Single Transistor Gain Circuit

David Johns

University of Toronto

david.johns@utoronto.ca

Single Transistor Gain Circuit

- In general, a gain circuit consists of
 - Drive stage
 - Load stage
- Drive stage
 - Single transistor
- Load stage is one of
 - Resistor
 - Current source (made with a transistor)
- "Single transistor" gain circuit refers to the drive stage consisting of a single transistor

- $V_{tn} = 0.3$ V; $\mu_n C_{ox} = 240 \mu A/V^2$
- (W/L) = 100
- Let $\lambda_n = 0$
 - results in $r_o \rightarrow \infty$
- Want to plot v_O vs v_I
 - as v_l goes from 0 to V_{DD}

Gain Circuit with Resistor Load

Gain Circuit with Resistor Load

- M_1 is cutoff in region (1)
 - $-v_l$ is less than V_{tn}
- M_1 is active in region (2)
 - As soon as $v_l > V_{tn}$, M_1 on and active
 - remains active until $v_O < v_I V_{tn}$

when drain voltage is less than gate voltage by a threshold voltage

 $v_O = V_{DD} - i_D * R_D$

 $i_D = 0.5 \mu_n C_{ox} (W/L) (v_l - V_{tn})^2$

- In this case, end of active is $v_l = 0.67V$, $v_O = 0.37V$

• M_1 is triode in region (3) $v_O = V_{DD} - i_D * R_D$ $i_D = \mu_n C_{ox} (W/L) (v_I - V_{tn} - 0.5 v_O) v_O$

- Largest small signal gain
 - where the slope of v_O/v_I is largest in magnitude
 - Then a small change in v_l can cause a large change in v_O
- For above example, occurs at $v_l = 0.67$ V
 - But this bias point would give very little headroom as M_1 would go into triode as v_0 decreases and gain would drop
 - A better bias point might be around $v_0 = 1$ V

Small Signal Gain Analysis

- Good method to find small signal voltage gain
 - Model circuit as Norton equivalent
 - Find output impedance, *R*_o, at output node
 - Find short circuit current, i_{sc} at output node as function of v_i

 $- v_o = i_{sc}R_o$

Small Signal - Gain Circuit/Resistor Load

Active region

• $R_o = R_D$; $i_{sc} = -g_m v_i$

•
$$v_o = -g_m R_D v_i$$

- $v_o/v_i = -g_m R_D$
- To increase gain... increase g_m or R_D
- Recall

$$g_m = \mu_n C_{ox}(W/L) V_{ov}$$

$$g_m = 2I_D/V_{ov}$$

$$g_m = \sqrt{2\mu_n C_{ox}(W/L) I_D}$$

- μ_nC_{ox} set by fabrication and not controlled by designer
- If output bias voltage fixed at say 1V, then I_D is fixed if R_D is fixed.

Small Signal - Gain Circuit/Resistor Load

- Can increase g_m by decreasing V_{ov} but...
 - $-g_m$ does not increase for V_{ov} below about 50mV
 - a practical effect seen with better modelling
- What about increasing R_D?
 - If R_D increased, I_D must decrease to keep v_O around 1V
- In summary, it is difficult to get a large gain from a gain circuit with a resistor load
- Would like a large load resistance that does not need to have a large of dc bias voltage across it

- Replace R_D with a current source

Practical Ideal Current Source

- Ideal current source would give constant current no matter what voltage, V_x, across it
- "Practical ideal" current source

 $V_x > 0$ then $I_x = I_B$ $V_x = 0$ then $0 < I_x < I_B$ $V_x < 0$ then $I_x = 0$

• I_B is desired current; I_x is actual current

Practical Ideal Current Source

• For $V_{DD} = 2V$; $R_D = 1k\Omega$ $I_R = 1mA$; $V_R = 1V$

 $I_{R} \downarrow \bigvee_{I_{B}} V_{DD}$

Practical Ideal

- For $V_{DD} = 3V$; $R_D = 1k\Omega$ $I_R = 1mA$; $V_R = 1V$
- For $V_{DD} = 0.5$ V; $R_D = 1$ k Ω $I_R = 0.5$ mA; $V_R = 0.5$ V
- For $V_{DD} = 2V$; $R_D = 4k\Omega$ $I_R = 0.5mA$; $V_R = 2V$
- For $V_{DD} = -1$ V; $R_D = 1$ k Ω $I_R = 0$ mA; $V_R = 0$ V

