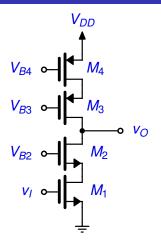
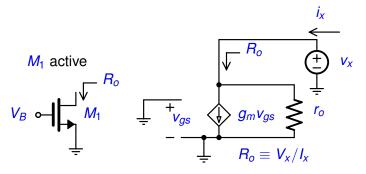

Cascode Gain Circuit

David Johns

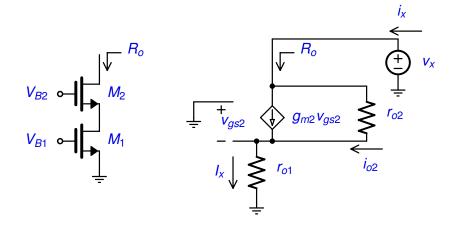

University of Toronto david.johns@utoronto.ca

Cascade Amp

- If all r_0 are the same and $g_m = g_{m1} = g_{m3}$
- $v_o = (-g_m r_o/2)(-g_m r_o/2)v_i = \frac{1}{4}(g_m r_o)^2 v_i$
- But we use twice as much current


Cascode Amp

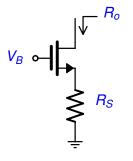
- We will see its gain is approx $-\frac{1}{2}(g_m r_o)^2$
- So twice as much gain and no extra current
- Will need a higher power supply value


Output Impedance of Active Transistor

• To find impedance R_o , zero all independent sources, apply voltage v_x and find i_x

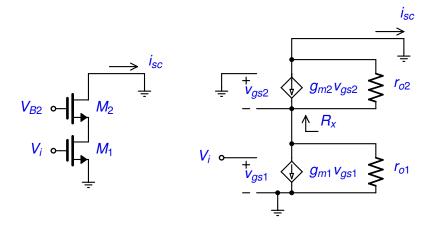
- Since $v_{gs} = 0$, $g_m v_{gs} = 0$ so $i_x = v_x/r_o$
- \bullet $R_o \equiv v_x/i_x = r_o$

Output Impedance of Cascoded Transistor



Output Impedance of Cascoded Transistor

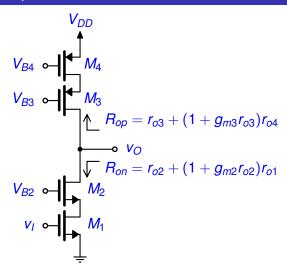
- i_x flows through $g_{m2}v_{gs2}$ and r_{o2} and recombines so that i_x flows through r_{o1}
- $v_{gs2} = 0 i_x r_{o1}$
- \bullet $i_x = i_{o2} + g_{m2}v_{gs2} = i_{o2} + g_{m2}(-i_xr_{o1})$
- \bullet $i_{o2} = (v_x i_x r_{o1})/r_{o2}$
- $\bullet i_{x} = (v_{x} r_{o1}i_{x})/r_{o2} g_{m2}r_{o1}i_{x}$
- \bullet $i_x(1+g_{m2}r_{o1}+(r_{o1}/r_{o2})=v_x/r_{o2})$
- \bullet $R_o \equiv v_x/i_x$
- \bullet $R_o = r_{o2} + (1 + g_{m2}r_{o2})r_{o1}$
- If $g_{m2}r_{o2}\gg 1$ and $r_{o1}\approx r_{o2}$ (a common occurrence) $-R_o\approx g_{m2}r_{o2}r_{o1}$
- Note: $g_m r_o \gg 1$ is the same as $r_o \gg 1/g_m$


Output Impedance of Cascoded Transistor

In general,

$$R_o = r_o + (1 + g_m r_o) R_S$$

Short Circuit Current of Cascoded Transistor


Short Circuit Current of Cascoded Transistor

- We can find $R_x = (1/g_{m2})||r_{o2}||$
- Now using the current divider rule, we find

$$\bullet \ i_{sc} = \frac{r_{o1}}{r_{o1} + R_x} (-g_{m1} v_i) = \frac{r_{o1}}{r_{o1} + (\frac{1}{g_{m2}} || r_{o2})} (-g_{m1} v_i)$$

• For $g_m r_o \gg 1$, $i_{sc} \approx -g_{m1} v_i$

Cascode Amp Gain

Cascode Amp Gain

- $v_o = i_{sc}(R_{op}||R_{on})$
- $v_o/v_i = -g_{m1}(R_{op}||R_{on})\left(\frac{r_{o1}}{r_{o1} + (\frac{1}{g_{m2}}||r_{o2})}\right)$
- For all g_m and r_o the same and $g_m r_o \gg 1$ $v_o/v_i = -\frac{1}{2}(g_m r_o)^2$

- Cascode amps and current mirrors are commonly used in integrated circuits.
- A cascode transistor can be put on top of a cascoded transistor and get even more output impedance but a even higher power supply is needed

Topics Covered

- Cascade Amp
 - To increase gain with multiple amps
- Cascode Amp
 - To increase gain with single amp
 - Output impedance of cascoded transistor
 - Increased gain for cascode amp