Advanced Current Mirrors and Opamps

David Johns and Ken Martin
University of Toronto
(johns@eecg.toronto.edu)
(martin@eecg.toronto.edu)

Wide-Swing Current Mirrors

- Used to increase signal swing in cascode mirror
- Bias drains of Q2 and Q3 close to triode region
- I_{bias} set to nominal or max value of I_{in}
Wide-Swing Current Mirrors

- Q3 and Q4 act like a single transistor
 \[V_{eff} = V_{eff2} = V_{eff3} = \sqrt{\frac{2I_{D2}}{\mu_n C_{ox}(W/L)}} \]

- Q5 has same drain current but \((n + 1)^2\) times smaller
 \[V_{eff5} = (n + 1)V_{eff} \]

- Similarly
 \[V_{eff1} = V_{eff4} = nV_{eff} \]
 \[V_{G5} = V_{G4} = V_{G1} = (n + 1)V_{eff} + V_{tn} \]
 \[V_{DS2} = V_{DS3} = V_{G5} - V_{GS1} = V_{G5} - (nV_{eff} + V_{tn}) = V_{eff} \]

- Puts Q2 and Q3 right at edge of triode

- Min allowable output voltage
 \[V_{out} > V_{eff1} + V_{eff2} = (n + 1)V_{eff} \]

- If \(n = 1 \)
 \[V_{out} > 2V_{eff} \]

- With typical value of \(V_{eff} \) of 0.2 V, wide-swing mirror can operate down to 0.4 V

- Analyzed with \(I_{bias} = I_{in} \). If \(I_{in} \) varies, setting \(I_{bias} \) to max \(I_{in} \) will ensure transistors remain in active region

- Setting \(I_{bias} \) to nominal \(I_{in} \) will result in low output impedance during slewing (can often be tolerated)
Design Hints

- Usually designer would take \((W/L)_5\) smaller to bias Q2 and Q3 slightly larger than minimum
- To save power, bias Q5 with lower currents while keeping same current densities (and \(V_{eff}\))
- Choose lengths of Q2 and Q3 close to minimum allowable gate length (since \(V_{ds}\) are quite small) — maximizes freq response
- Choose Q1 and Q4 to have longer gate lengths since Q1 often has larger voltages (perhaps twice minimum allowable gate length) — Reduces short-channel effects

Enhanced Output-Impedance Current Mirror

- Use feedback to keep \(V_{ds}\) across Q2 stable

\[
R_{out} \approx g_m r_{ds1} r_{ds1} (1 + A)
\]

- Limited by parasitic conductance between drain and substate of Q1
Simplified Enhanced Output-Impedance Mirror

- Rather than build extra opamps, use above
- Feedback amplifier realized by common-source amplifier of Q₃ and current source I_{B1}

![Diagram of the circuit](image)

- Circuit consisting of Q₄, Q₅, Q₆, I_{in}, and I_{B2} operates like a diode-connected transistor — results in accurate matching of I_{out} to I_{in}
- Note that shown circuit is NOT wide-swing — requires output to be $2V_{eff} + V_{tn}$ above lower supply

Equation:

\[
\frac{g_{m1}g_{m3}r_{ds1}r_{ds2}r_{ds3}}{2} \approx I_{in} IB_2 \quad I_{out} I_{in}
\]

Equation (9):

\[
r_{out} \approx \frac{g_{m1}g_{m3}r_{ds1}r_{ds2}r_{ds3}}{2}
\]
Wide-Swing with Enhanced Output Impedance

- Add wide-swing to improve output voltage swing

- Q3 and Q7 biased at 4 times current density — $2V_{\text{eff}}$
- Requires roughly twice power dissipation
- Might need local compensation capacitors

\[I_{\text{in}} = I_{\text{bias}} \]

\[I_{\text{out}} = I_{\text{in}} \]

Folded-Cascode Opamp

- Circuit diagram with Q1-Q10
- Bias currents I_{bias1} and I_{bias2}
- Input voltage V_{in}
- Output voltage V_{out}
- Capacitance C_L