Current Source/Current Source Circuit

Practical Ideal

• For
$$I_1 = 1 \text{mA}$$
; $I_2 = 0.5 \text{mA}$
 $V_x = V_{DD} = 2 \text{V}$

For
$$I_1 > I_2$$

 $V_x = V_{DD} = 2V$

• For $I_1 < I_2$ $V_x = 0$ V

• For $I_1 = I_2$ $0 < V_x < V_{DD}$

 V_x can be anywhere between 0 and V_{DD}

Gain Circuit with Current Source Load: $\lambda = 0$

 $V_{DD} = 2V$ I_B I.64mA V_O $V_I \circ I$

- Ideal current source (always assume practical)
- $V_{tn} = 0.3$ V; $\mu_n C_{ox} = 240 \mu A/V^2$
- (*W*/*L*) = 100
- Let $\lambda_n = 0$
 - − results in $r_0 \rightarrow \infty$
- Want to plot vo vs vi
 - as $v_{\rm I}$ goes from 0 to $V_{\rm DD}$

Gain Circuit with Current Source Load: $\lambda = 0$

Gain Circuit with Current Source Load: $\lambda = 0$

- M_1 is cutoff in region (1)
- M_1 is active in region (2)
 - $-I_{D1} < I_B = 1.64 \text{mA}$
 - Results in $v_O = V_{DD}$
 - Current pulled from V_{DD} is I_{D1}
- M_1 is active in region (3)
 - $I_{D1} = I_B = 1.64 \text{mA}$
 - v_O somewhere between V_{DD} and where M_1 goes into triode

- In region (3)- Gain is ∞ since slope is ∞
- M_1 is triode in region (4)
 - Edge of triode at ...
 - drain of M_1 is $V_{G1} V_{tn}$
 - and $V_{G1} = V_1$
 - $-I_{D1} = I_B = 1.64$ mA in this region

- V_1 found from $I_{D1} = 0.5 \mu_n C_{ox} (W/L) (V_1 V_{tn})^2 = I_B$
- $V_1 = 0.67 V$

Gain Circuit with Current Source Load: λ finite

- Now let $\lambda > 0$
- Same as before except that region (3) has a finite slope

Gain Circuit with Current Source Load: λ finite

Small Signal - Gain Circuit/Ideal Current Source Load

- In region (2), *I_B* acts as a short circuit
 Small signal gain = 0
- In region (3), we have the following

Small Signal - Gain Circuit/Ideal Current Source Load

Active region

• $R_o = r_o; i_{sc} = -g_m v_i$

•
$$v_o = -g_m r_o v_i$$

•
$$v_o/v_i = -g_m r_o$$

•
$$g_m = 2I_D/V_{ov}$$

•
$$r_o = L/(\lambda' I_D)$$

•
$$v_o/v_i = \frac{-2L}{\lambda' V_{ov}}$$

- Intrinsic gain of single transistor with $L = 0.2 \mu m$
- Typical values
 - V_{ov} = 0.2V; λ' = 0.1 μ m/V
 - Intrinsic gain: $v_o/v_i = 20V/V$

 Use a single PMOS transistor to build current source load for NMOS drive transistor

- V_B is a constant dc voltage
 - When M_2 active, M_2 acts like a current source
 - $-M_2$ will be triode when v_O close to V_{DD}

21/26

- Region 1

 M1 cutoff; M2 triode

 Region 2

 M1 active; M2 triode

 Region 3
 - M_1 active; M_2 active
- Region 4
 - $-M_1$ triode; M_2 active
- As a gain circuit, want the circuit to be in region (3)
 - Small signal model for M_2 is just a resistor of value r_{o2}

• Since $v_{gs} = 0$, $g_m v_{gs} = 0$ so ... Looking into the drain of M_2 is r_{o2}

Small Signal - Gain Circuit/PMOS Load

Active region

- $R_o = r_{o1} || r_{o2}; \ i_{sc} = -g_m v_i$
- $v_o/v_i = -g_{m1}(r_{o1}||r_{o2})$
- If $r_o \equiv r_{o1} = r_{o2}$ $v_o/v_i = -\frac{g_{m1}r_o}{2}$
- The typical gain is one half of the intrinsic transistor gain

Small Signal - Gain Circuit/PMOS Load

- $g_m = 2I_D/V_{ov}$; $r_o = L/(\lambda'I_D)$
- $v_o/v_i = -\frac{g_{m1}r_o}{2} = L/(\lambda' V_{ov})$
- How can we increase gain?
- Decrease V_{ov}
 - Stops increasing g_m when $V_{ov} < 50 \text{mV}$
- Increase L
 - Need to also increase W to maintain same V_{ov}
 - Increases input capacitance so slower circuit
- Is there another way?.. Yes!
 - Cascade amp
 - Cascode amp

- Single transistor gain circuit
- Small-signal gain analysis
- Replace load R_D with current source
- Gain circuit with PMOS load