of sequential connections. Rather we just de�ne sequential levels in this way.

With the introduction of sequential levels, we have to modify the de�nition of combi-

national delay: for node x, delay(x) = 0 if x is a PI or a DFF and one greater than the

maximum delay over its fanins, otherwise. The de�nition of edge-length is as before, even if
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Figure 4.1: Abstract model of a 3-level sequential circuit

the nodes are at di�erent sequential levels, except that edges to a DFF are always of length

one. The size of the circuit is n=nLOG+nPI+nDFF .

4.2 Characteristics of Sequential Circuits.

There are a number of new sequential characteristics arising directly from the model, and

we describe them here. Note that all empirical results are based on the MCNC circuits, as

mentioned previously in Section 3.1.

4.2.1 Basic Characteristics

The division of a circuit into its combinational sub-circuits introduces the concepts of se-

quential shape, the number of nodes in each successive sequential level, and the number of

sequential levels. We also have counts of the numbers of ip-ops and back-edges. Table 4.1

shows this information for a sample of sequential MCNC circuits.

The number of I/Os is greatly decreased for sequential circuits, and we �nd that the

Rent-like parameterization that we used before is no longer an adequate reection of the

I/O consumption for the circuit. In fact, we �nd that there is no real statistical correlation

between the size of the circuit and the number of I/Os. In the default pro�le for sequential
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Name Nodes IOs nDFF Edges nBack Levels Seq. Shape

s838 167 37 32 556 256 2 169 65

s953 214 39 29 739 184 3 191 65 3

styr 238 19 5 814 219 2 207 45

planet 266 26 6 910 300 2 169 110

sbc 372 96 27 1273 300 2 388 51

mm30a 467 63 90 1697 235 2 500 90

dsip 1362 425 224 5440 896 2 1590 224

s298 1930 9 8 6944 2218 2 1636 305

bigkey 1699 425 224 6108 1344 2 1591 560

clma 8361 127 31 30114 5596 3 5810 2640 3

Table 4.1: Sequential circuit characteristics for selected MCNC circuits.

circuits, we use one quarter of the combinational I/O calculation as an upper bound on the

number of I/Os, then choose the number of PI and PO for the circuit uniformly between 2

and the upper bound. In practice this yields reasonable values.

We �nd that the number of sequential levels is a small constant. Recall that a circuit

with one sequential level is a combinational circuit. Of 78 sequential MCNC circuits, 69

have two sequential levels, 6 have three levels, and there is one circuit each of 4, 7, and 8

sequential levels. In all cases we saw, the majority of the combinational logic lies in the

zeroth sequential level. We typically see successive sequential levels of logic having less than

half the logic of the preceding level.

The number of ip-ops in a circuit also has little correlation to the amount of logic

in the circuit. This can occur for many reasons. For example, the designer of a state-

machine has the choice of encoding the state directly or in logarithmic size with extra

decoding logic. Thus the number of ip-ops in the defaults �le is also calculated with a

wide degree of variation. We use a Gaussian distribution around a constant-deated square

root of the number of nodes as an approximation. See Appendix A. Note that this roughly

models the number of ip-ops as the number of I/Os in a combinational circuit, not an

unreasonable thing looking at the model. In FPGAs, the number of available ip-ops is

usually proportional to the number of LUTs (often 1:1), but this is more to do with the

design cost of adding the ip-ops and with logic block homogeneity than with the raw

numbers of ip-ops required by circuits.

The number of back-edges varies between one and two times the number of nodes at

the �rst sequential level, and we model it as such.
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Figure 4.2: Example decomposition of a 2-level sequential circuit.

4.2.2 Decomposing Sequential Circuits.

Our model de�nes a sequential circuit based on its combinational sub-circuits, back-edges,

and ip-ops. As part of the characterization process, we want to decompose a sequential

circuit into its component parts. To describe the sequential interface within combinational

sub-circuits we introduce the concepts of a ghost input port and ghost output port. Intu-

itively, these are points that connect di�erent sequential levels (combinational sub-circuits).

These are best understood with a small example. Figure 4.2(a) shows a sequential circuit

with three primary inputs, one primary output, two ip-ops (hence two ip-op edges) and

two back-edges. The decomposition of this circuit is shown to the right: Figure 4.2(b) shows

the level-0 sub-circuit with 3 primary inputs and one primary output. We have two ghost

input ports (GI) which record the existence of back-edges from a succeeding level, and two

ghost output ports (GO) which record the location of back-edges connected to a preceding

level or, as in this case, edges to ip-ops at a succeeding level. Similarly, Figure 4.2(c)

shows the level-1 sub-circuit with two primary inputs (which used to be ip-ops) and two

ghost outputs. Note that GI and GO ports correspond more closely to edges than nodes,

since a single node can have up to k� 1 ghost inputs, and max out ghost outputs. We note

that in any sub-circuit, a zero-fanout node must have at least one GO or PO attached to

it.

In the parameterization of the combinational sub-circuits, it is not su�cient simply to

record the number of ghost inputs and outputs, as this ignores a great deal of information

about the interface between sub-circuits. In particular, if we are to use this model as the
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basis for a generation algorithm, it is important to ensure that sub-circuits are compatible.

For a single GO and GI to be compatible, the combinational delay of the node with the GO

must be less than that of the node with the GI (i.e. it is legal/sensible to connect the GI

to the GO in the context of combinational delay). For two sub-circuits to be compatible,

there must exist a matching of GI and GO between them, all of which are compatible.

To deal with compatibility issues between sub-circuits, we introduce the GI and GO

shape within sub-circuits. De�ne the vector GIshape[i] as the number of ghost inputs at

combinational delay i, i=0::d, and GOshape[i] similarly for ghost outputs. These will intro-

duce a topological constraint on the connections between di�erent sub-circuits in addition

to simply the number of connections. In practice, we �nd that these vectors are important,

because they often uncover \quirky" aspects of di�erent circuits. Note that the GIshape for

one level and the GOshape for the other level in a 2-level circuit will roughly correspond,

but would only correspond exactly if all edges in the circuit were unit-edges, which is not

usually the case.

For the circuit in Figure 4.2(b) we have GIshape = (0,0,2) and GOshape = (0,2); Fig-

ure 4.2(c) has GIshape = (0,0) and GOshape = (0,2). We note that ip-ops are not

included in the GIshape of a level, because they are already recorded in nDFF (a purely

semantic detail).

As an example, the circuit clma has 3 sequential levels:

Level 0:

GIshape = ( 526 1245 664 354 451 429 860 502 295 48 37 25 22 2 4 0 0 )

GOshape = ( 0 0 0 8 4 7 1 2 0 2 0 0 0 1 1 2 1 )

Level 1:

GIshape = ( 74 45 3 8 2 0 0 0 0 0 )

GOshape = ( 1289 1282 412 671 372 364 555 360 151 4 )

Level 2:

GIshape = ( 0 0 )

GOshape = ( 136 2 )

We �nd that the GI and GO shapes of MCNC sequential circuits do not statistically

show any common shape beyond GIshape[i] being roughly proportional to shape[i] within

sub-circuits. We have a heuristic process for generating reasonable GI and GO shapes which

are compatible, and the interested reader is referred to the gen source-code for details.

Note that the shape distributions for the combinational sub-circuits of sequential circuits

di�er from those of purely combinational circuits. This is because the second sequential

level often has many more ip-ops (inputs) than is typical for a combinational circuit of
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the same size.

4.2.3 Extensions to the Sequential Model.

With ghost input and output ports now de�ned, it is worth pointing out that the sequential

model can be generalized to describe arbitrary levels of hierarchy, rather than just the

interface between multiple levels in a simple sequential circuit.

For example, we can de�ne a purely combinational circuit as a hierarchy of combinational

sub-circuits simply by combinational speci�cations and a compatible GI and GO interface

(without requiring that the circuit have ip-op or back-edges). In combination with a

partitioner this would allow us to form a partition tree model of an input circuit.

It would also be interesting to use this mechanism to describe an interface to other forms

of circuits (e.g. memory), or to deal with circuits at the block diagram level.

The ability to generalize the use of ghost inputs in generation and outputs would open

the door to a hierarchical generation process.

In this dissertation, however, we will restrict ourselves to simple sequential circuits.

4.3 Generalizing Reconvergence.

In Section 3.4 we de�ned the reconvergence number of a node r in a combinational circuit

as the proportion of reconvergent nodes to total nodes in the out-cone of r. We also pointed

out the combinatorial signi�cance of the numerator as the log
2
t, where t is the number of

spanning out-trees rooted at r.

Recall a spanning out-tree T (G) of a directed graph G with respect to a designated root

node r is a spanning tree of G such that, for all x in G there is a (necessarily unique)

directed r-x path in T .

Recall that the combinational out-cone of r in G (which we now denote Gc
r) is de�ned

recursively as follows: r is in Gc
r and if x is in G

c
r and xy is a forward edge of G then the node

y and the edge xy are also in Gc
r. De�ne the sequential out-cone, Gs

r of r to be identical,

but without the restriction of xy being a forward edge. Then Gc
r is always a subgraph of

Gs
r.

Using the sequential out-cone, the numerator in our reconvergence calculation no longer

corresponds exactly to the number of spanning out-trees. Consider the sequential circuit
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Figure 4.3: Reconvergence in a circuit.

represented in Figure 4.3. The combinational out-cone of node 0 is shown within dotted

lines from 0. The number of reconvergent nodes in the combinational out-cone of node 0 is

3 (nodes 3, 9 and 11), and there are 23, or 8, spanning out-trees. However, the sequential

out-cone of node 0 additionally includes vertex 5, and edges (11,5), (5,6) and (9,4). The

number of reconvergent nodes in the sequential out-cone of node 0 is �ve, (nodes 3, 4, 6, 9,

and 11), but the number of spanning out-trees is 15, not 32. The reason for this is that the

choice of edges is no longer independent: no spanning out-tree can contain both (5,6) and

(7,11).

De�ne the n by n matrix K with respect to a digraph G as follows:

Kij =

8>>>><
>>>>:

in-degree(i) i = j

�1 i 6= j; (i; j)2 E

0 otherwise

We note that Kii is 0 if and only if i is a source in G, and that the sum of the entries

in any column i is 0. Furthermore, if the vertices are in topological order1, K is upper-

triangular if and only if G is acyclic.

Now consider the graph Gs
r (with n0 nodes) for digraph G with root r. Let Kr be the

minor with respect to r of the Kircho� matrix of Gs
r (i.e. the matrix formed by removing

1A topological order on the vertices of a directed acyclic graph G is any order � such that the existence

of edge xy implies that �(x) < sigma(y). Such an order always exists for an acyclic digraph.
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row and column for r, resulting in a square matrix of dimension n0
�1). They we can apply

the following to count the number of spanning out-trees from r in Gs
r.

Theorem (Kircho�, c.f. [31]) The number of spanning out-trees rooted at r in a �nite

digraph G is equal to the determinant of Kr.

The basic idea of the proof is that as the determinant of this matrix is broken into

terms by a standard linear algebra decomposition, the number of leaf corresponds to the

number of trees from a given root vertex. The combinatorial justi�cation for this process

is explained fully in the book by Gibbons [31][pages 49-54], and the interested reader is

referred there for the details.

For our purposes here, it is su�cient to explain the process with our example (Fig-

ure 4.3).

The intuition is clearer for acyclic graphs. Ignoring all back edges, the out-cone of node

0 consists of the 12 nodes and solid edges shown inside the cone. The Kircho� matrix of

the out-cone of 0 is then

K =

0
BBBBBBBBBBBBBBBBBB@

0 �1 �1 0 0 0 0 0 0 0 0 0

0 1 0 �1 0 0 0 0 0 0 0 0

0 0 1 �1 �1 0 0 0 0 0 0 0

0 0 0 2 0 �1 0 0 0 0 0 0

0 0 0 0 1 0 0 �1 0 0 0 0

0 0 0 0 0 1 �1 0 0 0 0 0

0 0 0 0 0 0 1 0 �1 0 �1 0

0 0 0 0 0 0 0 1 �1 0 �1 0

0 0 0 0 0 0 0 0 2 �1 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 2 �1

0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCA

:

Combinatorially, the number of spanning out-trees from G can be calculated as the

product of the in-degrees of the vertices of G (not including the root)|if the in-degree of

vertex x is 1, then that edge must be present in any spanning out-tree. If x has two or

more inputs then any one can be chosen independently of other choices of edges in T (G).

Since Kr is upper triangular, its determinant is the product of the diagonal elements. (Note,

because we chose the out-cone, the value is always at least 1.) Thus, the number of spanning

out-trees in the out-cone of 0, ignoring back edges, is 23 or 8.

The situation is more complicated when we allow cycles. Adding the vertex 5 and

edges (11,5), (5, 6) and (9,4) increases the dimension of K by 1, and makes Kr no longer
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upper triangular; correspondingly, the choice of edges is no longer independent; no spanning

subtree can contain both (5,6) and (7,11). Thus we utilize the thorem of Kircho�, with

K =

0
BBBBBBBBBBBBBBBBBBBB@

0 �1 �1 0 0 0 0 0 0 0 0 0 0

0 1 0 �1 0 0 0 0 0 0 0 0 0

0 0 1 �1 �1 0 0 0 0 0 0 0 0

0 0 0 2 0 0 �1 0 0 0 0 0 0

0 0 0 0 2 0 0 0 �1 0 0 0 0

0 0 0 0 0 1 �1 0 0 0 0 0 0

0 0 0 0 0 0 2 �1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 �1 0 �1 0

0 0 0 0 0 0 0 0 1 �1 0 �1 0

0 0 0 0 �1 0 0 0 0 2 �1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 �1 0 0 0 0 0 2 �1

0 0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCA

and jK0j = 15. There are 15 spanning out trees from 0, not 32|more than the 8 in the com-

binational out-cone, but signi�cantly less than the 32 obtained from counting reconvergent

nodes in the sequential out-cone as if they were independent.

It should be clear that the number of spanning out trees can be seen as a true measure

of the reconvergence of r, more so than the counting method. With this in mind, we de�ne

the sequential reconvergence number, Rs of a vertex v in G as

Rs(v) = logk det(Kr(v))=jG
s
rj;

where K is calculated on Gs
r, and k is the maximum in-degree (LUT-size) of the circuit G.

So the reconvergence of any node v is the logarithm of the number of spanning out-trees

normalized by the size of the out-cone Gs
v. The purpose of taking the logarithm, as before,

is to scale the number to within a comprehensible range for large graphs; this, with the

normalization by the size of the out-cone, generates 0 � Rs(v) < 1 for G mapped into

2-LUTs and 0 � Rs(v) < k for G mapped into k-LUTs.

Note that Rs = 0 if and only if the out-cone is already a tree.

To calculate the sequential reconvergence number of a graph we take, as in the combi-

national case, the weighted average of the reconvergence numbers of its primary inputs.

Note that the combinational reconvergence number of a sequential circuit is still well-

de�ned. It is equivalent to performing the calculation on the circuit G with all back-edges

removed or ignored. It is often, but not always, true that Rc < Rs; it depends on the
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relative growth of the out-cone compared to the additional reconvergence in it.

Implementation Details.

Calculating the determinant of an n by n matrix uses O(n3) time. In circ we use a sparse-

matrix implementation, which greatly decreases the required computation time. However,

it is still not practical to calculate Rs for circuits with more than about 5,000 LUTs.

We take care to deal with the numerical stability of the determinant calculation with row

pivoting, but above 2,000 LUTs, we sometimes encounter ill-conditioned matrices. Circ

will warn the user in these cases.

Empirical Calculations of Rc
and Rs

.

We calculated the combinational and sequential reconvergence numbers for all MCNC cir-

cuits. A sample of these is shown in Table 4.2. For comparison, we give Rc for both 2-LUT

and 4-LUT mapped circuits, and Rs for 4-LUT mapped circuits.

We note, as in the combinational case, that any results here are biased by the contents

of the MCNC benchmark set, which has limited documentation and could be missing large

classes of logic. Thus our comments can only be based on the data that is available.

Observe that, as in the combinational case, there is a reasonable amount of grouping

among the di�erent types of logic. The arithmetic logic falls in the lower part of the

spectrum, and �nite state machines in the higher end. Within these bands, we notice,

for example, the closeness of the reconvergence numbers for di�erent implementations of

multipliers, and for multipliers of di�erent sizes. This data indicates that the reconvergence

number is useful information, and captures some part of the fundamental nature of circuits.

It would be very interesting to do these comparisons with greater information about the

circuit functionality than we have, but the MCNC circuits have no documentation beyond

these brief one-line descriptions.

There are several reasons that the �nite state machines tend to have large reconvergence

numbers: they often have very few I/Os, and their �rst sequential level often has a very

exaggerated conical shape. Because of the small number of I/Os we often see that the sizes

of the combinational and sequential out-cones are close, also explaining why they tend to

have large Rc.

We point out the growth in the amount of reconvergence in a circuit as k increases, which
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Name Rc Rc Rs Circuit

(k=2) (k=4) (k=4) Description

elliptic 0.47 0.85 0.26 elliptic eqn solver

dsip 0.27 0.81 0.28 encryption
mult16b 0.36 0.56 0.30 16-bit multiplier

mult16a 0.54 0.62 0.36 16-bit multiplier

mult32a 0.54 0.61 0.36 32-bit multiplier
s208.1 0.38 0.39 0.45 digital fractional multiplier

s344 0.38 0.59 0.57 4-bit multiplier

ecc 0.66 0.96 0.58 error-correcting
lion 0.52 0.79 0.63 fsm

bbtas 0.76 0.84 0.73 fsm

tra�c 0.50 0.73 0.78 fsm, tra�c light
bigkey 0.53 0.89 0.83 key encryption

sbc 0.47 0.53 0.83 snooping bus controller

dk27 0.77 1.00 0.88 fsm

dk15 0.65 0.88 0.92 fsm

s382 0.63 1.04 0.92 fsm, tra�c light

bbara 0.70 0.94 0.93 fsm
mm30a 0.69 1.12 0.95 min-max

mark1 0.58 0.76 1.03 fsm

s526n 0.63 1.04 1.03 fsm, tra�c light
mm4a 0.66 1.12 1.04 min-max

tseng 0.49 0.78 1.04 bus-controller

keyb 0.72 0.99 1.14 fsm

opus 0.66 0.85 1.14 fsm

dk14 0.65 1.17 1.15 fsm

ph-dcd 0.61 1.02 1.19 phase decoder

di�eq 0.57 0.97 1.20 di�erential eqn solver

gcd 0.37 0.66 1.22 compute gcd

s832 0.65 0.90 1.22 fsm

bbsse 0.69 1.04 1.23 fsm

ex6 0.66 1.11 1.23 fsm

mm9b 0.68 1.15 1.23 min-max
sse 0.69 1.04 1.23 fsm

s820 0.67 0.96 1.24 fsm from a PLD

dk17 0.71 1.09 1.25 fsm

sand 0.77 1.06 1.25 fsm

styr 0.77 1.09 1.25 fsm

s510 0.77 0.75 1.33 fsm controller

dk512 0.80 1.39 1.34 fsm

s1 0.76 1.29 1.44 fsm

s1488 0.83 1.32 1.45 fsm controller

pma 0.80 1.32 1.46 fsm

s1494 0.82 1.37 1.47 fsm controller

planet 0.84 1.36 1.50 fsm

s298 0.84 1.60 1.60 fsm from a PLD

bbrtas 0.93 1.65 1.65 fsm

Table 4.2: Reconvergence for selected MCNC circuits.

is as one would expect: the number of nodes in an out-cone decreases, but the number of

reconvergent paths remains unchanged (except when entirely \consumed" by a larger LUT).
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There is a reasonably strong correlation between Rc and Rs, however not enough that

one can predict the other. There are a number of cases where the two are drastically

di�erent. We reiterate our belief that Rs has a more theoretically pleasing value because of

its combinatorial interpretation. However, as noted earlier, we can only e�ectively calculate

it up to about 5,000 LUTs. Beyond that point Rc becomes the only available value.

