Consider

\[I_0 \quad \uparrow \quad \downarrow I_0 + \Delta I_0 \]

\[Q_1 \quad Q_2 \]

Where it is desired to have \(\Delta I_0 = 0 \)

Q1 and Q2 are ideal except for

\(\beta \) and \(V_t \) mismatch and

\[
\left(\frac{V_t}{I} \right)_1 \neq \left(\frac{V_t}{I} \right)_2 \quad \text{and some}
\]

This is useful when transmitting bias currents around chip

Assume mismatch errors are

\[A_{\beta} = 1 \quad \left[\frac{20 \mu m}{0.18 \mu m} \right] \quad \text{Technology} \]

\[A_{V_t} = 5 \quad \left[mV \mu m \right] \]

And they are inversely proportional to the area of a device
$$\Delta V_t = \frac{AV_t}{WL} \quad \frac{\Delta \beta}{\beta} = \frac{AV_t}{WL}$$

$$\left(\frac{I_0 (\Delta I_0)}{I_0} \right)^2 = (\beta)^2 + \left(\frac{q m}{I_0} \right)^2 \left(\frac{AV_t}{WL} \right)^2$$

First check whether β^2 or $\left(\frac{q m}{I_0} \right)^2 \left(\frac{AV_t}{WL} \right)^2$

Dominates when devices are in active region

$$\beta = \frac{q m}{I_0} \quad AV_t = \frac{2 I_0}{V_{eff}} \quad AV_t = \frac{2 AV_t}{V_{eff}}$$

$$= 0.01 \text{ [m]} = \frac{0.01}{V_{eff}} \text{ [m]}$$

So $\frac{q m}{I_0} \Delta V_t > \beta$ if $V_{eff} < 1$ (almost always true)

$$\left(\frac{I_0 (\Delta I_0)}{I_0} \right)^2 \leq \left(\frac{2}{V_{eff}} \right)^2 \left(\frac{AV_t}{WL} \right)^2$$

For a single device, in case of 2 devices (as shown above with q_1, q_2)

$$\left(\frac{I_0 (\Delta I_0)}{I_0} \right)^2 = 2 \left(\frac{2}{V_{eff}} \right)^2 \left(\frac{AV_t}{WL} \right)^2$$
\(N_{07E} - \left(\frac{\Delta I_0}{I_0} \right)^2 \) is independent of \(I_0 \).

\[
WL = \left(\frac{\Delta I_0}{I_0} \right)^2 \left(\frac{\Delta t}{V_{eff}} \right)^2 (AVt)^2
\]

For \(\frac{\Delta I_0}{I_0} = 0.005 \) and \(V_{eff} = 200 \text{ mV} \)

\(AVt = 5 \text{ mV} \)

\[
WL = 200 \text{ (mV nsec)}^2
\]