Current Mirrors

David Johns

University of Toronto david.johns@utoronto.ca

- Current sources are often used for general circuit biasing and used as loads for amplifiers
- A current **source** is created using a current **mirror**

Current Source Specs

3 main specs

- IB value of current source
- *R*_o output impedance (ideally ∞)
- V_{min} minimum voltage required (ideally 0)
- If $R_o \rightarrow \infty$, then $I_x = I_B$ for $V_x > V_{min} > 0$

Current Mirror

- Here, M₂ is the current source while M₁ sets the voltage V_{GS2} which sets the current for M₂
- We will start by assuming $\lambda_n = 0$

Current Mirror

- For current mirror, we assume M₁ and M₂ are matched
 - $\mu_n \equiv \mu_{n1} = \mu_{n2}$
 - $-C_{ox} \equiv C_{ox1} = C_{ox3}$
 - $V_{tn} \equiv V_{tn1} = V_{tn2}$
 - This is achieved by having the 2 transistors on the same integrated circuit and relatively close to each other.
- We also have

 $V_{GS} \equiv V_{GS1} = V_{GS2}$

Current Mirror

- Since $V_{DS1} = V_{GS1}$

In either cutoff or active region (not triode)

In cutoff ONLY IF $V_{DD} \leq V_{tn}$

- $I_{D1} = 0.5 \mu_n C_{ox} (W/L)_1 (V_{GS} V_{tn})^2$
- $I_{D1} = I_{ref} = (V_{DD} V_{GS})/R$
- Combine above 2 eqn to find V_{GS} and I_{ref}

• For M₂

 $- I_{D2} = 0.5 \mu_n C_{ox} (W/L)_2 (V_{GS} - V_{tn})^2$

• Comparing I_{D1} and I_{D2} equations, we have

$$\frac{I_{D2}}{I_{D1}} = \frac{(W/L)_2}{(W/L)_1}$$

(1)

- The above is valid as long as both transistors are in the active region
- For *M*₁
 - $V_{DD} \ge V_{tn}$
- For M₂
 - V_{DS2} \geq V_{min} where V_{min} = V_{ov2} = V_{GS} V_{tn}
 - So M_2 remains active as long as its drain voltage is high enough
 - So it depends on what is attached to the M_2 current source
- Also, in general, the length of M_1 and M_2 are also matched
 - This would make the above I_{D2}/I_{D1} equation accurate even when $\lambda_n \neq 0$ for the case $V_{DS2} = V_{DS1}$

Current Mirror with $\lambda_n \neq 0$

- For the case $\lambda_n \neq 0$ we have
- $I_{D1} = 0.5 \mu_n C_{ox} (W_1/L_1) (V_{GS} V_{tn})^2 (1 + (\lambda'_n/L_1) V'_{DS1})$
- $I_{D2} = 0.5 \mu_n C_{ox} (W_2/L_2) (V_{GS} V_{tn})^2 (1 + (\lambda'_n/L_2) V'_{DS2})$
- Recall $V'_{DS} \equiv V_{DS} V_{ov}$
- So if L₂ = L₁ then we have I_{D2} precisely equals (W₂/W₁)I_{D1} at the time when V_{DS2} = V_{DS1}
- So when the drain source voltages of the 2 transistors are equal, our current mirror output, I_{D2} will be accurately related to the reference current, I_{D1} .

Current Mirror Plot

- The non-zero slope for $V_o > V_{min}$ is due to the finite output impedance of M_2
- This slope equals $1/R_o$ where in this case, $R_o = r_{o2}$
- *I_o* precisely equals our desired *I_B* when *V_{DS2} = V_{DS1}* which is higher than *V_{min}*

Small Signal Impedances

- We know the impedance looking into the drain of M_2 is r_{o2}
- What is the impedance looking into the gate/drain of M_1 ?

- $i_x = g_{m1}v_x + (v_x/r_{o1}) = (g_{m1} + (1/r_{o1})v_x)$
- $R_{o1} = v_x/i_x = (g_{m1} + (1/r_{o1}))^{-1} = \frac{1}{g_{m1}} ||r_{o1}|$
- $R_{o1} = \frac{1}{g_{m1}} ||r_{o1}|$
- This configuration is often referred to as a "diode connected transistor"
 - The term "diode connected" comes from Bipolar transistors
 - Bipolar transistors (npn or pnp) are back to back diodes and in this case, one of the diodes is short circuited.

