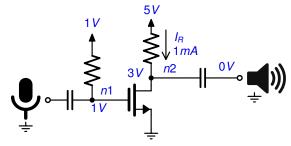
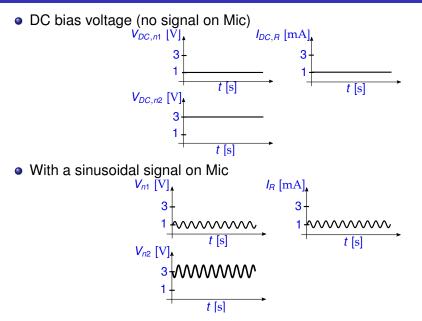
Mosfet Small Signal Modelling

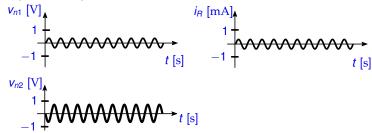

David Johns

University of Toronto


david.johns@utoronto.ca

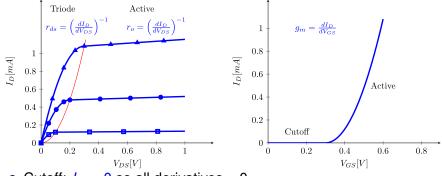
Small Signal Analysis

- Large Signal Analysis
 - Uses non-linear large signal equations to find DC operating point
- Small Signal Analysis
 - Linearize the non-linear behavior and look at variations in the voltage/current values from their bias values
- One transistor amp



Small Signal Analysis

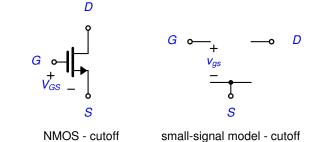
Small Signal Analysis


Small signal voltage

- $v_{n1} = V_{n1} V_{DC,n1}$
- In general: $v = V V_{DC}$
- The small-signal voltage is the difference between the actual signal, *V*, and the dc bias voltage, *V*_{DC}

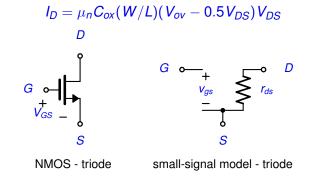
- Independent voltage/current sources do not change their values due to input signal
 - Except for the independent input signal ...
 - All independent sources are set to zero
- To find small signal models
 - Find derivatives dI_D/dV_{GS} and dI_D/dV_{DS} at the DC operating point for each transistor
 - In other words, linearize the large signal models in each of the regions of operation.

Models vs *I_D* Plots



• Cutoff: $I_D = 0$ so all derivatives = 0

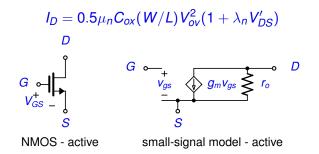
- Triode: r_{ds} in triode region
- Active: *r*_o and *g*_m in active region


Model: Cutoff Region

• Since $I_D = 0$...

• Open circuit at all nodes

Model: Triode Region



• Looks like a resistor between Drain/Source for small V_{DS} $r_{ds} = (\mu_n C_{ox} (W/L) V_{ov})^{-1}$

Becomes more accurate for small V_{DS}

(1)

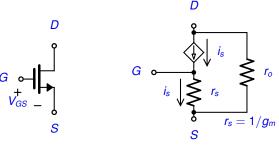
Model: Active Region

 Looks like a resistor and dependent current source between Drain/Source

$$r_{o} = (\lambda_{n}I_{D})^{-1}$$

$$g_{m} = \mu_{n}C_{ox}(W/L)V_{ov}$$

$$g_{m} = 2I_{D}/V_{ov}$$


$$g_{m} = \sqrt{2\mu_{n}C_{ox}(W/L)I_{D}}$$

$$9/27$$

- For g_m , ignore the small $(1 + \lambda_n V'_{DS})$ term
- 3 different (but equivalent) ways of finding g_m.
- Gives insight when designing for a value of g_m .
- For example, if a designer keeps V_{ov} constant (which is a common practice), then g_m is proportional to I_D
- Active region is where the transistor is most commonly used in an analog circuit
 - Results in gain in the circuit

Model: Active Region

Alternative model

NMOS - active

small-signal T-model - active

- Equivalent to other active model
- Gate current zero since current source *i_s* forced to equal the current through resistor *r_s*
- This model useful when resistors are in the source lead to ground. Makes some analysis easier.