Reconvergence and Routability

It is interesting to compare the routability of circuits with their reconvergence numbers.

However, routability is (obviously) sensitive to both the number of nodes and the number

of edges in the circuit so we need a large number of circuits which are very close in size.

Such a subset does not exist in the MCNC circuits.

Some such experiments were possible with the Altera benchmark circuits, where we do

have large numbers of similarly sized circuits. We �nd that R can be used in combination

with other parameters to form a model of routability, but that any predictions are still

dominated by other parameters which prevent us from isolating reconvergence. Further

details of this particular study constitute proprietary information, but we leave the direction

of research for future work.
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The combinational characterization of circuits from Chapter 3, and a predecessor of the

algorithm of Section 5.2 for combinational generation, though without locality characteris-

tics, (gen 1.0) �rst appeared in the 1996 Design Automation Conference [41]. This work

since been submitted for journal publication [42]. The model of Chapter 4 for sequential

circuits, excluding sequential reconvergence (Section 4.3) and the updated algorithm for

sequential generation (gen 3.0) was presented at the 1997 ACM Symposium on Field-

Programmable Gate Arrays [39]. A journal version is in preparation. Sequential recon-

vergence (Section 4.3), the work on locality analysis (Section 3.5) and its e�ects on the

generation algorithm have not yet been published outside of the thesis.



Chapter 5

The Generation Algorithm

This chapter applies the knowledge gained in the previous chapters to the problem of gen-

erating benchmark circuits. Our fundamental goal is to be able to automatically create

synthetic circuits which are good proxies for real circuits.

5.1 Overall Approach to Circuit Generation.

Before deciding on a method for generating circuits, it is necessary to re�ne our primary

goal of \generating good circuits," by introducing a number of speci�c requirements:

Requirement 1. The generation algorithm must scale, and must be fast enough to

generate very large circuits.

Put simply, the user should be able to specify the circuit-size, and the algorithm should

react accordingly to generate a reasonable circuit of the requested size. Since state of the art

large ASIC circuits are in the one million gate range, the algorithm cannot use more than

O(n logn) time or space|quadratic time for 10,000 LUT-nodes would amount to weeks of

processing time for one circuit.

Requirement 2. The generation algorithm must use reasonable input parameters.

Later, we will discuss the concept of cloning an existing circuit, by extracting its exact

parameterization for input to the generation tool. This begs the question of \how much"

information should be included in such a parameterization. We will restrict our generation

algorithm to taking a constant amount of information, that is the parameterization cannot

grow arbitrarily with the size of the circuit being generated. To do otherwise would not only

violate the spirit of benchmark generation, but would simply introduce too many variables

57
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into the problem. For the purposes of this restriction, we assume that combinational delay

and maximum fanout are no more than logarithmic in circuit size, since they must be close

to constant for electrical and performance reasons (with a small number of exceptions for

clocks, clears and presets, which we consider special cases).

So, the Rent exponent r (a single number) or the shape vector from Chapter 3 (a vector

of length d+ 1) would be considered reasonable in this sense. However, a mincut partition

tree, an initial placement, or a \seed" circuit would be prohibited as input parameters.

Requirement 3. The circuits that we generate must have reasonable behaviour with

respect to unspeci�ed metrics.

If the method generates circuits with a speci�c size, shape and delay, it should have

reasonable expectations on, for example, wirelength after global routing, even if wirelength

is not a parameter. Similarly, if the circuit is generated simply as a graph with a speci�ed

wirelength, it must have reasonable combinational delay and fanout, and must not have

undesirable properties such as combinational loops or pathological properties such as large

cliques in the underlying graph.

With these requirements in mind, there are a number of approaches to generating ran-

dom circuits:

One method is to simply use random graphs, generated by known methods (one of which

is discussed in Section 6.1). This method is attractive in the sense that it is relatively easy

to generate random undirected graphs, or random undirected graphs with restrictions on

degree under a natural model. Such graphs have been used in famous partitioning papers

by Kernighan and Lin [46] and Johnson [45]. However, random graphs from natural models

are known to exhibit behaviour such as having too many edges [64] and inordinately high

cut-sizes [2, 3]. There are few known methods for generating directed acyclic graphs under

natural models, and no known ability to control longest path and cycles in such graphs,

such as would be needed for Requirement 3.

A second approach would be to work from a geometric placement, independent nodes on

a grid, and add edge-connections based on statistical wirelength distributions and cut-sizes,

essentially working from the wireability studies of El Gamal, Donath, Feuer and others (see

Chapter 2). The di�culty with this method again lies with the realism of the circuits for

anything other than the placement or partitioning problems. The e�ects of combinational

delay and combinational cycles cannot be controlled, because the method inherently has no
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concept of directed edges or combinational delay. In a modern CAD system delay is often

the most important consideration in layout, so we require an approach which models delay

appropriately.

Another approach is o�ered by Rent's Rule. Darnauer and Dai took this approach

in their work, previously mentioned in Section 2.2.3. Though this can yield reasonable

undirected graphs for partitioning, it su�ers, as does the previous method, from an inability

to control delay, fanout and other important electrical features of the circuit.

Our method will be to generate a circuit according to the model which we have developed

in the previous two chapters. Doing so provides a number of desirable properties. By making

delay and fanout an intrinsic part of the circuit, we obviate dealing with the above problems

in other methods. However, we then lose other physical properties of the circuit, namely the

existence of a good partition tree as would be guaranteed by Darnauer and Dai, or a known

wireability distribution as per the second method. The locality discussion of Section 3.5

addresses this issue, and our empirical validation will illustrate our success in dealing with

both delay and locality at the same time.

5.1.1 How We Generate Circuits.

Our algorithm for generating circuits is divided into three topics: combinational circuits,

sequential circuits and implementation details.

In the next section, Section 5.2, we discuss how to generate purely combinational circuits.

We model combinational circuits using the descriptions of delay, shape and fanout from

Chapter 3, and build combinational circuits to that model.

In Section 5.3 we expand on the algorithm to generate sequential circuits using the model

of Chapter 4. This involves two aspects: how to modify the combinational algorithm to deal

with new sequential parameters, and how to generate complete circuits from sub-circuits.

Section 5.4 discusses some implementation details for the algorithm and the tool gen

which realizes it. We discuss the issues of parameterization scripts, circuit \clones," run-

time of the algorithm and the ability of the tool to meet its speci�cation. The issue of the

quality of circuits (empirical validation) is left to a separate Chapter 6.
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5.2 Combinational Circuit Generation.

We begin with an example. Figure 5.1 shows the output from gen for the parameteriza-

tion: n=23, nedges = 32, k=2, nPI=7, nPO=2, d=4, shape=(.38,.31,.19,.12), max out=4,

fanouts=(.09,.65,.13,.04,.09), edges=(0,.9,.1) and L=6. (Note that L has not yet been de-

�ned.)
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n = 23

nedges = 32

k = 2

nPI = 7

nPO = 2

d = 4

shape = (7; 6; 5; 3; 2)

edges = (0; 29; 3)

max out = 4

fanouts = (2; 15; 3; 1; 2)

L = 6

Figure 5.1: Example of a completely parameterized combinational circuit.

The combinational portion of the gen algorithm consists of two functional stages.

The �rst stage is to determine an exact and complete parameterization of the circuit

to be generated, using partially-speci�ed user parameters and default distributions|the

exact parameterization shown to the right of Figure 5.1 is such an instantiation of the more

general parameters just given. This issue of de�ning statistical relationships between circuit

characteristics (the \pro�le") has been discussed in the previous two chapters, and we will

remark further on it in Section 5.4.2 and Appendix A.

The second stage is to create and output a circuit-graph with that exact parameteriza-

tion, and we deal with this below.

5.2.1 The Combinational Generation Algorithm.

Here we give the details of the generation algorithm for combinational circuits.

The inputs to gen are n, nedges, nPI, nPO, d (delay), k (LUT-size), max out (maximum

allowable fanout of any node), the shape function, the fanout and edge length distributions
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and the locality parameter L (not yet de�ned). The output is a netlist of k-input lookup-

tables. Reconvergence is not a generation parameter but we use the reconvergence number

of generated circuits in the validation process of Section 6.3.

Since parameter expansion has already taken place, we know the distributions are exact,

meaning that

Pd
i=0 shape[i] =

Pmax out
i=0 fanouts[i] = n, and

Pd
i=0 edges[i] =

Pmax out
i=0 i � fanouts[i] = nedges.

Using the shape distribution, shape[1..d], we are immediately able to de�ne the number

of nodes at each combinational delay level. Fanouts[1..max out] gives us the exact set of

fanouts available (but not yet assigned to nodes). Edges[1..d] gives us the set of edges to be

assigned between nodes. Our problem is then, as illustrated in Figure 5.2, to determine a

one to one assignment of fanout values to nodes, and an assignment of edges between nodes

such that the number of out-edges from a node equals its assigned fanout, and the number

of edges in to a node is no more than the bound, k, on fanin. We have a number of further

constraints: the resulting graph must be acyclic (as the circuit is to be combinational);

every node must have at least one fanin from the previous delay level, and no fanins from

later delay levels (so that combinational delay of the node as speci�ed by the shape function

is correct); all nodes at delay-0 (i.e. the inputs) have no fanins, and all other nodes have at

least 2 fanins; and all fanins to a node must come from distinct nodes (no duplicate inputs).

We need the following de�nitions:

(a) Ni, i=0::d is the set of nodes at delay level i, where N =
S
fNig,

(b) ni = jNij,

(c) F = ffj , j= 1::ng, is the set of node fanouts, and

(d) E = feh, h=1::nedgesg, is the set of edge-lengths (abstractly, the set of all

edges).

We formally de�ne the generation problem in Figure 5.2.

This assignment problem appears to be computationally di�cult and we conjecture it is

NP-complete. The existence of a polynomial time algorithm would be relatively uninterest-

ing, however, unless it was both O(n logn) time or less and still allowed us to have di�erent

(i.e. random) outputs on each execution. We require a nearly linear time algorithm in

order to generate large circuits. Therefore we solve the problem heuristically, as described

in detail in the subsections which follow.
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Circuit Generation Problem
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Given: F , E, Ni.

Find: assignments of nodes in N to each fj 2 F , and pairs of nodes for each

eh 2 E such that:

1. The number of edges leaving any x 2 N is exactly its corresponding fanout

fx.

2. All x 2 Ni have at least one fanin from Ni�1 (i > 0). (i.e. the calculated

delay(x) equals its assigned value.)

3. Fanin(x) � k for all x 2 N .

4. Fanins of x 2 N are distinct (i.e. no two fanouts of gate y are both inputs

to x.)

Figure 5.2: The generation/construction problem.

The general line of approach is as follows: First we determine an assignment of edges

and out-degree to levels Ni, but not yet to individual nodes within each level. We call theNi

level-nodes and the graph at this point the level-graph. We then split each level into nodes

and assign �rst fanouts and then edges, previously assigned only to levels, to the individual

nodes. A post-processing step designates any additional primary outputs required.

There are 5 major steps in the algorithm for generating a combinational circuit from

an exact speci�cation. We provide enough detail here to understand the important aspects

of the algorithm. Readers who are interested in the more detailed aspects of the software

are referred to the external documentation and the freely available implementation and

source-code [40]. Throughout the description of the algorithm, we will follow through the

small example of Figure 5.1, from the exact parameterization to the �nal circuit. For each

major step we indicate the module name in the implementation.

The �nal algorithm shown here is the result of a great deal of experimentation. Earlier

versions broke up the problem di�erently, or did steps in a di�erent order. Some of the major

decisions which lead to the better performance of the �nal algorithm were the boundary
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calculations in Step 1 and the decision to divide the allocation of edges to both before and

after degree assignment.

Step 1: Compute bounds on in and out degree for each level (pre degree.c).

When we (later) assign actual edges between levels, we implicitly set the total fanin and

fanout for each level. Because we want to do edge assignment quickly, with no backtracking,

it is useful to have upper and lower bounds on fanin and fanout for each level.

As a result, the �rst step of the algorithm is to determine the maximum and minimum

fanin (in-degree) and fanout (out-degree) for each delay level: vectors min in[i], max in[i],

min out[i] and max out[i]. While the number of nodes at each level is known, the total

fanin is not known exactly because a four input LUT may only have two or three inputs in

many cases. For 2-LUTs (as in our example) the fanin bound is deterministic, because we

enforce the rule of no single-input nodes.

We require each node at level i to have between two and k fanins, one of which must come

from the preceding delay level to establish combinational delay. This gives immediate rough

bounds of min in[i] = 2 �ni and max in[i] = k �ni. Similarly, each non-primary-output node

must have at least one fanout, providing an initial lower-bound min out[i]=ni�(nPO�nd).

Max out[i] is calculated heuristically using the fanout distribution and the previously

calculated vectors for later levels, based on a number of rules: max out[i] is bounded above

by
Pd

j=i+1max in[j] -
Pd�1

j=i+1min out[j] representing the remaining inputs in the LUTs at

later levels less the reserved output edges for later levels; max out[i] is also bounded by

ni
Pd

j=i+1 nj to avoid double connections and by the sum of the ni largest elements in the

fanout list F (i.e. the maximum fanout of any ni nodes regardless of location).

The initial bounds are improved iteratively: the bounds on max out just determined

necessitate an updated calculation of max in and min in for later levels which in turn a�ect

max out[i]. We continue until no more tightening of the boundaries is possible, which is no

more than d2 iterations: we iterate d times, and iteration i �xes (at least) the bounds for

level i by looking at the d other levels.

The result of this step is the determination of the boundary vectors min in[i], max in[i],

min out[i] and max out[i], i=0::d, as pictured in Figure 5.3 (Step 1). Each level-node Ni is

labeled with ni and its fanin boundaries (upper left corner) and fanout boundaries (lower

left corner). Sometimes, in particular for small circuits, these bounds can be very tight.
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In general, however, the upper and lower bound for fanout will di�er by about 10-15%. In

the case of fanin, the di�erence is dependent on the average fanin / number of edges in the

circuit: for fanin 2 the bounds will be exact, and the upper and lower bounds will diverge

to about 10% as the average-fanin hits k = 4.

Step 2: Assign edges between levels (levels.c).

Now that we have some idea of the number of edges to be assigned to and from each level,

we will proceed with initial edge assignment. In this step, we will assign most, but not all

edges. Recall that we are not assigning edges between nodes, just allocating them between

combinational delay levels.

There are three phases to Step 2. As edges are assigned, we calculate two new vectors,

assigned in[i] and assigned out[i] to represent the \used up" in and out-degree for level i.

The available in and out-degree to a level is de�ned as the di�erence between the assigned

and the maximum, and the required in and out-degree is de�ned as the di�erence between

the assigned and the minimum (or 0 when assigned is larger than minimum).

Step 2(a). We �rst consider the \critical" unit edges, edges which lie on the boundary

of the �rst and last levels of the circuit or which are required to ensure that combinational

delay constraints can be met. We assign MAX(min out[0], min in[1]) edges between levels

0 and 1, and MAX(min out[d�1], min in[d]) edges between levels d�1 and d. Then we

establish the combinational delay for each other level i, i= 2::d�1, by assigning ni edges

between levels i�1 and i.

Step 2(b). Secondly, we assign the long (length > 1) edges. This is a crucial step,

because if these are assigned poorly it becomes di�cult or impossible to complete the

graph construction without violating the shape or edge-length distributions. Long edges

are assigned probabilistically. We calculate the number of possible level to level starting and

ending point combinations for edges of length l at each level i, MIN(avail out[i], avail in[i+l]),

and sample the resulting discrete probability distribution to assign the edges, updating the

distribution after each assignment1. It is an important feature of gen that we sample from

1
Given the discrete probability density function, we can sample by generating the cumulative density

function, choosing an integer randomly and uniformly, scaling it to the sum of the cdf (area of the pdf),

and indexing into the appropriate value. Because the pdf is created in order to do allocation, rather than

a single sample, we want to emulate the idea of sampling without replacement, so once we have sampled

a value, we then have to adjust the pdf to lower the probability of taking the same value again. Often

we often have to modify the pdf further. For example, choosing a fanout value of 20 and 30 might be

equally likely in the pdf, but it might not be possible to have both in the same circuit. Thus, when one is
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Figure 5.3: Example at the conclusion of Steps 1 to 4.

this distribution rather than just choosing the \optimal" assignment, because we want to

produce circuits with di�erent features on each execution with the same parameterization.

Step 2(c). We have only unit edges left. The last part of this step is to assign

the remaining required edges|those necessary in order to meet the required min in[i] and

min out[i] for each level i. This part is purely deterministic. Any remaining unit edges are

held back for assignment later in Step 3. Typically, these remaining edges are about 10-25%

of the original unit edges (or 7-18% of all edges).

The output of Step 2, shown in Figure 5.3 (Step 2), is a modi�cation to each level-

node Ni in the level-graph, this being a vector (though shown pictorially in the �gure)

indicating the number of assigned fanout edges of each length that have been assigned to

the level. Step 2 also guarantees that the assignment has met the minimum in and out

degree requirements for each level.

Step 3: Partition the total fanout at each level (degree.c).

We have the vectors assigned in[i], assigned out[i], max in[i] and max out[i]. However, the

assigned out-degree is a total for the level, not a list of individual node values from the

fanout distribution.

In this step we partition the total out-degree (e.g. 10) of level i into ni (e.g. 4) individual

values taken from the fanouts distribution (e.g. f4, 3, 2, 1g, summing to 10).