Current Mirror Example 1

• Given $I_{ref} = 40 \mu A$, $W_1 = 2 \mu m$ and

 $\mu_n C_{ox} = 120 \mu A/V^2$; $V_{tn} = 0.3V$; $\lambda'_n = 50 nm/V$

- $L_1 = L_2 = 200$ nm
 - (a) Find W_2 so that $I_{D2} = 20\mu A$
 - (b) Find the output impedance, R_o , of the current source for M_2
 - (c) Find the lowest possible output voltage, V_o , for the current source while keeping M_2 active
 - (d) At what value of V_o does $I_{D2} = 20\mu$ A?
 - (e) Estimate the value of I_{D2} if $V_o = 1V$ based on small signal analysis

Current Mirror Example 1

Solution

(a) $I_{D2} = (W_2/W_1)I_{D1}$ and we have $I_{D1} = I_{ref} = 40\mu A; W_1 = 2\mu m; I_{D2} = 20\mu A$ Solving, we find $W_2 = 1\mu m$

- (b) The output impedance of the current source is the output impedance of M_2 which is r_{o2} $r_{o2} = L/(\lambda'_n I_{D2}) = (200e - 9)/(50e - 9 * 20e - 6) = 200k\Omega$ So $R_o = r_{o2} = 200k\Omega$
- (c) Since we are finding a dc bias voltage, we will assume $\lambda'_n = 0$ $I_{D2} = 0.5\mu_n C_{ox}(W_2/L_2)V_{ov2}^2$ $20e - 6 = 0.5(120e - 6)(1/0.2)V_{ov2}^2$ Solving for V_{ov2} , we find $V_{ov2} = 0.258V$ (we ignore the negative solution since that would make the transistor cutoff) For M_2 to remain active, $V_{DS2} \ge V_{ov2}$ and since $V_o = V_{DS2}$ the minimum output voltage for V_o is 0.258V

Solution

(d) The current mirror will be perfectly matched when $V_{DS2} = V_{DS1}$ since all the other values are the same (except for *W* which scales the output current).

 $V_{DS1} = V_{GS1} = V_{ov1} + V_{tn}$ and since $V_{GS1} = V_{GS2}$ and the threshold voltages are the same, $V_{ov1} = V_{ov2} = 0.258V$ $V_{DS1} = 0.258 + 0.3 = 0.558V$ So the $I_{D2} = 20\mu$ A when $V_o = 0.558V$ When $V_o > 0.558$, I_{D2} will be higher than 20μ A When $V_o < 0.558$, I_{D2} will be lower than 20μ A

Solution

(e) From small signal analysis, we have $\Delta I_{D2} = \Delta V_o/R_o \text{ where } R_o \text{ is the output impedance of the current}$ source and we found $R_o = 200 \text{k}\Omega$ We know from above $I_{D2,0.558} = 20\mu\text{A}$ at $V_o = 0.558\text{V}$ and we want to estimate the current at $V_o = 1\text{V}$ In this case, the change in output voltage is $\Delta V_o = 1 - 0.558 = 0.442\text{V}$ $I_{D2} = I_{D2,0.558} + \Delta I_{D2} = 20e - 6 + (\Delta V_o/R_o)$ $I_{D2} = 20e - 6 + (0.442/200e3) = 22.2\mu\text{A}$

Sending Bias Currents around a Chip

- It is common on an integrated circuit to have multiple analog circuit blocks far apart on the chip
 - Blocks such as analog-to-digital converters, digital-to-analog converters, RF circuits, phase-locked-loops for clocking, SERDES, etc...
- Normally one main bias block is used to generate a constant bias current, *I_{ref}*, and this current needs to be replicated in all the analog blocks in the chip
- The WRONG way to replicate *l_{ref}* is to send bias voltages to far away blocks
- The CORRECT way to replicate *I_{ref}* is to send bias currents to far away blocks

Sending Bias Currents around a Chip: WRONG way

- Wrong because the grounds at Analog Block 1/2 may be at a different voltage than main bias block
 - Ground wires have resistance and current flowing through ground causes a voltage drop
 - Not an issue when grounds are close to each other
 - Would result in incorrect bias currents AND the bias currents would depend on current through ground wire (noisey bias currents)

Sending Bias Currents around a Chip: CORRECT way

 Send a separate bias current to EACH analog block based on main bias block

Matching requirements

- M_1/M_2 matched (except for W)
- $M_3/M_4/M_5$ matched (except for W)
- No need to match NMOS with PMOS
- $I_{R4} = I_{ref} \times (W_2/W_1)(W_4/W_3)$
- $I_{R5} = I_{ref} \times (W_2/W_1)(W_5/W_3)$

Cascode Current Mirror

- To increase the output impedance of current mirror
 - Use cascode

Cascode Current Mirror

• The output impedance for this current mirror is R_o

 $R_o = r_{o4} + (1 + g_{m4}r_{o4})r_{o2} \approx g_{m4}r_{o4}r_{o2}$

- It is at least g_mr_o greater than just r_{o2}
- Normally, match M_1/M_2 and match M_3/M_4 (except for W)
- So $L_2 = L_1$ and $L_4 = L_3$
- Also make $W_4/W_3 = W_2/W_1$ resulting in $I_o = I_{ref} \times (W_2/W_1)$
- Problem with this circuit is V_{min} is too large