Folded-Cascode Opamp

- Compensation achieved using load capacitor
- As load increases, opamp slower but more stable
- Useful for driving capacitive loads only
- Large output impedance (not useful for driving resistive loads)
- Single-gain stage but dc gain can still be quite large (say 1,000 to 3,000)
- Shown design makes use of wide-swing mirrors
- Simplified bias circuit shown
- Inclusion of Q12 and Q13 for improved slew-rate

\[
A_V = \frac{V_{out}(s)}{V_{in}(s)} = g_{m1}Z_L(s) \quad (10)
\]

\[
A_V = \frac{g_{m1}r_{out}}{1 + sr_{out}C_L} \quad (11)
\]

- \(r_{out}\) is output impedance of opamp (roughly \(g_mr_{ds}^2/2\))
- For mid-band freq, capacitor dominates

\[
A_V \approx \frac{g_{m1}}{sC_L} \quad (12)
\]

\[
\omega_t = \frac{g_{m1}}{C_L} \quad (13)
\]
Folded-Cascode Opamp

- Maximizing gm of input maximizes freq response (if not limited by second-poles)
- Choose current of input stage larger than output stage (also maximizes dc gain)
- Might go as high as 4:1 ratio
- Large input gm results in better thermal noise
- Second poles due to nodes at sources of Q5 and Q6
- Minimize areas of drains and sources at these nodes with good layout techniques
- For high-freq, increase current in output stage

Folded-Cascode Slew-Rate

- If Q2 turned off due to large input voltage
 \[SR = \frac{I_{D4}}{C_L} \] (14)
- But if \(I_{bias2} > I_{D3} \), drain of Q1 pulled near negative power supply
- Would require a long time to recover from slew-rate
- Include Q12 (and Q13) to clamp node closer to positive power supply
- Q12 (and Q13) also dynamically increase bias currents during slew-rate limiting (added benefit)
- They pull more current through Q11 thereby increasing bias current in Q3 and Q4
Folded-Cascode Example

Design Goals

• +2.5V power supply and 2mW opamp with 4:1 ratio of current in input stage to output stage
• Set bias current in Q11 to be 1/30 of Q3 (or Q4)
• Channel lengths of 1.6um and max width of 300um with $V_{\text{eff}}=0.25$ (except input transistors)
• Load cap = 10pF

Circuit Design

\[
I_{\text{total}} = 2(I_{D1} + I_{D6}) = 2(4I_B + I_B) = 10I_B \quad (15)
\]

\[
I_B = I_{D5} = I_{D6} = \frac{I_{\text{total}}}{10} = \frac{(2mW)/5 \ V}{10} = 40 \ \mu A \quad (16)
\]

\[
I_{D3} = I_{D4} = 5I_{D5} = 200 \ \mu A \quad (17)
\]

\[
I_{D1} = I_{D2} = 4I_{D5} = 160 \ \mu A \quad (18)
\]

• To find transistor sizing:

\[
\left(\frac{W}{L}\right)_i = \frac{2I_{Di}}{\mu_i C_{\text{ox}} V^2_{\text{eff}}} \quad (19)
\]

rounding to nearest factor of 10 (and limiting to 300um width) results in

<table>
<thead>
<tr>
<th>Q1</th>
<th>300/1.6</th>
<th>Q6</th>
<th>60/1.6</th>
<th>Q11</th>
<th>10/1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>300/1.6</td>
<td>Q7</td>
<td>20/1.6</td>
<td>Q12</td>
<td>10/1.6</td>
</tr>
<tr>
<td>Q3</td>
<td>300/1.6</td>
<td>Q8</td>
<td>20/1.6</td>
<td>Q13</td>
<td>10/1.6</td>
</tr>
<tr>
<td>Q4</td>
<td>300/1.6</td>
<td>Q9</td>
<td>20/1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>60/1.6</td>
<td>Q10</td>
<td>20/1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Widths of Q_{12} and Q_{13} were somewhat arbitrarily chosen to equal the width of Q_{11}
• Transconductance of input transistors

\[g_{m1} = \sqrt{2I_{D11} \mu_n C_{ox} (W/L)_{11}} = 2.4 \text{ mA/V} \] (20)