- Small signal model
 - The SAME models are used for PMOS as for NMOS
 - There are NO SIGN CHANGES

(except that $|\lambda_p|$ should be used to keep r_o positive)

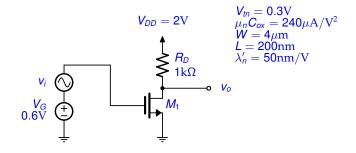
λ is a Function of Channel Length

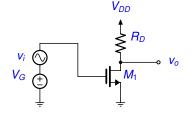
- λ is given for a transistor with a given channel length
- However, λ is inversely proportional to channel length
- Define new parameter, λ' , where $\lambda' \equiv \lambda L$

- Units of λ' are [m/V]

$$\lambda = \frac{\lambda'}{L}$$

$$r_o = \frac{L}{\lambda' I_D}$$

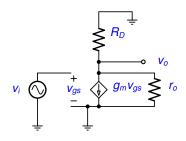

• $r_o \rightarrow \infty$ as *L* increases


- A large *r_o* makes the transistor more ideal in terms of output impedance
- However, a longer channel length generally results in lower speed and higher power dissipation

(4)

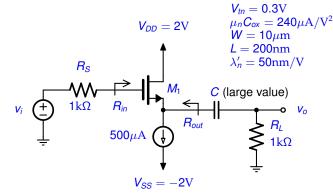
(5)

• Find the small signal gain v_o/v_i for the circuit shown below.

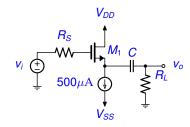

- First we find the dc operating point...
- Set the small-signal, $v_i = 0$
 - since nothing is changing while we find the dc operating point

•
$$V_{ov} = V_{GS} - V_{tn} = 0.3 V$$

•
$$I_D = 0.5 \mu_n C_{ox} (W/L) V_{ov}^2 = 216 \mu A$$

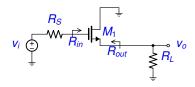

- $V_D = V_{DD} I_D R_D = 1.784V$ - $V_{DS} > V_{ov}$ so M_1 is in active region
- Small signal parameters ...
- $g_m = 2I_D/V_{ov} = 1.44 \text{mA/V}$
- $r_o = L/(\lambda'_n I_D) = 18.52 \mathrm{k}\Omega$

Small signal circuit

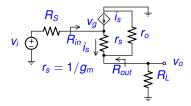


- Independent sources have been set to zero
- $v_o = -g_m v_{gs}(R_D || r_o)$
- $v_{gs} = v_i$
- $v_o/v_i = -g_m(R_D||r_o)$
- $v_o/v_i = -1.366 V/V$
- So a change in v_i by 10mV would result in a -13.66mV change in v_o

• Find the small signal gain *v_o/v_i*, *R_{in}*, *R_{out}* for the circuit shown below.



- Capacitor is a "large value"
 - an open circuit for dc bias analysis
 - a short circuit for small signal analysis
 (assumes v_i is an ac signal, cap impedance can be ignored) 17/27


- First we find the dc operating point...
- $v_i = 0$ and $I_D = 500 \mu A$
- $I_D = \mu_n C_{ox}(W/L) V_{ov}^2$
- $V_{ov} = 0.2887 V$
- $V_S = -0.5887V$
- $V_{DS} > V_{ov}$ so M_1 is in active region
- Small signal values ...
- $g_m = 2I_D/V_{ov} = 3.464 \text{mA/V}$
- $r_s = 1/g_m = 288.7\Omega$
- $r_o = L/(\lambda'_n I_D) = 8k\Omega$