- $V_{B1} = V_{ov1} + V_{tn}$
- $V_{B2} = V_{B1} + V_{ov2} + V_{tn} = V_{ov1} + V_{ov2} + 2V_{tn}$
- *V_{min}* occurs when drain of *M*₄ goes below the gate of *M*₄ minus one threshold voltage

 $V_{min} = V_{B2} - V_{tn} = V_{ov1} + V_{ov2} + V_{tn}$

• So in case where $V_{ov} = 0.2$ V and $V_{tn} = 0.3$ V

 $V_{min} = 0.2 + 0.2 + 0.3 = 0.7 V$

• It turns out, there is a way to reduce V_{min}

Wide Swing Current Mirror

A wide swing current mirror is a cascode current mirror with a lower V_{min}

Wide Swing Current Mirror

- To make things easier, assume M₃/M₁ matched including their W
- Since $I_{D3} = I_{D1}$, $V_{ov3} = V_{ov1}$ which we will define as V_{ov}
- First, we find V_{ov5} in terms of V_{ov}
 - $I_{D1} = 0.5 \mu_n C_{ox} (W/L)_1 V_{ov}^2$
 - $I_{D5} = 0.5 \mu_n C_{ox} (W/L)_5 V_{ov5}^2$
 - Divide the above 2 equations
 - $\frac{I_{D5}}{I_{D1}} = \frac{(W/L)_5 V_{ov5}^2}{(W/L)_1 V_{ov}^2}$
 - $\text{ But } I_{D5} = I_{D1} = I_{ref}$
 - $V_{ov5} = \sqrt{rac{(W/L)_1}{(W/L)_5}} imes V_{ov}$
 - If we choose $(W/L)_5 = \frac{1}{4}(W/L)_1$, then
 - $V_{ov5} = 2V_{ov}$

Wide Swing Current Mirror

- Now, we find V_{B2} so we can find V_{min} - $V_{B2} = V_{ov5} + V_{tn} = 2V_{ov} + V_{tn}$
- V_{min} occurs when M₄ goes into triode which occurs when its drain voltage is lower than the gate voltage minus V_{tn}
- $V_{min} = V_{B2} V_{tn} = 2V_{ov}$
- So we have that $V_{min} = 2V_{ov}$ which is one V_{tn} lower than in the non-wide-swing current mirror
- For this reason, the wide-swing current mirror is used in the majority of cases on a chip.
- The downside is that it requires an extra I_{ref}
- In practice, $(W/L)_5 = (1/5) \times (W/L)_1$ to give some margin so that both M_1/M_2 remain in the active region

Wide Swing Current Mirror Example

Assume a process with

 $L = 0.18 \mu \text{m}; \ V_{tn} = 0.4 \text{V}; \ \mu_n C_{ox} = 240 \mu \text{A}/\text{V}^2; \ \lambda'_n = 50 \text{nm}/\text{V}$

- (a) Design a wide-swing current mirror with V_{min} = 0.3V and 100μA output current using 2 current references of 50μA.
 (use a practical choice for (W/L)₅)
 Assume all L = 0.18μm
- (b) Find the output impedance.

Solution

(a) We first assume that $W_3 = W_1$ so that $V_{ov} \equiv V_{ov3} = V_{ov1}$ We find V_{ov} using $V_{min} = 0.3 = 2V_{ov} \rightarrow V_{ov} = 0.15V$ Now we find W_1 $I_{D1} = 0.5\mu_n C_{ox} (W/L)_1 V_{ov}^2$ $50e - 6 = 0.5(240e - 6)(W_1/0.18)(0.15)^2$ $W_1 = 3.33\mu$ m and $W_3 = W_1 = 3.33\mu$ m

Wide Swing Current Mirror Example

Solution

- (a) continued $W_5 = W_1/5 = 0.667\mu m$ Since we want $I_o = I_{D2} = 100\mu A$, we have $I_o = W_2/W_1 \times I_{ref} \rightarrow 100 = W_2/(3.33) \times 50$ $W_2 = 2W_1 = 6.66\mu m$ Finally, since $W_3 = W_1$, then $W_4 = W_2 = 6.66\mu m$
- (b) For the output impedance

$$\begin{split} r_{o2} &= r_{o4} = L/(\lambda_n' I_{D2}) \\ r_{o2} &= r_{o4} = (0.18e-6)/(50e-9\times 100e-6) = 36 \mathrm{k}\Omega \\ g_{m2} &= g_{m4} = 2I_{D2}/V_{ov2} = (2\times 100e-6)/0.15 = 1.3\mathrm{mA/V} \\ R_o &= r_{o4} + (1+g_{m4}r_{o4})r_{o2} \\ R_o &= 36e3 + (1+(1.3e-3)(36e3))(36e3) = 1.76\mathrm{M}\Omega \end{split}$$

This is significantly higher than $36k\Omega$ that would have occurred if the current mirror was not cascoded.

- Current source and specs
- Basic current mirror
- Sending bias currents around a chip
- Cascode current mirror
 - Higher output impedance (better accuracy)
 - Wide swing current mirror