• Unity-gain frequency

\[\omega_t = \frac{g_{m1}}{C_L} = 2.4 \times 10^8 \text{ rad/s} \Rightarrow f_t = 38 \text{ MHz} \] (21)

• Slew rate without clamp transistors

\[SR = \frac{I_{D4}}{C_L} = 20 \text{ V/µs} \] (22)

• Slew rate with clamp transistors

\[I_{D12} + I_{D3} = I_{bias2} = 320 \text{ µA} \] (23)

\[I_{D3} = 30I_{D11} \] (24)

\[I_{D11} = 6.6 \text{ µA} + I_{D12} \] (25)

• Solving above results in

\[I_{D11} = 10.53 \text{ µA} \] (26)

which implies

\[I_{D3} = I_{D4} = 30I_{D11} = 0.32 \text{ mA} \] (27)

leading to slew-rate

\[SR = \frac{I_{D4}}{C_L} = 32 \text{ V/µs} \] (28)

• More importantly, time to recover from slew-rate limiting is decreased.
Current-Mirror Opamp

Current-Mirror with Wide-Swing Cascodes

\[I_{D14} = KI_1 = KL_b/2 \]
Current-Mirror Opamp

\[A_V = \frac{V_{out}(s)}{V_{in}(s)} = K g_m Z_L(s) = \frac{K g_m r_{out}}{1 + s r_{out} C_L} \approx \frac{K g_m}{s C_L} \]

(29)

- \(K \) factor is the current gain from mirrors

\[
\omega_I = \frac{K g_m}{C_L} = \frac{K \sqrt{2 I D_1 \mu n C_{ox}(W/L)_1}}{C_L} \]

(30)

- If output capacitance set max speed, higher \(K \) results in higher speed
- If second-poles set max speed, higher \(K \) results in lower speed (increases capacitances of nodes)
- A reasonable choice for a general-purpose opamp is \(K = 2 \) (for max speed, \(K = 1 \))

Current-Mirror Opamp Slew-Rate

\[SR = \frac{K I_b}{C_L} \]

(31)

- For given power, SR maximized by large \(K \)
- Example: \(K = 4 \) results in 4/5 of total bias current used in charging \(C_L \)
- Usually has better SR than folded-cascode
- Usually has better bandwidth than folded-cascode
- Folded-cascode has better thermal noise
Current-Mirror Opamp Example

Design goals
Same as in folded-cascode. Use $K=2$

Circuit Design
- With 2mW power limit and 5V supply, $I_{\text{total}} = 400 \ \mu A$

\[I_{\text{total}} = (3 + K) I_{D1} \quad (32) \]
\[I_{D1-7} = I_{D9} = I_{D11} = I_{D13} = 80 \ \mu A \quad (33) \]
\[I_{D8} = I_{D10} = I_{D12} = I_{D14} = 160 \ \mu A \quad (34) \]
\[I_b = 160 \ \mu A \quad (35) \]

and setting V_{eff} around 0.25V, we find transistor sizes...

\[
\begin{align*}
Q_1 & : 300/1.6 \\
Q_2 & : 300/1.6 \\
Q_3 & : 60/1.6 \\
Q_4 & : 60/1.6 \\
Q_5 & : 60/1.6 \\
Q_6 & : 60/1.6 \\
Q_7 & : 60/1.6 \\
Q_8 & : 120/1.6 \\
Q_9 & : 60/1.6 \\
Q_{10} & : 120/1.6 \\
Q_{11} & : 30/1.6 \\
Q_{12} & : 60/1.6 \\
Q_{13} & : 30/1.6 \\
Q_{14} & : 60/1.6
\end{align*}
\]

- Resulting in:

\[g_{m1} = \sqrt{2I_D1 \mu_n C_{ox}(W/L)} = 1.7 \ \text{mA/V} \quad (36) \]

\[\omega = \frac{Kg_{m1}}{C_L} = 3.4 \times 10^8 \ \text{rad/s} \Rightarrow f_t = 54 \ \text{MHz} \quad (37) \]

\[SR = \frac{(KI_b)}{C_L} = 32 \ \text{V/\mu s} \quad (38) \]