First calculate target fanouts, target[i], i = 0::d� 1, in the range assigned out[i] to

chosen, the probability of the second also goes to zero. We implement this sometimes by direct calculation,

and sometimes by re-smoothing the distribution to a given sum. This basic method is used, with di�erent

objectives, throughout the algorithm.
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max out[i], such that
Pd

i=0 target[i] = nedges. Again, we sample a probability distribu-

tion calculated as in Step 2(b), rather than performing a deterministic allocation. The

goal is to assign the target out-degrees which are, on average, proportional to the amount

of slack between the minimum and maximum fanout values for each level, but probabilis-

tically rather than in exact proportion so that the resulting circuit is di�erent with each

execution of gen with the same inputs.

We are left with the problem of partitioning each target[i] into ni values taken from

the fanout distribution. Even for a single level, this integer partitioning problem is NP-

complete [29, page 223] to compute exactly, so we can only manage a heuristic solution.

Fortunately, this is made easier because of the remaining unassigned unit-edges|target[i] is

exible within the range min out[i] to max out[i], so we typically need only an approximate

integer partition for each level, and can allocate the remaining unit edges as required to

make the result exact.

Before entering the main operation of the degree-allocation step, we examine the low

fanout levels, de�ned as levels which have a total fanout less than 2ni. Assigning a high-

fanout value to such a level could result in later di�culties as we \run out" of edges for

giving individual nodes at least one fanout. To dispose of these levels, assign fanouts of

0, 1, and 2 deterministically, based on the availability of fanout-0 values in the fanout set

(some, but not all PO nodes will have fanout 0).

The main operation of this step is probabilistic and iterative. For each level, compute

average out[i]=target[i]/ni, and the values min possible out[i] and max possible out[i] in-

dicating the degrees which could feasibly be assigned to any node at level i (using the rules

of Step 1 applied to individual nodes). Then iterate through the values in the fanout dis-

tribution F from largest to smallest (the largest being usually the more restrictive, hence

more di�cult to place). Among the levels that can accept the current fanout fj (based on

min possible out and max possible out) we sample average out[i] as a probability distribu-

tion (with the same goals as just mentioned for targets) to choose the level to which fj will be

assigned. (See the footnote in Step 3 for more detail on probabilistic sampling.) Each time

we update the status vectors (assigned out, available out, average out, minimum fanout,

maximum fanout, min possible fanout and max possible fanout) for the chosen level.

Because of the probabilistic assignment, some levels will receive more than the target

number of edges (based on the sum of their fanouts) and some will receive fewer. However,
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the details of the assignment do guarantee that all levels will receive between their minimum

and maximum total fanout. We also note that we do not always return the exact fanout

distribution that is given to us, but the di�erences are very minor.

On the relatively rare occasion that a fanout cannot be accepted by any level, we decre-

ment the fanout value by 1 and continue. This can lead to a minor modi�cation of the

input speci�cation, as discussed further in Section 5.4.1.

At the completion of Step 3, all edges have been assigned to levels, and the level-node for

each level i contains a list of edges (and their length) which leave that level, and a list of ni

fanout values fij , j=1::ni, which sum to the total fanout of the level. Figure 5.3 illustrates

this situation: the breakdown of total fanout into an (unordered) set of out-degrees is shown

above Step 3, and the edge-length distribution is as in Step 2. (Unfortunately, to get an

edge-length distribution which di�ers from Steps 2 to 3, we would need to use k > 2 and a

larger n, which would make the main operation of the algorithm more di�cult to view.)

Step 4: Split levels into nodes (nodes.c).

For this step, levels are treated independently. We need to split each level-node Ni into ni

individual nodes, and assign each of these a fanout from the list of available fanouts fij now

assigned to level i. This would be trivial, were it not for the necessity to introduce locality

(clustering and local structure) into the resulting circuit, and so we �rst discuss how we

impose locality in the generation.

Our approach to introducing locality into the generation algorithm is to impose an

ordering on the nodes at each level, and use proximity within this ordering between nodes

at di�erent levels as a metric of locality when we later choose the edge-connections between

nodes. This can also be viewed as trying to generate graphs which will \look good" when

displayed as pictures such as Figure 5.1, because minimization of edge lengths in a graph

drawing also has the e�ect of reducing crossings and of displaying any inherent locality in the

graph [30]|by creating a circuit with one known good ordering/drawing we have simulated

this form of locality in the generation. The ordering we will use is simply the sorted order

within the linear list of nodes within each level (this ordering is arbitrary until we have

associated distinguishing features such as fanout or edges to the individual nodes). The

measure of goodness of an edge is then the distance between the source and destination

nodes in their levels node-lists, relative to competitors. As a result, the order in which
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fanouts are assigned within the node list becomes important, because placing high-fanout

nodes in an unbalanced way into the node list will skew the e�ects of locality measurement

in Step 5.

The locality index assigned to each of the ni nodes in the nodelist for level i is a scaled

proportion of the maximum sized level. Thus if the level with the largest number of nodes

contains 100 nodes, and the current level 10 nodes, then the latter will have nodes at locality

indices 5, 15, 25, ..., 95. Before fanout allocation the order of nodes is arbitrary, so the

nodes are now indistinguishable other than for this index.

Our goal in assigning fanouts to nodes in the list is to distribute the high fanout nodes

well for maximum locality generation. To do this, we sample a binary tree distribution to

allocate fanouts, in order from the highest to lowest fanout. To calculate the distribution,

label the nodes of a balanced binary tree on ni nodes with the number of leaves in its

subtree. Then perform an inorder traversal of the tree, and place the labels in (proba-

bility density function) pdf[i], i= 1::ni. For example, the binary tree pdf of length 15 is

[1,2,1,4,1,2,1,8,1,2,1,4,1,2,1]. In the most likely case, then, the highest fanout node would be

assigned in the middle, the next two highest fanouts at the quartiles, and so on. Another

way to view this distribution is to take an ordered list of ni nodes, assign a value p to

the middle node ni=2, a value p=2 to the nodes ni=4 and 3ni=4, p=8 to the middle nodes

in the resulting ranges and so on, then scale the resulting distribution to integers. The

point of this operation is to (on average) place the highest fanout node in the middle of

the ordering, the next two highest fanout nodes at the quartile points, and so on. Again,

probabilistic sampling means that we don't get exactly the same result each time, and just

as importantly, that we don't generate arti�cially symmetric circuits.

This step in the algorithm assigns to each node xj in level i, a value fanout(xj) from ffijg

and a value index(xj) to each xj , j= 1::ni. A further calculation assigns pj , 0 � pj � fj ,

the long-edge fanout of node xj , de�ned as the number of edges of length greater than one

from xj
2. This is again probabilistic, sampled uniformly over all long out-edges in the level.

At the conclusion of Step 4, each node x in the circuit has an assigned delay, fanout,

long-fanout and index, but no actual edges have been assigned between nodes at di�erent

levels in the graph. The fanout values are shown in Figure 5.3 (Step 4). This information,

plus the edge-length assignments elsewhere in the �gure comprise the input to Step 5 of the

2
There are not enough long edges to warrant storing a vector of lengths
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algorithm.

Step 5: Assign edges to nodes (edges.c).

The major remaining step is to connect the fanout edges on each node to a corresponding

input port on a node on a later delay level, as speci�ed by the edge-length. We proceed

from level 1 to level d, connecting the edges to each level i.

To connect the in-edges to level i, we �rst calculate the source list, of unconnected edges

preceding level i which are of the correct length to connect to level i. Nodes with multiple

fanouts are inserted only once in the list, and nodes are deleted as their fanout is exhausted.

The destination list consists of all nodes at level i. Both these lists are maintained in sorted

order by node index (de�ned in Step 4).

Step 5(a). If the size (in edges) of the source list is more than twice the number of

available nodes in the destination list, we pre process the high-fanout nodes (those with

fanout more than 1/8 the number of nodes in the destination list) separately. To process a

single high-fanout node x, we randomly choose a range of nodes of size between fanout(x)

and 3�fanout(x)/2, centered at the closest index node y in the destination list to index(x).

Choosing a random set of fanout(x) nodes from this set, we make the physical edge con-

nections, and update all status vectors. This process is repeated for all high-fanout nodes

in the source list. The purpose of this step is to avoid a situation where we have a large

number of out-edges from the same source node x later in the edge-assignment phase which

cannot be assigned without creating double connections from node x to some node y|this

would otherwise be common because of the greedy nature of the algorithm.

Step 5(b). Establish combinational delay by connecting each node in the destination

list which does not already have a fanin edge from 5(a) to one node from the source list.

To choose the fanin for node y, we sample the source list L times, where L is the locality

parameter of generation (discussed below), choosing the result x with the closest index to

index(y). For this step, even though long-edge candidates exist in the source list, only

source-nodes at the preceding combinational delay level are considered.

Step 5(c). Perform a second sweep similar to 5(b) (including locality) to ensure that

each node y in the destination list receives a second incoming edge. There is no longer a

restriction on the length of the edge, but we cannot choose the same fanin as is already

attached to y from step 5(b).
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Step 5(d). Now that the minimum requirements are met for each node in the desti-

nation list, iteratively choose a random node from the destination list, and choose an input

from the source list as per 5(b) and (c). Continue until the source and destination lists are

exhausted.

At the conclusion of Step 5, the circuit is complete, except that we may have fewer out-

degree zero nodes than the required number of primary outputs. We postprocess the circuit

to (randomly) label the required number of additional LUT nodes as primary outputs.

The �nal result of the generation algorithm (for one random seed) on the progression of

Figure 5.3 from the original speci�cation is the original example of Figure 5.1.

5.2.2 The Locality Parameter.

The locality parameter L has not been formally discussed to this point. As mentioned in

Step 4, we �nd that a purely random connection of edges between levels does not model the

type of clustering found in real circuits. At the same time, deterministically connecting the

edges based on aligning index values yields a circuit which is overly local, and is actually

too easy to place and route. We �nd that a reasonable approach in practice is to de�ne a

locality parameter L, and use it to bias the above algorithm towards greater locality; when

choosing an input for a given destination node, we sample L times, and choose the source

node which is closest in index value to the destination node under consideration. For higher

values of L, the probability of directly lining up indices increases; for L=1, the algorithm

is as originally described.

Though L can be speci�ed as a user parameter to generation it does not tie directly

to the characterization of a circuit. That is, we have no way to measure it for a speci�c

given circuit. Through experimentation, we have found that there is no constant locality

parameter which yields the correct results for all circuits (independent of size), but a value

which scales logarithmically with the size, n, of the circuit yields good results. Outside of

n, L is unrelated to the other input parameters of the circuit.

We �nd that the locality parameter can signi�cantly a�ect the properties of the resulting

circuit. Though we can empirically do very well at generating circuits simply by varying

the relationship between L and n, it would be better to tie locality to characterization,

particularly when dealing with generation of \clone" circuits.
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Improved Locality Generation.

In order to improve the generation of locality in circuits, we have been pursuing work to

reparameterize Step 5 of the gen algorithm to use the spread and span metrics de�ned in

Section 3.5 rather than L.

Algorithmically, this does not signi�cantly change Step 5. Using spread we assign x

coordinates for each node u within the allowable range. Using the average span for the

level, we stochastically choose a span for each node u, and attempt to choose the previous

level edge connections to u to realize this actual span.

To this point, we have not been able to improve on our generated circuits by taking

the new locality information into account. We have several theories on this, and on what

further characterization is required, and we will discuss the issue further in 6.3.

5.3 Sequential Circuit Generation.

In this section, we discuss how to generate sequential circuits.

As per the model of Chapter 4, we de�ne a sequential circuit as a hierarchy of combi-

national subcircuits which are connected together with FF-edges and back-edges. In that

characterization, we decomposed a sequential circuit into its combinational components,

introducing ghost input and output ports. Here we pass new information about the GI and

GO interface into the subcircuit generation, then \glue" the subcircuits together to form a

complete sequential circuit. The �nal circuit will have no ghost inputs or outputs, as they

will have all been glued together into back-edges (a ghost output connected to a ghost input

at a preceding sequential level) or FF-edges (a ghost output connected to a ip-op at the

immediately next level). As mentioned in Section 4.2.3 the model and algorithm actually

generalize to arbitrary forms of hierarchy, given the appropriate parameterization, but here

we will talk only about simple sequential circuits with a single level of hierarchy.

Though the hierarchy and locality in a sequential circuit are partly captured by the

number of ghost inputs and ghost outputs between subcircuits, it is also very important to

know the shape of these connections. This is because we want to retain the combinational

delay of nodes as de�ned in the subcircuits, so we can only connect a ghost output to a ghost

input if the GO is either has a lower combinational delay or the GI is a ip-op. De�ne the

vector GIshape[d] as the number of ghost inputs at combinational delay d, d=0::max delay,
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and GOshape[d] similarly for ghost outputs. These will introduce a topological constraint on

the connections between di�erent subcircuits in addition to simply specifying the number of

connections. In practice, we �nd that these vectors are important, especially for generating

clones, because they often uncover \quirky" aspects of di�erent circuits. Note that the

GIshape for one level and the GOshape for the other level in a 2-level circuit will roughly

correspond, but will not usually be exact|for MCNC circuits, there is typically some slack

between the combinational delay of the endpoints. It is crucial to have compatible GI and

GO shape vectors between di�erent levels, or the algorithm is forced either to create an

inordinate number of long edges, or to introduce extra ip-ops in order to resolve GI and

GO at incompatible delay levels.

To describe the sequential algorithm, we need to address three issues: how to exactly

parameterize a sequential circuit and its subcircuits; the modi�cations required to the combi-

national algorithm to accommodate new parameters; and the gluing algorithm for creating

the �nal circuit from the subcircuits. These are covered, respectively, in the next three

sections.

5.3.1 Sequential Circuit Parameterization

A sequential circuit is parameterized by levels (the number of sequential levels), nDFF (ip-

ops), nback (back-edges), nPI and nPO , its sequential shape (the number of nodes at each

sequential level), and the parameterizations of its combinational subcircuits.

Adding to the parameterization of combinational circuits, we have nGI , nGO , nlatch (the

number of GO designated for FF-edges), level (the sequential level for this subcircuit), and

the vectors GIshape[i] and GOshape[i], i = 0::d.

In a fully speci�ed parameterization, the combined information in the subcircuit spec-

i�cations completely determines the circuit, so values like nDFF and nback are redundant.

If the subcircuit parameterizations are determined by the default parameterizations (i.e.

fsm circ in Appendix A) then that high-level information is used to generate, for example,

compatible ghost I/O shapes before generation begins.

The de�nitions are best understood with an example. Figures 5.4(a) and 5.4(b) represent

combinational subcircuits which will be glued together into the complete sequential circuit

shown in Figure 5.4(c). The subcircuit in Figure 5.4(a) has parameterization3 fn=7; level=

3
Note that these are partial parameter lists only, as some parameters not relevant to the current discussion
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Figure 5.4: Example construction of a 2-level sequential circuit.

0; nPI = 3; nPO = 1; nedges = 6; nGI = 2; nGO = 2; nlatch = 2; shape = (3; 2; 2);GIshape =

(0; 0; 2);GOshape = (0; 0; 2)g. The circuit in Figure 5.4(b) has fn = 4; level = 1; nPI =

2; nGI=0; nGO=2; GOshape=(0; 2); nPO=0; nlatch=0g. The complete circuit is described

by fn=11; nPI =3; nPO=1; levels=2; nDFF =2; nback=2g in addition to the speci�cation

of its subcircuits. Note that the ip-ops serve as primary inputs in the speci�cation of

the subcircuit at level 1, but primary inputs cannot exist at levels greater than zero (by

de�nition) in the �nal circuit, so these are converted to ip-ops as they are glued to ghost

outputs from the previous level. Notice how the GOshape of level one is, when shifted right

by one, equal to GIshape of level zero. In practice the shifted GOshape is lexicographically

less than or equal to the GIshape when looking at back-edges.

5.3.2 Changes to the Combinational Algorithm.

To generate subcircuits, we use a modi�cation of the original combinational algorithm of

Section 5.2. The additional constraints in the model implied by nGI , nGO, nlatch, GIshape,

and GOshape necessitate changes throughout the algorithm, as they change the ratio of

nodes to edges, introduce nodes with no fanout, and nodes with fanin of one when ghost

inputs are present.

of sequential circuits are left out.
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Identifying Ghost Outputs (Step 1).

One of our primary applications is to generate circuits which are good inputs for FPGA

tools. The typical logic block con�guration in an FPGA is a 4-input LUT followed by a

ip-op. The output signal from the LUT can either be registered through the ip-op,

or not. Thus any LUT we generate which has both a registered and unregistered output

will require two FPGA logic blocks in technology mapping, increasing the size of the circuit

to the place and route tool and ruining our ability to compare circuits on the basis of

routability. Simple experiments show that about 90% of the LUTs which feed a ip-op in

real circuits have no other outputs so we want to, wherever possible, assign fanout values

of 0 to nodes which will have a single ghost output destined for a FF-edge.

To accomplish this goal, we identify the delay location of the nlatch ghost outputs which

will eventually feed a ip-op in Step 1. This allows us to take them into account during the

degree allocation phase. The result of this calculation is to make a new vector latch shape[i],

i = 0..d, available to the degree calculations of Step 1.

We also point out that any LUT which feeds a ip-op will also feed only one ip-op,

since it (usually) makes no sense to register the same signal twice.

Degree Allocation (Step 1).

Recall that Step 1 of the combinational algorithm calculates bounds on the maximum and

minimum fanin and fanout of each combinational delay level. The distribution of GI and

GO ports a�ects this process in several ways.

1. We assume that latch shape[i] nodes at level i will have a minimum fanout of zero,

rather than one (as per the above discussion).

2. We allow (but don't require) shape[i] - GIshape[i] nodes at level i to have minimum

fanin one rather than two. Note that we must still allocate at least one \real" fanin

for each node, or it would not (by de�nition) be in this subcircuit.

3. We subtract GIshape[i] nodes from the maximum fanin of level i, to leave room for

the incoming back-edges.

In addition to these speci�c changes to degree allocation, there are a signi�cant number

of minor modi�cations required in the details of the probabilistic sampling. This is mainly
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because the loss of 20-50% of the edges in the speci�cation (to GIs and GOs) results in a

more restricted and di�cult problem.

Fanout Assignment (Step 3).

Step 3 of the algorithm, which assigns actual values from the fanout distribution to delay

levels, takes into account latch shape in the allocation of zero-fanout nodes, as per the

above discussion. The number of fanout-0 nodes for any level is bounded by GOshape[i] +

POShape[i].

Ghost I/O Assignment (Step 4).

Recall that Step 4 of the combinational algorithm creates the nodes, and assigns their

fanout values. Previous changes have tried to \make room" for the ghost I/Os, and here

we actually allocate GI and GO ports to individual nodes.

The allocation of ghost inputs is straightforward: we allocate the GIshape[i] ghost inputs

randomly and uniformly to the nodes at delay level i. Looking at the data for real circuits,

we �nd that there is no statistical reason to do otherwise.

