Nyquist-Rate A/D Converters

David Johns and Ken Martin
University of Toronto
(johns@eecg.toronto.edu)
(martin@eecg.toronto.edu)

A/D Converter Basics

\[V_{\text{ref}}(b_12^{-1} + b_22^{-2} + \ldots + b_N2^{-N}) = V_{\text{in}} \pm x \]

where \(\frac{1}{2} V_{\text{LSB}} < x < \frac{1}{2} V_{\text{LSB}} \)

- **Range of valid input values** produce the *same* output signal — quantization error.
Analog to Digital Converters

<table>
<thead>
<tr>
<th>Low-to-Medium Speed, High Accuracy</th>
<th>Medium Speed, Medium Accuracy</th>
<th>High Speed, Low-to-Medium Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrating</td>
<td>Successive approximation</td>
<td>Flash</td>
</tr>
<tr>
<td>Oversampling (not Nyquist-rate)</td>
<td>Algorithmic</td>
<td>Two-step</td>
</tr>
<tr>
<td></td>
<td>Interpolating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pipelined</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time-interleaved</td>
<td></td>
</tr>
</tbody>
</table>

Integrating Converters

- Low offset and gain errors for low-speed applications
- Small amount of circuitry
- Conversion speed is 2^{N+1} times $1/T_{clk}$

(Vin is held constant during conversion.)
Integrating Converters

- Count at end of T_2 is digital output
- Does not depend on RC time-constant

Notches the input frequencies which are multiples of $1/T_1$
Successive-Approximation Converters

- Makes use of binary search algorithm
- Requires N steps for N-bit converter
- Successively “tunes” a signal until within 1 LSB of input
- Medium speed
- Moderate accuracy

Sample Start

- Signed input
- \(V_{in} \) vs. \(V_{D/A} \)

\[
\begin{align*}
V_{in} &> V_{D/A} \quad \text{No} \\
& \quad \text{Yes} \\
& b_i = 1 \\
& V_{D/A} \rightarrow V_{D/A} + V_{in} / 2^i \\
& V_{D/A} \rightarrow V_{D/A} - (V_{in} / 2^i) \\
& i \rightarrow i + 1 \\
& \text{No} \quad i \geq N \\
& \text{Yes} \\
& \text{Stop}
\end{align*}
\]

DAC Based Successive-Approximation

- Adjust \(V_{D/A} \) until within 1 LSB of \(V_{in} \)
- Start with MSB and continue until LSB found
- D/A mainly determines overall accuracy
- Input S/H required
Charge Redistribution A/D

- McCreary, 75
- Combines S/H, D/A converter, and difference circuit
- **Sample mode:** Caps charged to V_{in}, compar reset.
- **Hold mode:** Caps switched to gnd so $V_x = -V_{in}$
- **Bit cycling:** Cap switched to V_{ref}. If $V_x < 0$ cap left connected to V_{ref} and bit=1. Otherwise, cap back to gnd and bit=0. Repeat N times
- Cap bottom plates connected to V_{ref} side to minimize parasitic capacitance at V_x. Parasitic cap does not cause conversion errors but it attenuates V_x.
Algorithmic (or Cyclic) A/D Converter

- Operates similar to successive-approx converter
- Successive-approx halves ref voltage each cycle
- Algorithmic doubles error each cycle (leaving ref voltage unchanged)

Ratio-Independent Algorithmic Converter

- McCharles, 77; Li, 84
- Small amount of circuitry — reuse cyclically in time
- Requires a high-precision multiply by 2 gain stage
Ratio-Independent Algorithmic Converter

1. Sample remainder and cancel input-offset voltage.
2. Transfer charge Q_1 from C_1 to C_2.
3. Sample input signal with C_1 again after storing charge Q_1 on C_2.
4. Combine Q_1 and Q_2 on C_1, and connect C_1 to output.