- which is better than 20 V/\mu s for the folded-cascode opamp without clamp transistors
Linear Settling Time

- Time constant for linear settling time equals inverse of closed-loop 3dB freq, $\omega_{3\text{dB}}$ where

$$\omega_{3\text{dB}} = \beta \omega_t$$ \hspace{1cm} (39)

where β is feedback factor and ω_t is unity-gain freq of amplifier (not including feedback factor)

- For 2-stage opamp, ω_t is relatively independent of load capacitance

- This is NOT the case where load capacitor is compensation capacitor (folded-cascode and current-mirror opamps)

- Need to find equivalent load capacitance

\[\beta = \frac{1/[s(C_1 + C_p)]}{1/[s(C_1 + C_p)] + 1/(sC_2)} = \frac{C_2}{C_1 + C_p + C_2} \] \hspace{1cm} (40)

\[C_L = C_C + C_{\text{load}} + \frac{C_2(C_1 + C_p)}{C_1 + C_p + C_2} \] \hspace{1cm} (41)
Linear Settling Time Example

• Given \(C_1 = C_2 = C_c = C_{\text{load}} = 5 \text{ pF} \) and
 \(C_p = 0.46 \text{ pF} \), find settling time for 0.1 percent accuracy (i.e. \(7\tau \)) for the current-mirror opamp

Solution:

• Equivalent load capacitance
 \[
 C_L = 5 + 5 + \frac{5(5 + 0.46)}{5 + 5 + 0.46} = 12.61 \text{ pF}
 \]
 which results in a unity gain freq of
 \[
 \omega_t = \frac{K g_m}{C_L} = \frac{2 \times 1.7 \text{ mA/V}}{12.61 \text{ pF}} = 2.70 \times 10^8 \text{ rad/s}
 \]

• Feedback factor given by
 \[
 \beta = \frac{5}{5 + 0.46 + 5} = 0.48
 \]
 causing a first-order time constant
 \[
 \tau = \frac{1}{\beta \omega_t} = 7.8 \text{ ns}
 \]
 For 0.1 percent accuracy, we need a linear settling time of \(7\tau \) or 54 ns.

• This does not account for any slew-rate limiting time.
Fully Differential Opamps

Advantages

- Use of fully-differential signals helps to reject common-mode noise and even-order linearities — rejection only partial due to non-linearities but much better than single-ended designs
- Fast since no extra current mirror needed

Disadvantages

- Requires common-mode feedback (CMFB) circuitry — sets average output voltage level, should be fast — adds some capacitance to output stage — might limit output signal swing
- Negative going single-ended slew-rate slower since set by bias current — not dynamic

Fully Differential Folded-Cascode Opamp

![Fully Differential Folded-Cascode Opamp Diagram]
Fully-Diff Current-Mirror Opamp

![Fully-Diff Current-Mirror Opamp Diagram]

- V_{in}
- I_{bias}
- $Q1$, $Q2$, $Q3$, $Q4$, $Q5$, $Q6$
- V_B3
- CMFB circuit
- V_{out}
- V_{in}
- V_{out+}
- V_{out-}
- V_{in+}
- V_{in-}
- V_{b1}
- V_{b2}

Other Fully-Diff Opamps

![Other Fully-Diff Opamps Diagram]

- Using 2 single-ended opamps
- Rail-to-rail input common-mode range

University of Toronto
Common-Mode Feedback Circuits

- Balanced signal on Vout does not affect Vcntrl
- Does not depend on small-signal analysis

\[V_{out+} - V_{out-} = \frac{I_B}{2} \Delta I \]

Common-Mode Feedback Circuits

- Limited differential swing
- Should ensure CMFB loop is stable

\[V_A = V_{CM} - (V_{eff1} + V_{t1}) \]
\[V_{ref} = - (V_{eff1} + V_{t1}) \]
Common-Mode Feedback Circuits

- Useful for switched-capacitor circuits
- Caps Cs set nominal dc bias at bottom of Cc
- Large output signal swing allowed