We designate latch shape[i] nodes as latched. These nodes will eventually be candidates

for gluing to a ip-op. As much as possible, these will be fanout-0 nodes, and will not be

assigned additional GOs. If there are remaining fanout-0 nodes after this step, we assign

additional GOs. All remaining GOs are kept for a new post-processing step discussed next.

Remaining GO assignment (new Step 6).

Sequential subcircuits usually have fewer available edges than fully combinational circuits,

so we use the ghost outputs, in part, to \repair" any extra zero-fanout nodes which may

exist (usually some, but a small proportion) on the delay level they are assigned to. The

remaining ghost outputs are not assigned uniformly. We want to generate more realistic

circuits which tend to have a smaller number of high-fanout nodes to previous levels, rather

than many nodes with a single ghost output. To do this, we choose a random subset of

the nodes on each delay level requiring ghost outputs, smaller than the number of ghost

outputs available, then assign the ghost outputs uniformly to nodes in the subset.

These modi�cations to the combinational algorithm allow us to generate a combinational

circuit with the correct number of ghost inputs and outputs at the required combinational
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delay levels so that the gluing process can take multiple circuits and glue them together.

5.3.3 Gluing Subcircuits.

The problem of joining subcircuits together into the �nal sequential circuit C is essentially

one of appropriately matching the ghost ports between the subcircuits into back-edges and

FF-edges.

When gluing begins, we have a list of subcircuits Ci, i = 1::c to be connected, sorted

by increasing sequential level. Each subcircuit contains a list GIlist of ghost inputs, a list

FF outlist of ghost outputs which have been labeled as targeting a ip-op (from nlatch in

the speci�cation), a list GOlist of other ghost outputs intended for back-edges and a list

FF inlist of primary inputs in subcircuits at non zero sequential levels which will become

ip-ops. Each ghost input and output is attached to a node in the subcircuit, and inherits

the combinational delay of that node.

The matching is constrained by combinational delay and sequential levels. We cannot

join a node x at sequential level l to a node y at level l + 1, unless y is a PI (i.e. intended

to become a ip-op). We also cannot join a node x to any node y at a level beyond l + 1

without violating the de�nition of sequential level on the nodes of C. Similarly, we cannot

join a ghost output on a node x to a ghost input on a node y if d(x) � d(y), without

violating the combinational delay of y, and we cannot connect two ghost outputs attached

to x with two ghost inputs to y, or we create a duplicate fanin to y.

This problem reduces to a standard bipartite matching problem and there are known

exact algorithms to solve it. However, the exact approaches are based on network-ow

algorithms which are too slow (i.e. O(n
p
n) time) to allow us to generate large circuits.

Furthermore, in order to apply the geometric locality heuristic used in combinational gen-

eration to gluing, and later to extend the gluing algorithm to one which does not �nd all

connections, but leaves some ghost inputs and outputs disconnected (as would be desired

for multi-level hierarchical generation) we would require weighted matching, which uses

O(n2 logn) time [66]. Since the other parts of gen operate in either linear or O(n logn)

time, this would not be acceptable.

Thus we approach the gluing problem heuristically with a greedy algorithm. The most

important aspect of the operation is to properly order the connections so as to increase the

chances of �nding a good solution. A solution which fails to connect all possible edges will
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result in gen later having to diverge from its input-speci�cation by creating extra ip-ops

or by moving ghost inputs or outputs to di�erent nodes.

Because registered ghost outputs are labeled separately from the other ghost outputs,

the problems of gluing back-edges and gluing FF-edges are independent. However, di�erent

subcircuits do \compete" for back-edges. We give priority to earlier sequential levels by

processing in the following order (justi�ed later):

for i = 0..c /* c is the number of subcircuits */

connect back-edges from Cj , j 6= i, to GIs of Ci.

connect FF-edges from registered GO nodes in Ci to PIs in Ci+1

end for

Locality of connection.

We have previously discussed the locality metric in making combinational connections be-

tween nodes in Step 5. For sequential gluing, de�ne the index of a node as an integer

proportional to the node's location in the node list for a given delay level in any subcircuit

(the 0..ni � 1 ordering of the ni nodes in delay level i, scaled to the maximum width over

all combinational levels). When edges are connected in Step 5 of the base algorithm, we

probabilistically favour connections between nodes which have closer indices, in order to in-

troduce clustering in the circuit. This form of geometric clustering is evident when viewing

pictures of circuits generated by heuristic graph-drawing packages such as dot [30] (e.g.

see the many drawings in Chapter 6).

In order to generate realistic circuits it is important to continue this process when

connecting nodes to ip-ops and back-edges, or we generate circuits with many crossing

edges which are overly di�cult to place and route. Thus, we continue to use the node index

for sequential gluing.

Gluing back-edges.

The algorithm for gluing back edges to the ghost inputs of one circuit Ci from all other

subcircuits is as follows.

First create a destination list of all ghost inputs in Ci and a source list of all ghost

outputs in the other subcircuits which are at later sequential levels. Sort both lists by
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increasing index within decreasing delay. The purpose of this order is to use up the highest

delay ghost outputs �rst (because they are more likely to not �nd a matching ghost input

and then require a ip-op or movement later), and to match them to the highest delay

ghost inputs with which they are compatible. Given that, we want to match indices as well

as possible.

Now proceed through the source list in order. De�ne the match value of a source node

x with a destination node y as 1 if (x; y) is an invalid edge (by the constraints above),

and d(y) � d(x) otherwise. We search the destination list for the �rst node with lowest

match value, which also lines up a compatible index by the sorting. Note that we don't

actually have to look at the entire destination list; this can be done in O(d) time, using a few

additional pointers indexed into the destination list. Combinational delay d is essentially a

constant so the algorithm is fast.

The time required for this gluing phase is dominated by the sorting, so we need O(n logn)

time4 per subcircuit, of which there are a constant number. Note that \n" in the algorithmic

complexity refers to the number of back-edges in C, which is typically about 5-10% of the

size of the whole circuit5.

The reason that the main algorithm processes subcircuits in order of their sequential level

is that the earlier levels typically have both many more nodes and greater combinational

delay, and also a more complex overall structure. (Later levels often reduce to a register-�le

with only a couple of logic nodes.)

Gluing Edges to Flip-Flops.

The process for gluing nodes with ghost outputs labeled as latches to primary inputs at the

next sequential level is more straightforward. For each adjacent pair of levels, create a source

and destination list as before, sort the lists by index (independent of delay), and line up

nodes directly (the lists are the same size, by the original speci�cation of the subcircuits).

This is an additive factor of O(n logn) time to the preceding steps, so the entire gluing

algorithm remains O(n logn) time. (In this case, n refers to the number of ip-ops in the

circuit which is, in practice, not the entire size of the circuit.)

4
Due to the fact that the node lists are already sorted, we can reduce this to an O(n � d) algorithm

with appropriate data structures. However, given the tight constants which exist for sorting algorithms, we

believe the constant for doing this would dominate log n for all reasonable n, so it is not of practical interest

to do so. The same applies to most (but not all) sorts which occur in gen.
5
This doesn't change the abstract complexity, but the algorithm runs faster in practice.
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Note that the order in which subcircuits are considered is unimportant, as the connec-

tions are independent.

Post-processing.

As mentioned earlier, it is not always the case that a perfect matching exists for the back-

edges. A post-processing step is necessary to resolve the remaining incompatible ghost

inputs and ghost outputs. In this step ghost inputs and outputs are moved to suitable

candidates elsewhere in the subcircuits until matches are found. In extreme cases (agged

by warnings from gen) up to 40% of back-edges can be unresolved before post-processing,

but typically only 0-5% of ghost inputs and outputs (which comprise less than 1% of all

edges) remain after the main gluing algorithm.

5.4 Implementation Details.

5.4.1 Meeting the Input Speci�cation.

It is not always the case that gen determines a circuit which meets the input speci�cation.

As with any heuristic algorithm, there exist input possibilities for which the heuristics fail.

In the case of gen, we �nd that we are occasionally (1-2% of the time) unable to complete

a valid circuit. In these cases, the tool reports a \failure to determine a circuit with this

speci�cation." About 2-3% of the time, gen will complete a circuit, but will report that it

was forced to modify the input speci�cation signi�cantly in order to �nish (though this is

necessarily minor enough to not warrant failure). We consider these to be minor problems,

because the user can run the tool again with a new random seed, and typically will get an

acceptable output on the second try.

5.4.2 Parameterization and Default Scripts.

The discussion to this point has involved the generation of a circuit with a completely

speci�ed exact speci�cation. In practice, the user would choose only a small number of

parameters (or possibly just n), and the remaining are chosen from default parameter

distributions.

gen is augmented with a sophisticated C-like language, symple, for parameter gen-

eration. The default distributions are written in this language, and the user can specify
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Figure 5.5: A gen circuit family (fk=2; n=60..100 by 10g).

modi�cations in the control script for a circuit. symple provides a great deal of control over

parameters. The complete default scripts for combinational circuits, defaults.gen, comb.gen,

fsm.gen and special.gen are are shown in Appendix A, along with a description of symple.

As an example, observe how nIO is currently de�ned as a set of piecewise Rent-like equa-

tions, each of which has the Rent parameter drawn from a Gaussian distribution (see the

IOFrame of comb.gen).

The current default sets and parameters have been determined from experimentation

with the MCNC benchmark circuits. It would be possible to perform the same experimen-

tation with an alternate set of benchmarks, and generate a modi�ed default script.

Symple allows parameters to be speci�ed as constants, drawn from statistical distri-

butions or chosen as functions of other parameters. Figure 5.5 shows a series of circuits

generated with the varying n but other parameters �xed, to generate a family of related

circuits. Symple scales related parameters (e.g. depth and shape) yet retains the similarity

of other properties. This ability to scale circuits while retaining fundamental similarities

introduces an entirely new paradigm for evaluating the scalability of architectures and al-

gorithms.

5.4.3 Input Scripts and Clone Circuits.

The input to gen takes basically two forms. The user can specify a parameterization which

they create themselves, use circ to extract a parameterization from an existing circuit, then

generate a clone circuit with the same properties, or do a mixture of the two by modifying
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/* CIRC 3.0, compiled Tue Oct 1 14:30:51 EDT 1996.

*/

X = comb_circ {

name="alu4clone";

n=1536; kin=4; nPI=14; nPO=8; delay=7;

nEdges=5400; edges=(0, 4494, 757, 125, 23, 1, 0, 0);

shape=(14, 692, 518, 198, 80, 21, 11, 2);

outs=(8,1267,67,41,32,33,14,13,11,3,2,9,9,5,4,0,0,1,1,0,

1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,1,2,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,3,0,1,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1);

max_out=249; nZeros=8;

};

output(circuit(X));

Figure 5.6: A gen clone script for the MCNC circuit alu4, output by circ.

a clone script.

Figure 5.6 shows the second case, in the form of a gen script output from circ given the

MCNC circuit alu46. The object \comb circ" referred in the script to is the default frame

in the script comb.gen, and the speci�cations inside the set brackets indicate modi�cations

to parameters in comb circ which override the defaults.

Figure 5.7, in contrast, shows a user-de�ned gen script to create a 1,000 LUT circuit.

The user has chosen simply to generate a combinational circuit with 1,000 LUTs, 58 PI and

16 PO with combinational delay 9. The remaining, unspeci�ed, parameters (shape, edges,

etc...) are chosen from default distributions which use the speci�ed circuit parameters such

as delay and nPI as input parameters themselves.

To visualize the operation of gen for sequential circuits, and to see the type of variation

that can occur in generating a clone, Figures 5.8 and 5.9 show the clone script produced

by circ for the sequential circuit bbtas, the circuit itself, and two clones produced by gen

given the clone script. Note that we use node labels rather than the actual back-edges to

6
The command line used to generate this clone script is \circ in=alu4 k=4 gen." This takes the 4-LUT

mapped circuit alu4.blif from the default MCNC directory with k = 4, and produces the gen script pictured.
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X = comb_circ { name="X"; n=1000; nPI=58; nPO=16; delay=9; };

output(circuit(X));

Figure 5.7: A simple user-generated gen script for a 1000 LUT circuit.

/* CIRC 3.1, compiled Wed Aug 28 15:36:17 PDT 1996. */

X = {

name="bbtasclone";

L0=(@.comb_circ) {

name="L0";

n=8; kin=4; nPI=2; nDFF=0; level=0; delay=2;

shape=(2,3,3);

nEdges=7; edges=(0,7,0);

nGI=13; GIshape=(4,9,0);

nGO=3; GOshape=(0,0,3);

nPO=2; POshape=(0,2,0);

outs=(5,0,2,1);

max_out=3; nZeros=5, nBot=3;

};

L1=(@.comb_circ) {

name="L1";

n=3; kin=4; nPI=0; nDFF=3; level=1; delay=0;

shape=(3);

nEdges=0; edges=(0);

nGI=0; GIshape=(0);

nGO=13; GOshape=(13);

nPO=0; POshape=(0);

outs=(3);

max_out=0; nZeros=3; nBot=3;

};

glue=(L0, L1);

};

output(circuit(X));

Figure 5.8: Clone script, produced by circ for bbtas.

improve readability.

One aspect that the parameterization does not necessarily capture is the symmetry of

the original circuit. We observe that neither clone has the symmetry of the original. Note,

however, that recapturing the block structure and symmetry in a at netlist are open (and

very di�cult) research problems of their own.

We point out, as well, that the two clones are di�erent, yet both respect the parameter-
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(a) Circuit bbtas

a b

c d e
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(b) Clone one

a b

c d e

f g h

c f g h f h f g h ed

(c) Clone two

Figure 5.9: The MCNC sequential circuit bbtas and two clones.

ization of the input script. One of the features of the implementation is that the user can

generate multiple di�erent circuits with the same underlying speci�cation.

5.4.4 Time Complexity of the gen Algorithm.

The theoretical time complexity of the algorithm and its gen implementation is the larger

of O(d2) from Step 1 and O(n logn) from each other step. In practice, we assume that

d<<n, so the complexity reduces to O(n logn). Each step in the algorithm addresses each

element a constant number of times in processing for a linear factor, with possible constant

number of preprocessing sorts or the creations of a random permutation, each of which takes

O(n logn) time. The algorithm uses a constant amount of space per node, hence O(n) for

the algorithm.

In practice gen is very fast. Generation of a 2,000 LUT circuit takes about 7 seconds

on a Sparc-5, using 500K of memory. For perspective, the same circuit requires about 45

minutes and 2M of memory to place and route using even a fast and memory-e�cient tool

such as vpr. A circuit of 30,000 LUTs (beyond the size of current FPGAs) requires about

30 seconds and 1M to generate, versus a half-day or more to place and route.



Chapter 6

Validation of Circuit Quality

As discussed earlier, heuristic algorithms such as gen are best compared on the basis

of their actual results. The primary applications of the benchmark circuits produced by

gen are FPGA architectural exploration and software tools for computer-aided design.

Thus, our method of validation will use well accepted metrics of routability to compare

\real" benchmark circuits with clone circuits produced by gen. Because the gen algorithm

contains a number of random and probabilistic techniques, it is also interesting to compare

the gen-circuits against standard random graphs of the same size.

In the case of combinational circuits, we use the MCNC benchmarks as our real circuits.

For sequential circuits, the author was able to use industrial circuits provided by the Altera

Corporation while employed there on an internship.

Our validation process is outlined in Figure 6.1. We take a real circuit, its clone circuit

from gen, and a random graph of the same size. These are individually placed and routed,

and comparisons are made based on reconvergence number (from circ), track-count and

wirelength (from vpr), and the \wiring resources" used on an Altera 10K20RC240 com-

mercial FPGA (from max+plus2).

In Section 6.1 we show how to create reasonable random graphs for this comparison.

Section 6.2 then gives a number of examples to visually indicate the di�erences between

random graphs, gen-circuits and real benchmarks, itself a form of validation. In Section 6.3

we discuss the empirical results for the combinational MCNC circuits, and in Section 6.4

we discuss empirical results for sequential industrial circuits.

Because gen creates circuits using only a small parameter list, the goal is to show how

85
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Figure 6.1: The validation process.

close they are to existing circuits. For a method such as proposed by Iwama et. al. [43]

(See Section 2.2.3), where new circuits are generated by repeated small transformations or

mutations, it would be equally important to show that the result was signi�cantly di�erent.

It is important to point out that the default parameterizations and the benchmark

circuits produced by gen are not at all restricted to the existence of an initial circuit to

clone, other than for this validation process. We are able to generate benchmark circuits of

up to 200,000 LUTs, well beyond the level of current FPGAs or ASIC circuits, but we can

only validate the process up to the largest circuits in the MCNC and industrial collections,

currently about 4500 LUTs.

6.1 Generating Comparison Random Graphs.

As mentioned earlier in Section 2.2.3, there are several natural models under which it

is relatively easy to generate uniform random graphs. The most common model used is

G(n; p): a graph on n nodes where each edge exists independently with probability p.

However, these graphs have either too many edges, or are disconnected (depending on p|

see Section 2.2.3), so they are too unrealistic even to form a basis for comparison. The

closest form of random graph that we can generate as a fair comparison is a random t-

regular undirected graph, which we then force to be directed.
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6.1.1 Random Directed Acyclic Graphs.

To generate a random graph the same size as a combinational circuit with n nodes and

m edges, we calculate the largest t such that t � n < 2m, generate a t-regular graph, then

add the required number of leftover edges by random sampling. We direct the edges by

taking a random ordering of the nodes and directing each edge from the lower to the higher

numbered vertex.

A random t-regular graph can be generated as follows1:

1. Create a random permutation � of size 2 � t � n, to represent 2 � t � n nodes of a new

graph (with no edges).

2. Join the nodes �2i and �2i+1 with a new edge, i = 0::(t � n)� 1. This creates a graph

on 2 � t � n nodes with t � n edges, where each node is connected to exactly one other,

i.e. a random matching.

3. Collapse (i.e. \identify") all nodes labeled �ti::�(t+1)i�1 into a single node xi, for

i = 0::n� 1.

The result of this process is an n node undirected graph where the degree of each node

is exactly t. The algorithm does not, however, guarantee that the graph is simple (contains

no double-edges or self-loops). The expected number of loops (edges from vertex v to itself)

is given by

�1 = Pr(edge is loop) � edges in G

=
#pairs which produce a loop

# pairs
� edges in G

=

�
t
2

�
� n�

nt
2

� �

nt

2

=
t(t � 1)n

(nt)(nt� 1)
�

nt

2

=
t� 1

2
(n >> 1)

1Thanks to Mike Molloy [53] for showing me this construction and the analysis of it. The con�gura-

tion model was introduced in this form by Bollob�as[9] and motivated in part by the work of Bender and

Can�eld[7]. This model arose in a somewhat di�erent form in the work of Bekessy, Bekessy and Koml�os[6]

and Wormald[71, 72].
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and the expected number of double connections (multiple uv edges) is given by

�2 =
possible double edges

possible edge-pairs
� edges in G

=

�n
2

��t
2

��t
2

�
� 2�nt

2

��nt�2
2

� �

�
nt

2
�

nt � 2

2

�

=
n(n� 1)t2(t� 1)2

nt(nt � 1)(nt� 2)(nt� 3)
�

nt(nt � 2)

4

=
(t� 1)2

4
(n >> 1):

It is quite interesting that the expected number of loops and double edges is a function

purely of t, independent of n. The distribution of the events is Poisson, so the probability

that a given G generated by the construction is loop-free, double-edge-free is e�(�1+�2).