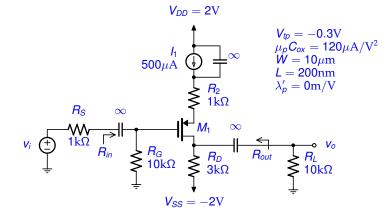
Small signal circuit

- All independent sources set to zero including current source
- Also short capacitor *C* for small signal analysis
- Now substitute the T-model for M₁

Small signal circuit

- $v_g = \left(\frac{R_{in}}{R_{in}+R_S}\right) v_i$
- $R_{in} \rightarrow \infty$ since gate current is zero
- $v_g = v_i$
- Resistor divider between v_g and v_o

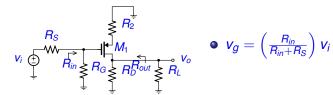
•
$$\mathbf{v}_o = \left(\frac{R_L||r_o}{(R_L||r_o)+r_s}\right)\mathbf{v}_g$$

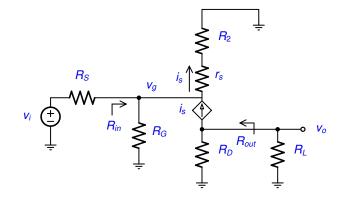

•
$$v_o/v_i = \frac{R_L ||r_o|}{(R_L ||r_o) + r_s} = 0.7549 \text{V/V}$$

- To find *R_{out}*, set all independent sources to zero
 - set $v_i = 0$ so $v_g = 0$
- $R_{out} = r_s ||r_o = 278.6\Omega$

• Find the small signal gain v_o/v_i for the circuit shown below.

 $V_{DD} = 2V$ $V_{lp} = -0.3V$ $\mu_{\rho}C_{ox} = 120\mu A/V^{2}$ $W = 10\mu m$ L = 200nm $\lambda'_{\rho} = 0m/V$ I_1 500µA R₂ 1kΩ R_S ∞ '*M*₁ ∞ ∕₩⁄ 1<u>kΩ</u> Rin Rout $\frac{-\circ}{R_L} \frac{V_o}{10k\Omega}$ Vi $\begin{cases} R_G \\ 10k\Omega \end{cases}$ $\begin{cases} R_D \\ 3k\Omega \end{cases}$ $V_{SS} = -2V$


• Find the small signal gain v_o/v_i for the circuit shown below.


• Caps have value of ∞ showing they are large values

- For dc analysis, we set $v_i = 0$ and find ...
- $I_D = 500 \mu A$
- *v*_{ov} = 0.4082V
- $V_S = 0.7082V$
- $V_D = -0.5$ V so $V_{SD} = 1.2082$ V
- Since $V_{SD} > V_{ov}$, M_1 in active region
- $g_m = 2I_D/V_{ov} = 2.449 \text{mA/V}$
- $r_s = 1/g_m = 408.2\Omega$
- $r_o = L/(|\lambda'_p|I_D) \rightarrow \infty$ since $\lambda_p = 0$

Small signal circuit

• Small signal circuit with T-model for M₁

• Since the gate current is zero, $R_{in} = R_G$

- For R_{out} , set $v_i = 0$ which results in $i_s = 0$ so ...
- $R_{out} = R_D = 3k\Omega$
- For v_o/v_i , first find v_g/v_i which is
- $v_g/v_i = R_G/(R_G + R_S) = 0.9091 \text{V/V}$
- Now find, $v_o/v_g \dots$ $v_o = -i_s(R_D || R_L)$ $i_s = v_g/(r_s + R_S)$ $v_o/v_g = -(R_D || R_L)/(r_s + R_S) = -1.639 V/V$
- Combining with v_g/v_i ...

$$\frac{v_o}{v_i} = \frac{v_o}{v_g} \frac{v_g}{v_i} = -1.49 \text{V/V}$$

- What is small-signal analysis?
- Small-signal models (cutoff/triode/active regions)
 - Transconductance, gm
 - Finite output impedance, ro
 - Standard model and T-model
- Small-signal analysis examples