- Does not rely on cap matching
- Sample input twice using C_1; hold first charge in C_2 and re-combine with first charge on C_1

Flash (or Parallel) Converters

- Peetz, 86; Yoshii, 87; Hotta, 87; and Gendai, 91
- High-speed
- Large size and power hungry
- 2^N comparators
- Speed bottleneck usually large cap load at input
- Thermometer code out of comps
- Nands used for simpler decoding and/or bubble error correction
- Use comp offset cancellation
Issues in Designing Flash A/D Converters

- **Input Capacitive Loading** — use interpolating arch.
- **Resistor-String Bowing** — Due to I_{in} of bipolar comps — force center tap (or more) to be correct.
- **Signal and/or Clock Delay** — Small arrival diff in clock or input cause errors. (250MHz 8-bit A/D needs 5ps matching for 1LSB) — route clock and V_{in} together with the delays matched [Gendai, 1991]. Match capacitive loads
- **Substrate and Power-Supply Noise** — $V_{ref} = 2\text{ V}$ and 8-bit, 7.8 mV of noise causes 1 LSB error — shield clocks and use on-chip supply cap bypass
- **Flashback** — Glitch at input due to going from track to latch mode — use preamps in comparators and match input impedances

Flash Converters — Bubble Errors

- Thermometer code should be 1111110000
- Bubble error (noise, metastability) — 1111110100
- Usually occurs near transition point but can cause gross errors depending on encoder

![Diagram of Flash Converters — Bubble Errors](image)

- Can allow errors in lower 2 LSB but have MSBs encoder look at every 4th comp [Gendai, 91]
Reduced Auto-Zeroing

- Tsukamoto et al, ISSCC/96
- Spalding et al, ISSCC/96
- Reduce the auto-zero portion of conversion
 - auto zero when not performing conversion
 - add one more comparator and ripple up auto-zero

Advantages

- **Lower power** — less current drawn from ref string
- **More speed** — more time for conversion

Disadvantage

- 1/f noise not rejected as much

Two-Step A/D Converters

- High-speed, medium accuracy (but 1 sample latency)
- Less area and power than flash
- Only 32 comparators in above 8-bit two-step
- Gain amp likely sets speed limit
- Without digital error correction, many blocks need at least 8-bit accuracy
Digital Error Correction

- Relaxes requirements on input A/D
- Requires a 5-bit 2nd stage since V_q increased
- Example, see [Petschacher, 1990].

Interpolating A/D Converters

- Goodenough, 1989
- Steyaert, 1993
- Kusumoto, 1993
- Use input amps to amplify input around reference voltages
- Latch thresholds less critical
- Less cap on input (faster than flash)
- Match delays to latches
- Often combined with folding architecture
Interpolating Converters

![Graph showing interpolating converters with voltage levels and current interpolation](image)

Folding A/D Converters

- Reduce number of latches using folding
- Save power and area
- Similar concept to 2-step
- Folding rate of 4 shown for 4 bit converter

![Diagram of folding A/D converters](image)
Folding Circuit

Diagram (a):
- Input voltage V_{in}
- Bias current I_b
- Voltage V_Cc
- Voltage V_{out}

Diagram (b):
- Voltage V_{CC} - V_{BE}
- Voltage V_{CC} - $V_{BE} - I_b R_1$
- Voltage V_{in}

Folding with Interpolation

Diagram:
- 2-bit MSB A/D converter
- Voltage references $V_{ref} = 1V$
- Input voltage V_{in}
- Threshold voltages V_1 to V_4
- Digital logic

- Folding block responses
 - $V_r = \{1, 5, 9, 13\}$
 - $V_{r1} = \{16, 16, 16, 16\}$

Remarks:
- Folding usually used with interpolation
- Reduces input cap
- Without interp, same input cap as flash
- [van Valburg, 1992]
- [van de Grift, 1987]
- [Colleran, 1993]
Pipelined A/D Converters

- **Diagram:**
 - N - 1-bit shift register
 - 1-bit DAPRX
 - N - 1-bit shift register
 - 1-bit DAPRX
 - Analog pipeline (DAPRX - digital approximator)

Time-Interleaved A/D Converters [Black, 80]

- **Diagram:**
 - Use parallel A/Ds and multiplex them
 - Tone occurs at fs/N for N converters if mismatched
 - Input S/H critical, others not — perhaps different tech for input S/H

- **Equations:uko**