For t = 5 the probability that G is simple is 0.006. Thus we can expect to �nd a simple

t-regular graph within a couple of hundred iterations. In practice, however, we can (and

do) just delete the loops and multi-edges and choose new edges when adding the m � tn

other edges. Constructions due to Frieze [28] and McKay and Wormwald [51] allow this to

be done without sacri�cing perfect uniformity, but this is not necessary for our purposes.

For the direction of edges, we just use the (natural) ordering which comes from the

random permutation �. To add the extra edges, we uniformly choose a node with low

fanin, uniformly choose a node from those with lesser numbers, and add an edge. We

repeat this process until the number of edges in the graph is m.

One problem with these random graphs is that they have an overly high number of I/Os.

For any random ordering of the nodes used to choose the edge directions, the probability

that the i'th node x has all its edges directed forward (i.e. is a PI) is approximately ( i
n
)t,

so the expected number of PIs is

E[nPI ] =
nX
i=1

�
i

n

�t

=
O(nt+1)

nt

= O(n):

Empirically, we calculate that for t = 5, about 8% of nodes are primary inputs, and by

symmetry 8% are primary outputs.
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6.1.2 Random Directed Graphs with Cycles.

For sequential circuits, we also want to have a given number of ip-ops and back edges.

The introduction of back-edges also o�ers the opportunity to \repair" the I/O bias in the

acyclic circuits.

We generate a random directed graph on n nodes and m edges with nPI primary inputs,

nPO primary outputs, with nDFF available ip-ops (for breaking combinational cycles, as

we want only synchronous designs) and k-bounded fanin. The algorithm is as follows.

1. Generate a t-regular graph as in the combinational case.

2. Randomly label nPI fanin-zero nodes as PI (similarly nPO fanout-zero nodes as PO).

3. Randomly connect unlabeled fanout-zero and fanin-zero nodes by new edges until they

are exhausted. When it is necessary to connect a node to a node of a lower number,

separate the two by a ip-op if one remains to allocate, otherwise ignore this choice

and restart the search for an alternate connection that does not involve a back-edge.

This reduces the number of unwanted I/Os in the circuit, while also adding back edges

and ip-ops.

4. Continue randomly connecting random nodes to random nodes with fanin less than k

until the graph contains exactly m edges.

The graphs generated by this process could be seen as a \�rst pass" version of gen

which takes fewer parameters into account. In fact, this algorithm alone would be an

improvement over most naive approaches to generating random graphs for benchmarks,

and thus represents an extremely fair comparison of gen circuits to \random graphs."

Comparing real circuits to clones and these random graphs is essentially measuring how far

along the scale from \random" to \real" the current gen approach has traveled.

6.2 Visual Validation: Examples.

For smaller circuits, we can observe the output of gen pictorially. One command-line option

of circ causes a dot script to be output. The dot program [47] takes this description of

the graph and generates a drawing in postscript. We show a number of these drawings here.

Further examples are shown in Appendix C.
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6.2.1 Gen Circuits from Defaults.

Figure 6.2 shows four di�erent combinational circuits produced by gen using the default

parameter distributions. We note that these circuits appear to be \normal" circuits, and

include many features such as areas of high fanout. The visual \quality" of the circuits is

most striking when one observes the similarity to MCNC circuits, shown in Figure 6.3, and

the contrast between MCNC circuits and the random graphs shown in Figure 6.4.
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Figure 6.2: Varied circuits produced by gen, using the default pro�le.
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Figure 6.3: MCNC combinational circuits sqrt8 and sa02.
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Figure 6.4: Random 4-regular digraphs

6.2.2 Gen Clone-Circuits.

Figures 6.5 and 6.6 show two MCNC circuits, each original circuit pictured with two dif-

ferent clone circuits generated from its characterization by circ. Notice that the clones

have a similar structure in terms of the parameters given to gen, but are di�erent in the

implementation of that structure, just as they are di�erent from the original.
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Figure 6.5: MCNC combinational circuit squar5 and two clone circuits from gen.

Figure 6.7 shows the MCNC sequential circuit dk15 and two clone circuits produced

by gen. Unfortunately, dot is only designed to display directed acyclic graphs, so we are

unable to automatically display graphs according to our sequential model. To generate
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Figure 6.6: MCNC combinational circuit sqrt8ml and two clone circuits from gen.

acceptable input for dot, circ reverses all back-edges and gives instructions for dot to

display them as dotted in the drawing.

6.3 Combinational MCNC Circuits.

In this section we deal with the validation question for combinational circuits. We judge

the quality of the generated circuits with respect to parameters not speci�ed in generation:

reconvergence, and post-placement and routing wirelength and track count. We note that

a validation process for other characteristics such as node activity in simulation or timing

analysis could also be performed; we leave this for future work.

We constructed the clone scripts (See Section 5.4.3) for 42 combinational MCNC circuits2

with circ (i.e. n, nPI, nPO, d, shape, fanout and edge length distributions), and generated

corresponding circuits meeting those pro�les with gen. Our method of validation is to com-

pare unspeci�ed characteristics of the MCNC circuits against those of the corresponding

2There are actually 109 combinational circuits in the LGSynth93 benchmark suite, but the majority are

too small to be useful. We have restricted the experiments to circuits with 100 LUTs or more.
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Figure 6.7: MCNC sequential circuit dk15 and two clone circuits by gen.

generated circuits and against random graphs of the same size (as discussed in the previous

section).

Validating Reconvergence.

Reconvergence (from Section 3.4), R, is not a parameter to gen. Reconvergence captures

numerous properties of a circuit, including high fanout, and the interaction between shape,

edge length and fanout distribution, all of which a�ect the ability to place and route the

circuit. We calculated R for the generated circuits and compared them to those of the

original circuits from which the generation pro�les were extracted and to those of random

graphs of the same size. The results for the MCNC circuits and their corresponding gen-

clones and random graphs are shown in Table 6.1. Recall that 0 � R � 2 for 4-LUT mapped

circuits.

We found that, for over half of generated circuits, R was within 0.1 of the value for

the corresponding MCNC circuit. On average R di�ered by 22% in absolute value (if

cancellation is allowed the di�erence is only 9%). This indicates that the correlation for an

important descriptive parameter, R, did carry through the generation process.
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Reconvergence Tracks Wirelength
size mcnc gen rnd mcnc gen rnd mcnc gen rnd

sao2 100 0.48 0.57 0.45 4 4 6 616 602 879
cht 102 0.10 0.17 0.10 3 3 5 353 445 572

9symml 106 0.41 0.57 0.44 4 4 7 606 582 867
C1355 115 0.80 0.56 0.21 5 4 6 677 655 825
C499 115 0.80 0.56 0.22 5 4 6 668 655 831
bw 137 0.67 0.66 0.67 4 4 9 842 794 1342
clip 149 0.59 0.63 0.79 4 4 9 978 896 1579

9sym 153 0.45 0.51 0.44 4 4 8 950 858 1424
C432 160 0.96 0.95 0.15 4 4 7 855 895 1347
rd84 165 0.53 0.78 0.60 5 4 9 1171 999 1927
o64 176 0.00 0.00 0.05 3 3 5 395 375 1204

C1908 178 0.84 0.95 0.28 5 6 8 1196 1249 1777
i3 178 0.00 0.00 0.05 3 3 6 332 344 1209

alu2 207 0.88 0.97 0.64 5 5 10 1425 1425 2591
i5 221 0.00 0.16 0.06 3 3 5 655 1180 1620

exmpl2 223 0.36 0.30 0.05 4 4 6 1053 1289 1523
toolrg 225 0.31 0.46 0.37 5 5 9 1520 1417 2494
t481 230 0.62 0.76 0.62 6 6 10 1763 1728 3071
C880 234 0.57 0.64 0.16 5 6 7 1419 1655 2233
duke2 273 0.56 0.56 0.36 6 5 10 2169 2008 3277

i2 275 0.02 0.06 0.02 3 3 6 727 716 2203
i4 290 0.00 0.01 0.03 3 3 6 592 639 2393

vda 305 0.72 0.77 0.55 7 5 12 2787 2557 4613
i6 320 0.24 0.21 0.05 3 3 7 1181 1262 2501
i7 402 0.20 0.20 0.03 3 3 6 1352 1403 4114
i9 464 1.07 0.72 0.22 5 5 12 2770 3072 6913

C3540 481 0.86 0.84 0.38 6 8 15 3726 4887 8321
cordic 489 0.80 0.89 0.39 7 7 15 4279 4859 8891
table3 494 0.73 0.87 0.49 8 6 15 5442 4847 8840
table5 500 0.78 0.86 0.39 8 7 15 5612 5018 9159

x3 512 0.26 0.24 0.08 4 5 10 3454 4289 7029
ex4p 514 0.41 0.25 0.23 4 5 12 3425 3914 8604
apex6 528 0.25 0.21 0.08 4 6 10 3217 4331 7115
C6288 559 0.90 1.16 0.45 4 8 16 2900 6207 10287

k2 559 0.60 0.60 0.18 7 7 14 5190 5191 9139
misex3c 563 0.53 0.63 0.37 6 5 15 4841 4493 10989

dalu 575 0.46 0.48 0.19 5 6 13 3827 4871 9547
i8 614 0.77 0.43 0.18 5 7 15 5729 6391 10181

apex1 740 0.67 0.56 0.36 8 7 19 8124 7725 15326
apex3 921 0.66 0.59 0.30 8 7 19 10658 9831 34423
C7552 945 0.53 0.45 0.05 5 6 13 5751 10384 15918
ex5p 1072 1.12 1.20 0.27 10 8 21 14343 12615 27904
i10 1252 0.72 0.55 0.09 6 8 19 15085 23915 28738

apex4 1270 0.90 0.69 0.23 9 8 23 16312 14279 34423
misex3 1411 0.55 0.77 0.24 8 7 24 16139 14799 40152

alu4 1536 0.50 0.62 0.22 7 6 26 15818 13561 45177
seq 1791 0.48 0.67 0.21 8 7 27 21348 19796 57040
des 1847 0.50 0.39 0.07 6 9 23 17898 33925 50294

apex2 1916 0.47 0.64 0.20 8 8 29 23203 22742 63418
spla 3706 0.97 1.07 0.13 10 9 19 49724 52583 167832
pdc 4591 1.01 1.27 0.10 11 10 19 74553 66131 225679

signed di�erence 9% -45% 3% 123% 10% 119%

absolute di�erence 22% 48% 14% 123% 17% 119%

Table 6.1: Empirical validation using combinational MCNC circuits.

In contrast, the reconvergence numbers of the random graphs did not match the MCNC

circuits well at all. We observe that these random graphs also exhibit diminishing R as n

increases. This is partly due to the two factors mentioned earlier: the absence of high-fanout

nodes and the large number of I/Os. Thus any generator which does not take these factors

into account will fail to emulate crucial behaviour of real circuits.
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Validating Routability.

To test the \routability" of our output circuits, we used a locally available tool, vpr [8], to

place and global route the sets of MCNC circuits, generated circuits, and random graphs

described above. The circuits are compared on two di�erent metrics: the maximum number

of tracks per channel required to successfully route, and the total wirelength of the global

routing. Vpr is a high-quality tool, currently the best academic global router available, so

it provides a good quality solution for our comparisons.

Vpr [8] chooses a minimal square grid to support the size of the circuit, and minimizes

both maximum track-count per channel and total wirelength (by re-routing with successively

fewer tracks per channel until failure occurs).

Table 6.1 also shows the routing statistics for the MCNC circuits, clones and random

graphs with summary statistics (percentage pairwise di�erences) on the last line. We see

that the track count for the generated circuits di�ered by 14%, on average, from the corre-

sponding MCNC circuit, whereas the random graphs di�ered by 123%. Wirelength di�ered

by 17% for the generated circuits and 119% for random graphs.

For both track-count and wirelength, we note that the variation for gen clones lies in

both directions whereas random graphs were universally harder to place and route. Thus,

the signed di�erences for the gen clones were only 3% in track-count and 10% in wirelength,

meaning that the di�erence applies as much to the variance of gen circuits as to an inherent

speci�cation bias. The random graphs, on the other hand, showed an obvious and consistent

bias.

Though not shown in the table, we note that there is a corresponding increase in the

cpu time required place and route the gen circuits and random graphs, which is roughly

proportional to the increase in wirelength (i.e. small for gen circuits, and double or more

for random graphs).

These results clearly show the circuits produced by gen are very similar to the MCNC

originals and signi�cantly more realistic than random graphs as benchmark circuits.

Locality Revisited.

The above empirical results are all for the original method of producing locality|using the

locality parameter L described in Chapter 5.
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As mentioned in the description of the algorithm there, our hope is to eventually use

a form of locality generation which is based on the locality characterization in Section 3.5.

We are pursuing ongoing work to that end, and have made changes to gen which use spread

and span to parameterize edge connections in Step 5 of the generation algorithm.

Unfortunately, these e�orts have not yet shown any numerical improvements over simply

using the locality parameter L. There are several possible explanations for this. One is that,

although the span of a node models the distance between nodes in the delay based layout,

it does not model the interaction between edges, i.e. crossings. It is possible that edges

are at the correct distance, but exhibit a balanced (rather than clustered) distribution of

crossing numbers across horizontal slices of the layout, making the place and route problem

more di�cult.

Though the empirical results show that we already have an excellent method of pro-

ducing circuits, it is theoretically displeasing to not tie the issue of locality characterization

into the generation algorithm. For this reason, we feel that further characterizations of

locality, especially the ability to parameterize locality generation in ways such as described

in Section 3.5, are an important direction for ongoing and future work.

6.4 Sequential MCNC Circuits.

We validate the sequential gen-circuits by generating clones of 22 industrial benchmark cir-

cuits (provided by the Altera Corporation), and comparing the post-placement and routing

statistics from vpr and Altera's max+plus2 for the original circuit with that of the clone

circuit and a equivalently sized (in terms of nodes, edges, ip-ops and I/O) random graph.

The benchmark circuits3 were output as BLIF after synthesis and �tting with Altera's

commercial place-and-route tool MAX+PLUS2 into an Altera 10K20RC240 FPGA, and

all analysis by circ, including the extraction of clone scripts, takes place from that point.

Given industrial criticisms of the MCNC circuits, it is extremely useful to be able to compare

our results with real industrial circuits.

Table 6.2 shows the comparison between the original, gen and random circuits after

placement and global routing by vpr and implementation on an Altera 10K20-RC240 FPGA

[4] by max+plus2. The benchmarks used are all of the appropriate size (between 60 and

3Use of Altera circuits was made while the author was a summer intern there and had access to proprietary

data and software.
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vpr wire vpr tracks 10K20 tracks

clone rand clone rand clone rand

Circuit orig %di� %di� orig %di� %di� %di� %di�

A 5102 21 144 6 16 83 14 132

B 7719 64 215 5 80 160 71 .

C 6344 27 160 6 16 116 30 .

D 6818 20 147 6 16 133 32 .

E 6609 53 266 5 60 160 35 .

F 4293 57 188 5 40 140 41 197

G 4147 2 158 5 0 140 16 208

H 5107 21 137 5 40 120 0 123

I 4692 19 155 5 40 160 23 132

J 6087 34 153 5 60 120 51 165

K 9313 42 202 6 33 133 38 .

L 6546 36 222 6 33 100 55 .

M 7748 86 248 5 100 220 85 .

N 10794 -43 52 10 -40 30 -41 .

O 8070 17 140 7 14 100 25 .

P 5562 88 268 5 80 180 90 .

Q 6460 71 167 5 80 160 . .

S 6417 29 166 5 40 140 24 .

T 4662 28 170 6 0 83 16 108

U 8828 2 156 6 16 150 53 .

V 4876 81 201 4 75 175 63 174

W 4837 28 143 4 50 150 34 117

mean 6358 35% 175% 5.5 38% 134% 36% 151%

Table 6.2: Empirical validation using sequential circuits from industry.

100% logic utilization, with most in the higher end of the range) for exercising this 10K20

part, which has 1152 LCELLS (logic blocks or LUT+FF combinations) and 240 user I/O

pins.

The �rst column identi�es the circuit. The second column gives the total wirelength

after global routing. Then we give the percentage of extra wiring (beyond that required

for the original) required by the corresponding clone circuit and random graph. Similarly,

we then have the track-count (channel width) followed by the percentage increase in track-

count for the corresponding clone circuit and random graph. The last two columns show

the percentage increase in \routing resources" used by the clone circuit and the random

circuit when implemented on the 10K20 FPGA. To respect information about the bench-

mark circuits which is proprietary to Altera the actual resource usage in the device is not

displayed|for this study it is only the percentage di�erence that is of interest.

For our metric of FPGA resource usage, we count the total number of full-horizontal,
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half-horizontal and vertical lines used by the design in a 10K20, as reported by max+plus2.

Because we are using an actual device, it is possible that a design does not \�t" (see

Section 2.1.2). Though all original circuits do �t in the 10K20, one of the clone circuits and

thirteen of the random graphs did not, and these are indicated by a `.' in the table.

The last row of the table indicates the averages for each column. For the last two

columns, the missing data is not included in the average, which means that the numbers

for random circuits are deceptively low.

We �nd that the clone circuits are, in general, harder to place and route than are the

original circuits we took the speci�cations from, though a given clone is always closer to

the original than the corresponding random graph. On average, the clone circuits used

35% more wirelength and 38% more tracks than the original circuit, whereas the random

graphs used 175% more wirelength and 134% more tracks. This is further reected in the

implementation of the clone and random circuits on the commercial FPGA where (when

they did �t) the clone circuits used an average of 36%more routing resources and the random

graphs used 151%more routing resources. We also �nd that about half of the random graphs

do not �t at all in the part, whereas only one clone failed to �t. In Section 4.3 we gave the

de�nition of a measure quantifying generalized reconvergence for sequential circuits. By this

measure, gen circuits di�er by about 0.19 on average, while random graphs di�er by 0.28

on average. The di�erence in the average wirelength and track count between the original

and clone circuits likely results from as yet unknown parameters. We hope to address the

issue with future work on local structure in circuits.

These empirical results show that the gen circuits are signi�cantly more realistic than

even carefully generated random graphs. Though not perfectly close, the gen is able to

generate circuits which are quite similar to the original benchmark circuits. We remark

that, due to the proprietary nature of the circuits, we are not able to update the empirical

results to take into account the new locality characterizations discussed in Sections 3.5,

5.2.2 and 6.3.
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We have successfully generated circuits of up to 200,000 LUTs, well beyond the level

of current FPGAs. The gen implementation is currently limited to about that size, due

simply to the use of 32 bit integers: we need to be able to calculate n2 to determine some

probability distributions. Larger circuits would require special purpose arithmetic, at least

for speci�c parts of the code, or a hierarchical approach to generation.



Chapter 7

Conclusions and Future Work

7.1 Thesis Summary.

In this thesis we make new inroads into the understanding of digital circuits as graphs.

We introduce a new method for dealing with the shortage of quality benchmark circuits

for computer-aided design and for answering questions about FPGA architectures. The

use of benchmarks is crucial for these applications because of their inherent heuristic or

approximate nature.

Our approach to this problem involves �rst determining a combinatorial characteriza-

tion of combinational and sequential circuits. We apply the new characteristics developed

in this dissertation to form a statistical pro�le of circuits. Based on our abstract model of

combinational and sequential circuits, we de�ne the problem of parameterized circuit gener-

ation and give an algorithm to solve the problem. To bind this work together, we provide a

method for the validation of benchmark circuit quality. In this validation process, we show

both strong empirical evidence that the circuits produced by our software are good proxies

for existing real benchmark circuits and that random graphs are not.

Using the methods developed here, we are able to generate large numbers of sequential

benchmark circuits of up to 200,000 logic elements. The software implementation of the

algorithm is fast, and can generate a circuit with 30,000 nodes, beyond the size of current

FPGAs, in less than one minute of Sparc4 CPU time. The tools are practical and can

output circuit netlists in the Berkeley BLIF format, or in other commercial formats such as

Xilinx XNF [73], Altera AHDL/TDF [4], Actel ADL [1] and a subset of Verilog. The tools

are of interest to industry as well as academia, and have already been used at a number of

99
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companies.

7.2 Speci�c Contributions.

This thesis contributes to the state of knowledge in the following ways:

� We de�ne a set of new statistical characteristics of combinational circuits: shape, edge

length and output distribution and formalize a model and description of combinational

circuits in terms of these and other parameters.

� We de�ne a new theoretical combinatorial characterization of reconvergent fanout

in both combinational and sequential circuits, and give an algorithm to extract the

reconvergence parameter from a circuit.

� We de�ne a characterization of \locality" in combinational circuits, and give an algo-

rithm to e�ciently extract locality information from a circuit.

� We de�ne a new abstract model of sequential circuits, and a set of new characteristic

parameters of sequential circuit graphs.

� Using existing benchmarks we form a pro�le of circuits in terms of the above char-

acteristics. This pro�le is given in Appendix A, in the gen speci�cation language

symple.

� We identify and formally de�ne the problem of \parameterized random circuit genera-

tion" and set the ground rules for what type of generation tool is acceptable. We give

a detailed algorithm for generating circuits using the combinational and sequential

characteristics above, and incorporating the default pro�le just mentioned.

� We give a method of validating the quality of our benchmark circuits, and provide

conclusive evidence both that this algorithm generates high quality circuits, and that

random graphs produced by other means are not good for use as benchmarks.

� With the approach of this thesis, we provide a new methodological framework for

approaching the design and analysis of heuristic algorithms, and the validation process

for these algorithms. This paradigm is increasingly important for the algorithms



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 101

community as data sizes and execution time for hard problems continue to increase

faster than algorithmic and machine speedups.

In addition, this thesis makes speci�c practical contributions to the community by pro-

viding two new freely-available software tools circ and gen, together comprising about

50,000 lines of C source-code. Circ is a tool for the analysis and extraction of all the cir-

cuit characteristics mentioned above. Gen implements the complete algorithm of Chapter

5, taking an input parameterization, in combination with the default pro�le, and producing

a usable benchmark circuit which meets that parameterization. The code for circ and

gen can be obtained from the project web-site [40]. Copies of the source code have been

downloaded under an academic license by more than 30 persons representing more than 20

companies and academic institutions, and have been installed by the author for use at Xil-

inx, Altera, Actel, and Hewlett Packard Corporations. Circuits produced by gen have also

been used in an academic partitioning competition held at the 1996 ACM/SIGDA Design

Automation Conference.

7.3 Future Work.

The concept of circuit characterization and parameterized benchmark generation has not

been studied before, and there are numerous ways in which it can be extended. We divide

these into two areas: research into new understanding of circuits and better methods of

generation, and suggestions for the practical improvement of the current circ and gen

implementations.

7.3.1 Further Research

The most interesting area of future research is to improve on the combinatorial charac-

terization of locality in circuits. Rent's Rule provides us with a rough guide that we can

apply on average, and our characterization of locality from Section 3.5 provides empirical

data that we can apply directly to generation. A better understanding of local structure

and hierarchy would provide new insights into all phases of computer-aided design, espe-

cially partitioning and placement. This knowledge would greatly help us with questions

about how to properly scale the architectural features of FPGA architectures and whether

to use at or hierarchical architectures. Along with a study of locality, any other new
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characterizations which provide us with knowledge about circuits would be useful.

We need to know more about how the structure of circuits changes with size. The circuits

examined in this thesis range to 4,500 LUTs, about the boundary where circuits change

from single-purpose computations to \system on a chip" designs. The next generation

FPGAs will begin to implement these system level functions, and we must be prepared for

them. A closely related issue would be how to validate circuits when we don't have any real

circuits available to clone. It is di�cult, however, to think of validating the routability and

structure of a 200,000 LUT circuit when we have never seen one.

As circuits move towards system level designs, we will want to generate benchmarks

which have multiple di�erent types of logic in the same design. This means adding memory

and datapath elements to the control logic that we currently generate. Our model of sequen-

tial circuits abstractly extends to an arbitrary form of hierarchy, but further investigations

into how to \stitch" datapath, memory, or existing real circuits into gen-circuits would be

very interesting. Wilton [69, 70] has done investigations into the structure of recon�gurable

memory for FPGAs; the marrying of this work with gen would be particularly interesting

now that FPGAs are starting to include large con�gurable memory blocks on-chip. Im-

plementation of a more generalized hierarchy would also allow us to incorporate aspects

aspects of Darnauer and Dai's Rent-based algorithm to the generation of very large control

circuits with controllable partition trees.

7.3.2 Improvements for gen.

An obvious e�ort for future work on gen would be to �ne-tune the parameters, the default

pro�le, and the algorithm. The current pro�le is based on the MCNC circuits, and it would

be bene�cial to extend this to an empirical analysis of more, and more varied circuits.

Such an exercise is as much political as academic, because it involves convincing competing

vendors that there is mutual bene�t to pooling their information.

Were more circuits available, it would be very useful to analyze di�erent types of circuits

separately. We roughly classi�ed circuits as datapath or control logic in Chapter 2, but

there are a number of distinct circuit classes within each of these: arithmetic, digital signal

processing, state-machines and encryption, for example. Separate default scripts for each

type of circuit would be useful.

The current version of gen outputs a structural netlist, with all lookup-tables simply
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programmed as nand gates. This means that we cannot guarantee the usefulness of cir-

cuits for the evaluation of synthesis and optimization tools. Trevillyan [67] has done some

preliminary work to analyze the statistical contents of lookup-tables in technology mapped

circuits, and it would be a good practical improvement to gen to study this problem further

and incorporate functionality into the output netlist.
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Appendix A

Default Parameterization Scripts

Gen has a number of command-line options, but the vast majority of a circuit parameter-

ization is too complicated to be speci�ed at the command line. Gen is augmented with a

rich speci�cation language called symple with which parameter programs or scripts can be

written.

Whenever gen is run, the defaults �les are automatically read. This sets up the default

frames comb circ and fsm circ which are then modi�ed by the user's parameterization.

The �le \defaults.gen" must exist either in the current directory, or in the directory speci�ed

by the GENDIR environment variable.

1 A Brief Introduction to symple.

symple is a speci�cation language, as opposed to a programming language. In that sense, it

is more like VHDL than like a procedural language such as C. In particular, symple utilizes

lazy evaluation, which means that no concept of temporal or procedural computation exists.

Thus, a program such as:

x = 5;

output(x);

x = 6;

output(x);

is an error because it does not \make sense" to specify the signal x to have two di�erent

values. Similarly the statement \x = x + 1;" is an error.

Symple has two main objects: A cell is largely analogous to a variable or a parameter,

and a frame corresponds to a collection of cells. Used appropriately, a frame can also

function as a subroutine.

Consider the following symple program, which covers most of the major concepts in

frames:

Z = {

a = 2;

X = {

a = 5;

b = $.a + a;

};

out = X.b;

A.1
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};

Y = (@.Z) { a = 4;};

output(Y.out);

The �rst thing to note is that no evaluation takes place until an output statement is

parsed. At that point, the cell speci�ed by the output statement must have been de�ned.

To output Y.out, we require the frame Y, evaluated as a copy of frame Z below the top level

frame (denoted \@") so Z is cloned (duplicated without evaluation). Then it is speci�ed to

modify the value `a' in the new frame to be a 4 instead of its previous value. Now we can

evaluate out, which is X.b. Within frame X, we have a=5 (note: di�erent scope from the

`a' in the parent Y frame), and b = 5 + the parent's `a' cell (which is 4), giving Y.X.b a

value of 9. Thus the output of the program is 9.

The eval statement is also a command, which forces a value to be evaluated (�xed with

a �nal value) but not output.

A symple program is parsed sequentially. As frames are de�ned as modi�ers of previous

frames, they are duplicated, and the new values speci�ed. Then the frame is evaluated only

when it is output.

Modi�ed frames can function as a subroutine in which all parameters are optional. Note

that a guarded parameter evaluation in a symple \subroutine" frame would look like the

following:

Z = {

a = 0;

X = {

out = 5 / $.a;

};

result = a==0 ? 0 : X.out;

};

V = Z { a = 4; };

output(V.result);

W = Z;

output(W.result);

which has the outputs \1.25" and \0."

Symple has a set of library functions which are available to the user. Most of these are

used in the obvious way, and the comb.gen defaults �le is a good place to look for examples.

Some are as follows:

/* A is taken from a Gaussian dist'n with mean 1.0546, std. dev .01 */

/* The selected value is then truncated to the range (0,2). */

a = gauss(1.0546, .01, 0, 2);

/* Here we use standard C if...then expression syntax, and a min function */

IOmax = n < 100 ? n/3 : min(n/2, 600);

/* nearest integer, also floor and ceil, are available */

nEdges1 = nint((n-nIN)*avg_in);

/* the arity of max/min functions is infinite */
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width_lower = max(wlower4a, wlower4b, wlower4c, wlower4d);

/* functions can be nested */

fmax_out = max(lower1, lower2, min(upper1, upper2, sample));

/* exp and log work with natural base */

locality = nint(2 + exp(log(n)/log(10))/exp(2));

Subroutines can be created to form data abstraction and hiding. For example, the we

can have the following:

default_delay = {

n = $.n;

delay = nint(1 + gauss(1.2*log(n), 1, 1, n/3));

};

comb_circ = {

n = 100;

...

delayframe = (@.default_delay);

delay = delayframe.delay;

...

};

Here we have de�ned a frame which evaluates delay, instantiated with a di�erent value

each time we specify a comb circ, and taken comb circ.delay as the default value for delay

in comb circ.

It is quite di�erent to use the statement \delay = (@.default delay).delay" rather than

using the frame modi�er, because this would force the delay parameter in the default delay

frame to be permanently evaluated, and we would always get the same Gaussian value from

that point on in the execution of the program. In particular, if this was a hierarchical circuit

then all sub-circuits sub-circuits would get have the same combinational delay.

De�ning a circuit by the statement:

X = comb_circ {delay = 4; };

means that we have overridden the value of delay to be the constant 4 instead of the value

evaluated in delayframe. This mechanism allows us to hide intermediate calculations in

sub-frames. The easiest way to understand how things are being evaluated is to turn trace

on (command-line option \trace") when running gen, and to play with test scripts.

Symple also has another construct with side-e�ects. The statement \in("stuff.gen")"

speci�es an include syntax, similar to #include in C. If there is an environment variable

GENDIR, symple will look �rst in the current directory then in GENDIR for the include

�le.

2 Gen Combinational Defaults File.

/*
* GEN default script for combinational circuits.
*/

/* $Revision: 3.0 $ */
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/* Determine a reasonable nPI, nPO.
*/

default_io = {
n = -1;

a = gauss(1.0546, .01, 0, 2);
b = gauss(0.5627, .20, 0, .62);
IOmin = 2 * log(n);
IOmax = n < 100 ? n/3 : min(n/2, 600);
nIO = nint(min(max(IOmin, exp(a + b * log(n))),IOmax));

nPI = nint(gauss(1.1 * nIO/2, log(nIO), 2, nIO - 1));
nPO = (nIO - nPI) > 0 ? (nIO - nPI) : nint(rand(1,nPI));

};

/* Determine a reasonable delay.
*/

default_delay = {
n = -1;
kin = -1;
nBot = -1;

/* Have to have enough delay to collect terms */
mindelay = log(log(n)) + ceil((log(n/nBot))/(log(kin)));

delay4 = log(log(n)) + gauss(log(n), 1, 1, n/3);
delay3 = delay4 * log(log(delay4));
delay2 = delay4 * log(delay4);
delay0 = kin==2 ? delay2 : kin==3 ? delay3 : delay4;

delay = nint(max(delay0,mindelay));
};

/* Determine a reasonable nEdges.
*/

default_num_edges = {
n = -1;
kin = -1;

avg_in = kin==2 ? 2 : 2 + gauss((kin-2)/2, (kin-2)/5, .8, kin-2);
nEdges1 = (n-nPI)*avg_in;
lower = 2 * (n-nPI);
upper = kin * (n-nPI);
fEdges = min(max(nEdges1, lower), upper);

nEdges = nint(fEdges);
};

/* Default edge-length distribution.
*
* Note that we can't do this in the num_edges frame, because we rely
* on nEdges as a parameter, and it could have been modified by the caller.
*/

default_edges = {
n = -1;
nEdges = -1;
delay = -1;

tot_edgelen = delay<=1 ? nEdges : nint(nEdges * (1 + gauss(0,.5,0,.5)));
nComponents = nEdges;
veclen = delay;
nZeros = 0;
min_nUnits = nint(max(n, nEdges/2));
min_nMax = 0;
/* dp_edges = rand(0.75,1.25) ; */
dp_edges = gauss(1, .5, 0.75,1.25) ;

edges = exp_dist(nComponents, tot_edgelen, veclen, 0, min_nUnits, min_nMax, dp_edges);
};

/* Determine a reasonable max_out.
*/

default_max_out = {
n = -1;
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kin = -1;
nEdges = -1;
nPI = -1;
nBot = -1;
delay = -1;

/* log-linear version */
a1 = gauss(-1.07181, 0.5, -2, 1);
b1 = gauss( 0.8242, 0.5, .7, .9);
sample1 = exp(a1 + b1 * log(n));

/* linear function of sqrt version */
a2 = gauss(2, 1, 1, 5);
sample = a2 * sqrt(n);

deflate = rand(1,8);
upper1 = 512/deflate;
upper2 = n-nPI;
lower1 = n-nPI == 0 ? 1 : nEdges / (n-nPI);

/* have a lower bound based on nPI and possible width */
nInternal = n - nPI - nBot;
w3a= delay==5 ? nInternal-kin*nBot-kin*kin*nBot-kin*kin*kin*nBot:0;
w3b= delay==4 ? nInternal-kin*nBot-kin*kin*nBot : 0;
w3c= delay==3 ? nInternal-kin*nBot : 0;
w3d= delay==2 ? nInternal : 0;
w3e= delay >5 ? (2.5 * nInternal) / delay : 0;
width_upper = max(w3a, w3b, w3c, w3d, w3e);

lower2 = width_upper / nPI;

upper = min(upper1, upper2);
lower = max(lower1, lower2);

fmax_out = max(lower, min(upper, sample));
max_out = nint(fmax_out);

};

/* Determine a reasonable out-degree sequence
*/

default_outs = {
n = -1;
nEdges = -1;
max_out = -1;
nZeros = -1;

dp_outs = rand(0.75,1.25) ;
outs = exp_dist(n, nEdges, max_out, nZeros, 0, 1, dp_outs);

};

/* Determine reasonable shapes for POs.
*/

default_IOShape = {
delay = -1;
nBot = -1;
nPO = -1;

minPOBot = nBot;
maxPOBot = min(nBot, nPO);
POBot = nint(rand(minPOBot, maxPOBot));

POSlope = 1;
POlen = delay;
POshape = delay==0 ? bi_linear(nPO, 0, 0, 0, 0, 0)

: bi_linear(nPO, 0, POBot, POlen, delay, POSlope);
};

/* Determine reasonable maximum width for the shape profile.
*/

default_width = {
n = -1;
kin = -1;
nTop = -1;
nBot = -1;
delay = -1;
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max_out = -1;
expand = -1;

nInternal = n - nTop - nBot;
upper1 = (delay <= 2) ? nInternal : (nInternal / 2);
upper2 = expand * expand * expand * expand * nTop;
upper3 = nint(n / (delay / 2));

upper4a= delay==5 ? nInternal-nTop-kin*nBot-kin*kin*nBot-kin*kin*kin*nBot:0;
upper4b= delay==4 ? nInternal-nTop-kin*nBot-kin*kin*nBot : 0;
upper4c= delay==3 ? nInternal-nTop-kin*nBot : 0;
upper4d= delay==2 ? nInternal : 0;
upper4e= delay>5 ? n : 0; /* no upper4 if have high delay */
upper4 = max(upper4a, upper4b, upper4c, upper4d, upper4e);

lower1 = nInternal / (delay - 1);
lower2 = max(nBot, nTop);

lower = max(lower1, lower2);
upper = max(lower, min(upper1, upper2, upper3, upper4));

mean = (lower + (3 * upper)) / 4;
fwidth = gauss(mean, 2*sqrt(mean), lower, upper);

width = (delay <=2) ? max(nTop, nBot) : nint(fwidth);
};

/* Default shape profile.
*/

default_shape = {
n = -1;
kin = -1;
delay = -1;
nTop = -1;
nBot = -1;
jumps = -1;
expand = -1;
width = -1;

shape = rand_shape(n, kin, delay, nTop, nBot, width, jumps, expand);
};

/*
* A combinational circuit. We have the basic set of parameters,
* with additions for fanout, shape, edges and output distributions.
*/

comb_circ = {

name = "C";
n = 0;
kin = 4;
global_max_out = -1; /* passed from fsm.gen or above */

loc1 = log(n)/log(2);
loc2 = 2 * sqrt(n)/5;
loc3 = 2 * exp(log(n)/log(10));

locality = ceil(max(loc1, loc2));

/* Circuit is complete comb_circ unless overridden */
level = 0;
nLatch = 0;

/* Choose distribution of PI and PO from defaults */
IOFrame = (@.default_io) { n=$.n; };
nPI = IOFrame.nPI;
nPO = IOFrame.nPO;
nOUT = nPO + nint(3*log(n));
nIO = nPI + nOUT;

/* Number of nodes at the last level of the shape profile */
nBot = nOUT == 1 ? 1 : nint(gauss(nOUT/2, nOUT/2, 1, nOUT));

/* Choose number of edges from defaults */
nEdgesFrame = (@.default_num_edges) {

n=$.n; kin=$.kin; nPI=$.nPI;
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};
nEdges = nEdgesFrame.nEdges;

/* Choose delay from defaults */
DelayFrame = (@.default_delay) { n=$.n; kin=$.kin; nBot=$.nBot; };
delay = DelayFrame.delay;

/* Choose edge-distribution from defaults */
edgesFrame = (@.default_edges) {

n=(($.n) - ($.nPI)); nEdges=$.nEdges; delay=$.delay;
};
edges = (delay == 0) ? (0) : edgesFrame.edges;

/* Choose the maximum out-degree */
MaxOutFrame = (@.default_max_out) {

n=$.n; kin=$.kin; nEdges=$.nEdges; nPI=$.nPI;
nBot=$.nBot; delay=$.delay;

};
max_out = global_max_out < 1

? MaxOutFrame.max_out
: min(global_max_out, MaxOutFrame.max_out);

/* Choose out-degree distribution */
minzeros = max(0, n - nEdges + max_out);
nZeros = max(minzeros, nint(rand(nBot, nOUT)));
outsFrame = (@.default_outs) {

n=$.n; nEdges=$.nEdges; max_out=$.max_out; nZeros=$.nZeros;
};
outs = outsFrame.outs;

/* Choose the shape of I/O things -- PO */
IOShapeFrame = (@.default_IOShape) {

delay=$.delay; nBot=$.nBot; nPO=$.nPO;
};
POshape = IOShapeFrame.POshape;

/* Choose the shape profile */
jumps = delay<=3 ? 0 : nint(rand(0, delay/3));
_expand = kin * gauss(3.5, sqrt(3.5), 1, 7);
expand = max(1, min(_expand, max_out/2));
widthFrame = (@.default_width) {

n=$.n; kin=$.kin; nTop=$.nPI; nBot=$.nBot; delay=$.delay;
max_out=$.max_out; expand=$.expand;

};
width = widthFrame.width;
shapeFrame = (@.default_shape) {

n=$.n; kin=$.kin; delay=$.delay; nTop=$.nPI; nBot=$.nBot;
jumps=$.jumps; expand=$.expand; width=$.width;

};
shape = shapeFrame.shape;

};

3 Gen Sequential Defaults File.

/*
* GEN default script for sequential circuits.
*/

/* $Revision: 3.0 $ */

/*
* Frames to define a FSM circuit, and utility frames to determine
* parameters for fsm_circ.
*/

/* The number of I/Os to a fsm can be smaller than for comb, because of
* all of the ghost I/Os.
*/

default_fsm_IOs = {
n = -1;
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combIOFrame = (@.default_io) { n=$.n; };
nPI1 = combIOFrame.nPI;
nPO1 = combIOFrame.nPO;

nPImin = max(2, nint(nPI1/4));
nPImax = nPI1;
nPI = nint(rand(nPImin, nPImax));

nPOmin = max(2, nint(nPO1/4));
nPOmax = nPO1;
nPO = nint(rand(nPOmin, nPOmax));

};

default_seq_shape = {
n = -1;
nDFF = -1;

/* Choose number of FFs to have */
_nDFFmin = max(2, n/50);
_nDFFmax = n/10;
_nDFFmean = n/20;
_nDFF0 = nint(gauss(_nDFFmean, sqrt(_nDFFmean), _nDFFmin, _nDFFmax));
_nDFF = nDFF>0 ? nDFF : _nDFF0;

n0 = nint(rand(.6, .85) * n);
n1 = n - n0 + _nDFF;

};

/*
* The definition of a generic finite-state machine.
*
* Things supposed to be parameters:
* name, n, n0, n1, kin, startlevel, max_out, nGI, nGO, nPI, nPO,
* nDFF, nDFF0, nBack, locality, delay, avg_in.
*/

fsm_circ = {

name = "S";
n = 100;
kin = 4;
startlevel = 0;
levels = 1;
max_out = -1;

nGI = 0; nGO = 0;
nDFF = nint(rand(n/20, n/5)); /* usually overridden */

locality = nint(6 + exp(log(n)/log(10))/exp(2));

/* Choose an overall max-delay for the circuit */
fake_nOUT = nPO + nint(min(nGO, 3*log(n)));
fake_nBot = fake_nOUT == 1 ? 1
: nint(gauss(fake_nOUT/2, fake_nOUT/2, 1, fake_nOUT));

delayFrame = (@.default_delay) { n=3*($.n)/2; kin=$.kin; nBot=$.fake_nBot;};
delay = delayFrame.delay;

IOFrame = (@.default_fsm_IOs) { n=$.n; };
nPI = IOFrame.nPI;
nPO = IOFrame.nPO;

shapeFrame = (@.default_seq_shape) { n=$.n; nDFF=$.nDFF; };
n0 = shapeFrame.n0;
n1 = shapeFrame.n1;

avg_in_mean = 2*(kin-2)/5;
avg_in_sd = (kin-2)/5;
avg_in = kin==2 ? 2 : 2 + gauss(avg_in_mean, avg_in_sd, .5, kin-2.5);
nEdges1 = (n-nPI-nDFF)*avg_in + nDFF - nGI;
lower = 2 * (n-nPI-nDFF) - nGI/2;
upper = kin * (n-nPI-nDFF) - nGI;
fEdges = min(max(nEdges1, lower), upper);
nEdges = nint(fEdges);

/* Will build 2 circuits. L0, L1 */
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/* Changed July 30: nBack = nint(rand(n1/20, n0 - nPI)); */
nBackMean = n0/10;
nBackStdDev = sqrt(n0);
nBackMin1 = n1 < 500 ? n1/10 : 2 * log(n1);
nBackMin2 = delay <= 3 ? n1/kin : 0;
nBackMin = max(nBackMin1, nBackMin2);
nBackMax= min(n0 - nPI, 5*n1);
nBack = nint(gauss(nBackMean, nBackStdDev, nBackMin, nBackMax));

/* Divide up the edges */
n1min = (n1-nDFF)*2;
n0min = (n0-nPI)*2;
_usable_edges = nEdges - nBack - n0min - n1min;
L0edgesmax = (n0-nPI)*kin - nBack;
L1edgesmax = (n1-nDFF)*kin;
ratio = L1edgesmax / (L0edgesmax + L1edgesmax);

_L1edges = _usable_edges < 1 ? n1min
: n1min + nint(ratio * _usable_edges);

L1edges = min(_L1edges, L1edgesmax);

_L0edges = _usable_edges < 1 ? n0min
: n0min + (_usable_edges - nint(ratio * _usable_edges));
L0edges = min(_L0edges, L0edgesmax);

L0delay = delay;
L0BotMax = min(nDFF + nPO, (n0-nPI)/(delay-1));
L0BotMin = min(max(nDFF/5, log(n0)), L0BotMax);
L0Bot = nint(rand(L0BotMin, L0BotMax));
L0Zeros = nint(rand(L0Bot, L0BotMax));

_L1delay_min = max(1, log(log(n1-nDFF)));
_L1delay_max = max(_L1delay_min, min(delay, log(n1-nDFF)));
_L1delay_mean = (_L1delay_max + _L1delay_min) / 2;
_L1delay_sd = sqrt(_L1delay_mean);
_L1delay = gauss(_L1delay_mean, _L1delay_sd, _L1delay_min, _L1delay_max);
L1delay = ceil(_L1delay);

L1BotMin = L1delay <= 3 ? nint((n1-nDFF)/kin) : nint(log(n1));
L1BotMax = max(L1BotMin, (n1-nDFF)/(2*L1delay));
L1BotMean = (L1BotMax + L1BotMin) / 2;
L1Bot1 = nint(gauss(L1BotMean, sqrt(L1BotMean), L1BotMin, L1BotMax));
L1Bot = min(L1Bot1, nBack);
L1Zeros = nint(rand(L1Bot, min(L1BotMax,nBack)));
back_shape = bi_linear(nBack, 0, L1Bot, L1delay, L0delay, 0);

L0 = (@.comb_circ) {
name = ($.name) + "L0";
level = $.startlevel;

nPI = $.nPI;
nPO = $.nPO;
nLatch = $.nDFF;
delay = $.L0delay;

n = ($.n0);
kin = ($.kin);
nGI = ($.nBack);
nGO = $.nDFF;

nBot = ($.L0Bot);
nZeros = ($.L0Zeros);

GIshape = $.back_shape;
locality = $.locality;
global_max_out = $.max_out;
nEdges = $.L0edges;

};

L1 = (@.comb_circ) {
name = $.name + "L1";
level = $.startlevel + 1;
kin = ($.kin);

delay = $.L1delay;
n = $.n1;
nLatch = 0;

nPI = $.nDFF;
nPO = 0;
nGI = 0;
nGO = $.nBack;

nBot = $.L1Bot;
nZeros = ($.L1Zeros);
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GOshape = $.back_shape;
locality = $.locality;
global_max_out = $.max_out;
nEdges = $.L1edges;

};

glue = (L0,L1);
};

4 Gen Special-Circuit Defaults File.

/*
* GEN default script for "special" circuits.
*/

/* $Revision: 3.0 $ */

/*
* Special types of circuits:
*/

/*
* Generates an empty circuit. The reason we want this is so that we
* can have parameterized gluing. Gluing a null circuit on to any
* other circuit does nothing to it.
*/

null_circuit = (@.comb_circ) {
name = "null";
level = 0; delay = 0;
n = 0; nPI = 0; nPO = 0; nIN = 0; nOUT = 0;
nEdges = 0; max_out = 0;
nBot = 0; nZeros=0;
locality = 0;

junk = kin == 1 ? 0 : bi_linear(0, 0, 0, 0, 0, 0);
GIshape = junk;
GOshape = junk;
POshape = junk;
shape = junk;
edges = junk;
outs = junk;

};

/*
* A circuit with nDFF FFs and no nodes.
* Expectation is that the user will define a circuit
* X = (@.register_file) {nDFF=16; nGO=32;};
* and then glue it to the end of something else. Note that specifying
* nGO==nDFF (the default) results in a deterministic circuit -- nDFF FFs
* with one GO each. If nGO < nDFF, an error will ensue during generation.
*/

register_file = (@.comb_circ) {
name = "RF1";
level = 1;
nDFF = 0; /* must override */
n = nDFF;
nIN = nDFF;
nGO = nDFF;
nGI = 0;
delay = 0;
nEdges = 0;
nPI = 0;
nPO = 0;
max_out = nint(rand(1, nGO-n));

junk = bi_linear(0, 0, 0, 0, 0, 0);
GIshape = junk;
GOshape = junk;
POshape = junk;
shape = junk;
edges = junk;



Appendix B

Abbreviated User's Guide.

1 Overview

This document introduces two tools, circ and gen.

The �rst tool, circ reads an input netlist and performs analysis upon it, outputting

either statistical information, or acting as a �lter to convert the netlist to an alternative

format.

The second tool, gen, takes a parameterization of a circuit as a program written in the

symple language and creates a netlist which corresponds to the parameterization program.

Though gen and circ are separate tools, their usage is highly related. Many of the

most useful products of the research from which they arise is the interaction between the

characterization of a circuit and the subsequent generation of a similarly parameterized

circuit. Thus, it is more appropriate to document their usage in a single document.

This user's guide is organized as follows. Section 2 discusses the \characteristics" of a

circuit. These characteristics then form the basis for the output of circ and for the input to

gen. Section 3 describes how to use circ to analyze or �lter a circuit. Section 4 describes

basic usage of gen to create combinational and sequential circuits. Section 5 discusses more

advanced usage of gen such as the problems involved in modifying existing scripts or scripts

from circ.

2 Circuit Characteristics

This section de�nes the terms which will be used throughout the document to describe

characteristics and parameters of circuits.

The most basic parameters of a circuit are the following:

name The �lename in which the netlist is stored. circ will look for name.blif, name.blf,

or $MCNCDIR/k/name.blif.

k The lut-size (maximum fanin) of the design.

size The size of a circuit. The size of a circuit is de�ned as the number of \countable

functional nodes" in a graph-theoretic sense, hence it is the sum of the number of (see

below) PIs (primary inputs), LUTs (or logic nodes), and DFFs (ip-ops). Primary

outputs are not counted, because we consider this to be an attribute rather than a

separately named node.

B.1
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nPI The number of primary inputs designated in the .inputs line of the input or output

netlist.

nPO The number of primary inputs designated in the .inputs line of the input or output

netlist.

nDFF The number of D-type ip-ops which are de�ned in the input or output netlist.

Currently the only type of sequential logic element which is understood by circ and

gen is the DFF with no de�ned preset or clear.

nEdges The number of edges in the circuit-graph. Equivalently either the sum over all

nodes x of fanin(x), or the sum over all nodes of fanout(x).

Currently the tools recognize only a single clock. In the case of circ this means that

all clock-inputs are ignored, and replaced by a single primary-input called \clock,"

e�ectively forcing all DFF to use the same clock regardless of the design speci�cation.

Similarly, gen will output circuits of the same form.

nCC The number of connected components: essentially the number of completely separate

circuits which are de�ned in the same �le. This value is output by circ but gen will

only output circuits which are fully connected (one component).

unusable nodes The number of nodes which do not a�ect any PO in an input design.

These are deleted by circ before processing, and should not every be produced by

gen.

unreachable nodes The number of nodes which (recursively) cannot be reached from a

PI, and hence will never have a logical value. These are also deleted by circ before

processing, and should not be produced by gen.

The basic element in circ and gen processing is the combinational circuit, using the

combinationl delay of the circuit as an important point of reference. Thus we have several

items de�ned on the basis of combinational delay.

delay Combinational delay is de�ned, for all nodes x in a circuit, as follows: delay(x) =

0 if x is either a PI or a DFF. delay(x) = 1 + MAXfdelay(y)g, for all fanins y to x;

essentially a standard unit-delay model of combinational delay. The delay of a circuit

is then the maximum combinational delay over all nodes x in the circuit.

shape The combinational shape of a circuit is de�ned as the distribution of node combi-

national delays. It is vector of length delay + 1 (0..delay). In a purely combinational

circuit, shape[0] is necessarily nPI, and shape[delay] is no more than nPO (though it

need not be nPO, because nodes of earlier delay can be designated as POs). Thus a

shape of [4, 8, 3, 2] speci�es a circuit with 4 PIs, 8 nodes which have inputs only from

the PIs, 3 which have at least fanin from delay level 1, and 2 which have at least one

fanin from level 3.

nBot The number of \bottom" nodes in the shape distribution. Though nBot is redundant

information in general, it is referred to in various places, and is used as an intermediate

calculation in the creation of a default/random shape vector by gen.
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POshape In the same way that shape[] is de�ned, we can have a vector to represent the

distribution of POs in the circuit. This is both reported by circ and used as a

parameter by gen.

edges Also given the combinational delay of each node in the circuit-graph, we can de�ne

a distribution based on the edges of the graph. The length of an edge (x; y) is de�ned

as delay(y) - delay(x), yielding a vector [0..delay] with sum the number of edges in

the graph.

Fanout is also both an important characteristic of a circuit and parameter to generation.

We have

max-fanout The maximum fanout (number of edges leaving) any node x in the circit-

graph.

outs A vector representing the distribution of fanouts in the circuit. The vector is of

length [0..max-fanout], is non-zero in the last element (or max-fanout is incorrect),

and outs[0] � nPO necessarily.

We also have a number of statistics which are output by circ which are calculated from

the above metrics. For example, the average fanin/fanout, and the average fanin/fanout

of each combinational delay level and associated standard deviations. These are not docu-

mented further at this time. However, they appear in the gen defaults �les as intermediate

calculations when creating a default out-degree distribution.

Throughout circ and gen, sequential circuits are described as a collection of combi-

national circuits. Within circ, a circuit is processed into sequential levels and we de�ne

\ghost" edges which cross the boundary between one combinational sub-circuit (sequential

level) and another.

level The sequential level of a node x in a sequential circuit is de�ned as the minimum

number of DFF on a directed path from any primary input. More formally, level(x)

= 0 if x is a PI, level(x) = 1 + level(fanin d) if x is a DFF, and MIN(level(y), over

all fanins y to x) otherwise.

back-edge An edge in the circuit which connects x to a node y at a preceeding, di�erent

sequential level. In other words, a feedback edge.

bottom-node A node which has all fanout-edges as back-edges is at the \bottom" of its

combinational sub-circuit. The number of such nodes is relevant in the understanding

of sequential circuits and how to generate them.

invisible-node Sometimes, especially when building a clock splitter or similar structures,

it is possible to have a set of registers and logic which is self-contained and feed purely

from itself (no PIs a�ect the output) and just outputs values. This is di�erent from

being unreachable (see above), because the value is a�ected by the clock. These nodes

are not deleted by circ, becasuse they are important to the understanding of circuits,

but they have to be treated as special cases to our basic model of a circuit because

they have no real concept of sequential level.
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forward-edge A forward edge is one which follows the normal rules of combinational delay

when level is ignored, or which connects to a DFF at the next sequential level. That

is, an edge which is not a back edge as previously de�ned.

This allows us the concept of level-shape and a distribution of back edges between levels

(i.e. di�erence in sequential levels), but this will not be discussed at this time.

Because sequential circuits are generated at the base level as combinational circuits, we

need a mechanism to de�ne future back edges and forward edges to a DFF. This is done in

terms of ghost input and output edges:

GI, nGI Each node in a hierarchically de�ned circuit or sequential input design will have

its fanin divided into nodes which appear in the same sub-circuit and those which do

not, called ghost inputs (GI). The number of ghost inputs to a node (nGI) is de�ned

for each node, and the total number of ghost inputs over all nodes is nGI for the

circuit. nGI(x) is always strictly less than kin, as one input to each node must be

\real" for it to belong to one sub-circuit.

GO, nGO Similarly, we have ghost outputs, and nGO.

GIshape In the same way that shape[] is de�ned above, we have the concept of a distri-

bution vector of GIs. Note that, when talking about sequential sub-circuits, we count

nDFF in the shape pro�le, not in the GI shape pro�le, mainly due to internal details

of shape generation beyond the scope of this document.

GOshape Similarly, we can store the combinational delay of each ghost output edge. as

the delay of its source. Note, though it is required that any ghost edge has either

dst.type == DFF or delay(src) < delay(dst), it is not necessarily true that delay(src)

== delay(dst) - 1, because of the MAX relationship in the de�nition of delay.

Note that for a �nal circuit nGO(C) == nDFF + nGI(C) necessarily, as each ghost

output corresponds to exactly one ghost input, or else eventually feeds one DFF.

It is important to note that PI and PO refer to nodes, whereas GI and GO refer to

ports in or out of nodes, more like edges in a graph.

One �nal characteristic of circuits is the reconvergence number, or rnum. This is

output by circ, but is not used by gen so will not be discussed further here. Details on

reconvergence calculation are contained in the published papers.

3 Using circ.

Circ is a command-line based tool. The calling sequence is as follows:

circ in=<name> [k=<kin>] [options] [xnf | verilog | tdf | adl | gen] [out=<file>]

The only required parameter is the name of the �le to be analyzed. The input format

to circ is exclusively blif, so all �les must be externally converted to blif before processing.

circ will search in the current directory for the �les name, name.blif, or name.blf, then

search in the MCNCDIR (environment variable) directory in the `k' subdirectory (k defaults

to 4 if not speci�ed).

The output of circ is to stdout. This can be overridden with the out= option. Note

that the xnf,verilog,tdf,gen options automatically set out to `name' with the appropriate

�le extension.
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3.1 Using circ for format conversion.

To use circ as a �lter to convert test.blif to either xnf, verilog or ahdl (tdf) formats, use

the following syntax:

circ in=test <format>

where format is one of fxnf, xnfROM, verilog, tdf, ahdlg (tdf and ahdl are the same

thing).

Note that k will automatically be set to 4, because all formats are output using the

4-LUT primitive. The program will fail if any node exists in test.blif which has fanin>4.

Currently, the ahdl and verilog formats output only NAND gates for LUTs. The xnf

option will output ROM-based output if the option is speci�ed as \xnfROM," but input

which originated from gen will still have only NAND gates de�ned (i.e. will simply be

ROMs which de�ne a NAND gate).

3.2 Using circ for statistical output.

Currently the \dump" format is the most stable form of output. There are other options

available, but they are obsolete. The command:

circ in=test dump

will output a complete description of the design test. The output format is such that it

is easy to use awk, sed or grep to extract and build tabular information from the output

�les of multiple circuits.

We will go through the output for an MCNC circuit, bbrtas:

First, there is some informational output to stderr (which does not appear in the output

�le). This gives the version and compile date of the software, and warning/error conditions

encountered. In this case, bbrtas has a single unusable node \pclock." This is not a problem,

circ is just noting that it dropped pclock as an unusable input when it replaced all clocks

by the global signal 'clock.'

CIRC 2.2, compiled Fri May 24 12:04:30 PDT 1996.

Analysis of bbrtas beginning at Mon May 27 14:07:13 1996

Warning: Deleting PI pclock because it does not drive a primary output

Warning: (For further such nodes, use verbose option)

Warning: Circuit has 1 unusable nodes

Note the mention of a command-line option \verbose" to see more detailed information,

especially about error and warning messages.

Within the output �le, we begin with introductory output, listing the options and the

actual �le name used. The �lename is important because we used an MCNC circuit; this

shows that we picked up the correct circuit. If we had a bbrtas in the current directory,

circ would have used that instead.

File options: in=bbrtas out=<stderr> err=<stderr>

Output options:

Displaying:

Reading input from file '/users/mdhutton/mcnc/4/bbrtas.blif' (k=4)
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The next section of the output �le gives basic statistics, as de�ned in Section 2. Note that

there is actually an internally represented \service" (0th) component reported in parenthesis

in the component list. This can be ignored.

name: bbrtas

size: 417

edges: 1440

levels: 1

delay: 18

nPI: 4

nPO: 2

nDFF: 7

nLOG: 406

num_unusable: 1

num_unreachable: 0

ncomponents: 1 ( (4) 417 )

The degree information comes next. We have the average in-degree of LUTs, average

out of LUTs + DFFs + PIs, and each separately; the average and total fanin and fanout by

combinational delay level, the max-fanout, nodes with fanout beyond 1 standard deviation

of the mean, and larger than 10 in absolute value, and the fanin and fanout vectors as sparse

vectors and in full form.

avgin_log: 3.55 (0.46)

avgout: 3.47 (10.28)

avgout_dff: 74.43 (12.48)

avgout_pi: 26.00 (6.00)

avgout_log: 2.02 (3.39)

avgin_vec: ( 0.00 3.34 3.58 3.67 3.81 3.22 3.94 3.54 3.00 3.73 3.00

3.97 3.50 3.00 3.95 3.40 3.80 3.50 4.00 )

avgout_vec: ( 0.00 1.74 1.00 5.33 2.62 3.67 2.83 1.11 6.40 1.73 18.00

1.24 2.67 12.67 1.10 5.60 1.10 1.00 1.00 )

totin_vec: ( 0 454 283 33 61 58 71 99 15 56 9 115 21 9 83 17 38 14 4 )

totout_vec: ( 625 236 79 48 42 66 51 31 32 26 54 36 16 38 23 28 11 4 1 )

visible_edges: 1449

max_out: 90

high_degree_log: 14

high_degree_pi: 4

high_degree_dff: 7

degree_10plus_log: 17

degree_10plus_pi: 4

degree_10plus_dff: 7

fanin: (0,4) (1,7) (2,34) (3,116) (4,256)

fanout: (1,345) (2,12) (3,6) (4,4) (5,7) (6,9) (8,2) (9,4) (10,1)

(13,2) (14,5) (15,1) (16,2) (17,3) (20,2) (21,1) (24,1) (29,1)

(32,2) (53,1) (60,1) (75,1) (76,1) (81,1) (86,1) (90,1)

fanin_vec: ( 4 7 34 116 256 )

fanout_vec: ( 0 345 12 6 4 7 9 0 2 4 1 0 0 2 5 1 2 3 0 0 2 1 0 0 1 0 0 0 0 1

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 )

Next we have sequential information, since bbrtas is a sequential circuit. This informa-

tion would not be displayed were it purely combinational.

We have the number of bottom nodes (over all levels), the number of invisible nodes

(total and broken into DFF, LOG and PO), the number of nodes at each sequential level

(sequential shape), the number of back-edges (number of GOs from level 1 to level 0) and

their shape-like distribution, and the maximum combinational delay of each level.

bot_nodes: 89

invis_nodes: 0

invis_DFF: 0

invis_LOG: 0

invis_PO: 0

seq_shape: ( 304 113 )

back_edges: 325

where-back: ( 0 325 )

level_maxdelays: ( 18 2 )

Combinational shape vectors follow. These are over the entire circuit, summed. This

section is of limited value for sequential circuits.

shape 417: ( 11 136 79 9 16 18 18 28 5 15 3 29 6 3 21 5 10 4 1 )

POshape 2: ( . 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )

edge-length: ( 0 1035 179 30 35 39 30 25 6 21 6 24 6 4 0 0 0 0 0 )

forward-edge-length: ( 0 889 89 27 25 25 16 14 3 13 3 4 4 3 0 0 0 0 0 )

back-edge-orig: ( 196 116 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )

back-edge-dest: ( 0 67 159 5 11 15 6 24 0 10 0 24 1 0 3 0 0 0 0 )

back-edge-length: ( 0 146 90 3 10 14 14 11 3 8 3 20 2 1 0 0 0 0 0 )

Then the vectors for each individual level are presented. The input design has 1 sequen-

tial level (beyond the 0th level, the combinational part).

At level 0, we see the number of nodes, GI, GO, PO and shapes of each, as well as the

fanout distribution for L0 alone. Note again that the GI/GO counts will seem high, but

they count ports/edges not actual nodes. It is quite common, for example, to have a level

1, such as shown, with 120 nodes and 325 ghost outputs.

n0 = 308;

L0shape = (4,43,66,9,16,18,18,28,5,15,3,29,6,3,21,5,10,4,1)

nGI0 = 325;

L0GIshape = (67,159,5,11,15,6,24,0,10,0,24,1,0,3,0,0,0,0,0)

nGO0 = 7;

L0GOshape = (0,0,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1)

nPO0 = 2;

L0POshape = (0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

nEdges0 = 769;

L0edges = (0,566,66,27,25,25,16,14,3,13,3,4,4,3,0,0,0,0,0)

L0out = (4,250,8,4,3,2,6,1,1,4,1,0,0,2,5,1,2,3,0,0,2,1,0,0,1,

0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
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Similarly for level 1:

n1 = 120;

L1shape = (7,93,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

nGI1 = 0;

L1GIshape = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

nGO1 = 325;

L1GOshape = (196,116,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

nPO1 = 0;

L1POshape = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

nEdges1 = 346;

L1edges = (0,323,23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

L1out = (88,16,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,

0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

And, �nally, we close with a statement of the time and memory used for the analysis.

Circuit Analysis complete. cpu: 7.21 sec, mem: 888K, time: 8 sec

3.3 Using circ as input to gen.

circ is also able to output a gen program in the symple language which can be then run

through gen to make a \clone" circuit of the original input circuit.

For example, the output of

circ in=bbrtas gen

appears in bbrtas.gen as the following:

/* CIRC 2.2, compiled Mon May 27 14:13:55 PDT 1996.

*/

X = {

name="bbrtasclone";

L0 = (@.comb_circ) { exact=1;

name="L0"; n=304; kin=4; nPI=4; nDFF=0; level=0; delay=18;

nBot=1;

shape=(4,43,66,9,16,18,18,28,5,15,3,29,6,3,21,5,10,4,1);

nGI=325; GIshape=(67,159,5,11,15,6,24,0,10,0,24,1,0,3,0,0,0,0,0);

nGO=7; GOshape=(0,0,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1);

nPO=2; POshape=(0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

nEdges=769;

edges=(0,566,66,27,25,25,16,14,3,13,3,4,4,3,0,0,0,0,0);

outs=(4,250,8,4,3,2,6,1,1,4,1,0,0,2,5,1,2,3,0,0,2,1,0,0,1,

0,0,0,0,1,0,0,2);

max_out=32; nZeros=4;

};
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L1 = (@.comb_circ) { exact=1;

name="L1"; n=113; kin=4; nPI=0; nDFF=7; level=1; delay=2;

nBot=13;

shape=(7, 93, 13);

nGI=0; GIshape=(0, 0, 0);

nGO=325; GOshape=(196, 116, 13);

nPO=0; POshape=(0, 0, 0);

nEdges=346;

edges=(0, 323, 23);

outs=(88,16,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,

0,1,0,0,0,0,0,0,0,1,0,1);

max_out=61; nZeros=88;

};

glue=(L0, L1);

};

output(circuit(X));

We will discuss the parameterization �le further in Section 4 of the document.

4 Using gen to generate circuits.

Gen has some command-line options, but the vast majority of the parameterization is too

complicated to be speci�ed at the command line. gen is augmented with a rich speci�cation

language with which parameter-programs can be written.

4.1 Generating a simple combinational circuit

Thus far we have only talked about how parameters are evaluated in the symple language.

This doesn't actually create a circuit. To have the parameters passed to gen, and a circuit

generated, we use the \output circuit" command in our script \x.gen" which we invoke with

\gen x.gen"

X = comb_circ { n = 500; };

output(circuit(X));

Output from gen is split into two streams. In the stdout stream, the output blif-

formatted netlist is printed to x.blif, as speci�ed. The log of information and errors goes to

stderr, and is described as follows:

GEN Development Version 2, compiled Thu May 23 09:59:10 PDT 1996.

Parsing parameters for circuit 'C'

Random shape with n=500 nTop=9 nBot=2 delay=11 width=182 jumps=5 expand=9.00:

Generating combinational specs for C

-- n = 500 nPI=9 nDFF=0 kin = 4 delay = 11 seed=833239250

-- Shape ( 500): 9 60 182 105 57 42 16 7 7 7 6 2

-- PO Shape ( 3): 0 0 0 0 0 0 0 0 0 1 0 2



APPENDIX B. ABBREVIATED USER'S GUIDE. B.10

-- GO Shape ( 0): 0 0 0 0 0 0 0 0 0 0 0 0

-- GI Shape ( 0): 0 0 0 0 0 0 0 0 0 0 0 0

-- Edges ( 1172): 0 950 141 46 29 4 0 2 0 0 0 0

-- Out-degrees (max=18): 3 311 48 44 18 22 16 14 8 2 6 3 0 0 1 1 0 1 2

Building the circuit level-graph

Graph passed steps one and two. Best was method 3

Splitting nodes to generate the complete circuit-graph.

Degrees fudged: 461, edges fudged 56, edges lost 0 (of 1672 total)

Warning: Forced to add 1 extra outputs at delay level 11

Warning: Fixing IO dist'n results in 1 extra nodes, 1 extra outputs.

Graph generated, converting to a circuit.

(Sub)circuit 'C' has been generated.

Circuit generation successful

Elapsed time 3 seconds

We have the version and compilation date of the program. Another important parameter

is the random number seed (taken from the clock). To get exactly the same circuit again,

we should specify \seed=833239250" on the command line.

The defaults.gen �le (hence comb.gen) is read for default information, then x.gen is

processed. We speci�ed n=500, from which comb circ speci�ed 9 PIs and the remaining

LUTs, with combinational delay 11 and 3 POs). The number of edges was 1172, so the

average fanin was about 2.2 (not a particularly dense circuit). Similarly, the combinational

delay and distribution of nodes, edges and fanouts are shown. If we run the command line

again without specifying the same seed, we will get both a di�erent parameterization and a

di�erent circuit. Had we speci�ed the complete parameterization, we would get a di�erent

circuit with the same parameterization.

Generating a combinational clone:

To generate a clone of an MCNC (or other) circuit (in xnf), do the following (for example,

we use the circuit 5xp1):

circ in=5xp1 gen

gen 5xp1.gen

circ in=5xp1clone.blif xnf

4.2 Generating a hierarchical or sequential circuit

Sequential circuits are speci�ed in gen as hierarchical circuits with \glue" ports to combine

them together. For example, a �nite state machine is viewed as two or more combinational

circuits, one of which has primary inputs, and the others of which have DFFs as its primary

inputs. gen will make a sequential circuit in this way by generating the two combinational

circuits separately, then gluing them together following a number of rules beyond the current

scope of this document.

The user has control over the type of sequential circuit that is generated in the input

script. At the simplest level, the user can specify the size of the circuit and the number of

I/Os and DFFs and let the rest come from the defaults. For example

X = fsm_circ {
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name = "example5";

n=500;

};

output(circuit(X));

will generate a \fsm-like" circuit with 500 nodes directly from the defaults. On my

machine, with seed=834610821, I got a circuit with 6 PIs, 471 nodes, combinational delay

10, 2 POs, 29 DFFs and 145 back-edges (GOs at level 1).

You can also specify the amount of interaction between the levels by giving values for

nGI, nDFF and so on. For example

X = fsm_circ {

name = "example2";

nPI=63; nPO=36;

nDFF=120;

n=450+nDFF+nPI;

kin=4;

n0=n/2;

n1=n/2;

nBack=n/3;

};

output(circuit(X));

Above we have speci�ed the number of back-edges in terms of the size of the circuit,

and specify the number of DFFs and I/Os exactly. We have asked for 450 LUTs, giving a

size 450+nDFF+nPI for the entire circuit.

It is possible to make more di�cult hierarchical circuits, but this part of the code is

very new, and there will be problems when you try to do it.

For example, see gendir/5-way.gen, which generates 5 separate sequential circuits with

a speci�ed number of ghost I/Os, and then glues all 5 together simultaneously.

See also 40K.gen, which generates a large circuit (40000 4-LUTs) from several smaller

circuits, with a speci�ed cut-size (for example, to test a partitioner). Here the result is

seen as a combination of several state-machines which provide control into a combinational

circuit at the next level. By manipulating the parameters it is possible to make a number

of di�erent con�gurations.

Note that the probability of errors increases multiplicatively with the number of circuits

in the hierarchy. Whereas there is a 85% or more chance of success at generating a circuit

with 5000 nodes, generating 5 such circuits to glue together will only succeed about 44% of

the time. This means that multiple runs are often required. However, I have successfully

generated circuits with this amount of hierarchy to 150000 4-LUTs within about 10 tries.

It is expected that as we re�ne the parameterization scripts and build more error handling

and correction into gen that this will disappear, and we will be able to generate circuits

with a great deal of hierarchy.
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Further Examples.

This appendix shows a number of examples of circuits produced by gen.

Figures C.1 through C.4 show examples of short gen scripts and drawings of two circuits

produced by each script. The scripts show how the user can choose speci�c features of a

circuit, such as the maximum fanout, the combinational delay, or the relative shape pro�le

in generating circuits. Note that whenever parameters are omitted from the �gure caption,

the defaults were used by gen.

Figures C.4 and C.5 show two di�erent sequential circuits generated from the same

clone script, in which the user speci�es only high-level information such as the number of

ip-ops.

Figures C.6 through C.10 show four di�erent MCNC combinational circuits, and their

clones produced by gen.

Figures C.11 and C.12 show two di�erent MCNC sequential circuits, and their clones

produced by gen.

C.1
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Circuit 2

X = comb_circ {name="A"; n = 200; nPI = 30; nPO = 20;

delay=5; shape=(1,5,4,3,2,1); };

output(circuit(X));

Figure C.3: Two combinational gen circuits with speci�ed shape.
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Circuit 2

X = comb_circ {name="A"; n = 200; nPI = 30; nPO = 20;

delay=5; shape=(1,5,4,3,2,1); };

output(circuit(X));

Figure C.4: Two combinational gen circuits with speci�ed shape.
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Figure C.8: MCNC circuit x1 and a clone by gen.



APPENDIX C. FURTHER EXAMPLES. C.10

0

00 00 0 0000 000 000 0 0 0000 00 0

0 000 0 0

0

0 0 00 00 00 000 0 0

0

0 000 00 0 0 00 00 00 0 00

0 0

0

0

0

000 00 00 00 00 00 00 0

0 00 00

0

0 0 00

0 0000

00

00

0

0

0

0

0

0 0

0

0

00

0

0

0

0 0 00 0 0 0

0

00 0 00 00

0

0 00 0

0

0 0

00

0 00 0

0

0 0

0

00

00

Original circuit

0

0 000 0 00 0 00 0000 0 0 0 00 0000 000

000 0 0

0

00 00 00 0000

0 00

0

0 00 0 00 00 00 0 00

0 0

0

00 0 0

00 000

0

0 000 0 00 0 000 0 00 0 00 0000 0

0

0 000

0

0 0 0

0

000 0

0

0

0

00

0

000

0

0

0

0

0

0 0

000 00 0

0 0 0

0

00

0

0 00

0

0

0 0 0

0

0

0

00

00 0

Clone circuit

Figure C.9: MCNC circuit clip and a clone by gen.
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Figure C.12: MCNC sequential circuit keyb and a clone by gen.
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Figure C.14: MCNC sequential circuit mm4a and a clone by gen.
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outs = junk;
};


