Current Mirrors

David Johns

University of Toronto
david.johns@utoronto.ca

Current Source

- Current sources are often used for general circuit biasing and used as loads for amplifiers
- A current source is created using a current mirror

Current source symbol

Current Source Specs

- 3 main specs
$-I_{B}$ - value of current source
- R_{0} - output impedance (ideally ∞)
- $V_{\text {min }}$ - minimum voltage required (ideally 0)
- If $R_{0} \rightarrow \infty$, then $I_{x}=I_{B}$ for $V_{x}>V_{\min }>0$

Current Mirror

- Here, M_{2} is the current source while M_{1} sets the voltage $V_{G S 2}$ which sets the current for M_{2}
- We will start by assuming $\lambda_{n}=0$

Current Mirror

- For current mirror, we assume M_{1} and M_{2} are matched

$$
\begin{aligned}
& -\mu_{n} \equiv \mu_{n 1}=\mu_{n 2} \\
& -C_{o x} \equiv C_{o x 1}=C_{o x 3} \\
& -V_{t n} \equiv V_{t n 1}=V_{t n 2}
\end{aligned}
$$

- This is achieved by having the 2 transistors on the same integrated circuit and relatively close to each other.
- We also have

$$
V_{G S} \equiv V_{G S 1}=V_{G S 2}
$$

Current Mirror

- For M_{1}

- Since $V_{D S 1}=V_{G S 1}$

In either cutoff or active region (not triode)
In cutoff ONLY IF $V_{D D} \leq V_{\text {tn }}$
$-I_{D 1}=0.5 \mu_{n} C_{o x}(W / L)_{1}\left(V_{G S}-V_{t n}\right)^{2}$
$-I_{D 1}=I_{\text {ref }}=\left(V_{D D}-V_{G S}\right) / R$

- Combine above 2 eqn to find $V_{G S}$ and $I_{\text {ref }}$
- For M_{2}

$$
-I_{D 2}=0.5 \mu_{n} C_{o x}(W / L)_{2}\left(V_{G S}-V_{t n}\right)^{2}
$$

- Comparing $I_{D 1}$ and $I_{D 2}$ equations, we have

$$
\begin{equation*}
\frac{I_{D 2}}{I_{D 1}}=\frac{(W / L)_{2}}{(W / L)_{1}} \tag{1}
\end{equation*}
$$

Current Mirror

- The above is valid as long as both transistors are in the active region
- For M_{1}
- $V_{D D} \geq V_{t n}$
- For M_{2}
- $V_{D S 2} \geq V_{\text {min }}$ where $V_{\text {min }}=V_{\text {ov } 2}=V_{G S}-V_{\text {tn }}$
- So M_{2} remains active as long as its drain voltage is high enough
- So it depends on what is attached to the M_{2} current source
- Also, in general, the length of M_{1} and M_{2} are also matched
- This would make the above $I_{D 2} / I_{D 1}$ equation accurate even when $\lambda_{n} \neq 0$ for the case $V_{D S 2}=V_{D S 1}$

Current Mirror with $\lambda_{n} \neq 0$

- For the case $\lambda_{n} \neq 0$ we have
- $I_{D 1}=0.5 \mu_{n} C_{o x}\left(W_{1} / L_{1}\right)\left(V_{G S}-V_{t n}\right)^{2}\left(1+\left(\lambda_{n}^{\prime} / L_{1}\right) V_{D S 1}^{\prime}\right)$
- $I_{D 2}=0.5 \mu_{n} C_{o x}\left(W_{2} / L_{2}\right)\left(V_{G S}-V_{t n}\right)^{2}\left(1+\left(\lambda_{n}^{\prime} / L_{2}\right) V_{D S 2}^{\prime}\right)$
- Recall $V_{D S}^{\prime} \equiv V_{D S}-V_{o v}$
- So if $L_{2}=L_{1}$ then we have $I_{D 2}$ precisely equals $\left(W_{2} / W_{1}\right) I_{D 1}$ at the time when $V_{D S 2}=V_{D S 1}$
- So when the drain source voltages of the 2 transistors are equal, our current mirror output, $I_{D 2}$ will be accurately related to the reference current, $I_{D 1}$.

Current Mirror Plot

- The non-zero slope for $V_{0}>V_{\min }$ is due to the finite output impedance of M_{2}
- This slope equals $1 / R_{0}$ where in this case, $R_{0}=r_{o 2}$
- I_{0} precisely equals our desired I_{B} when $V_{D S 2}=V_{D S 1}$ which is higher than $V_{\text {min }}$

Small Signal Impedances

- We know the impedance looking into the drain of M_{2} is r_{02}
- What is the impedance looking into the gate/drain of M_{1} ?

Small Signal Impedances

- $i_{x}=g_{m 1} v_{x}+\left(v_{x} / r_{o 1}\right)=\left(g_{m 1}+\left(1 / r_{o 1}\right) v_{x}\right.$
- $R_{01}=v_{x} / i_{x}=\left(g_{m 1}+\left(1 / r_{01}\right)\right)^{-1}=\frac{1}{g_{m 1}} \| r_{01}$
- $R_{01}=\frac{1}{g_{m 1}} \| r_{01}$
- This configuration is often referred to as a "diode connected transistor"
- The term "diode connected" comes from Bipolar transistors
- Bipolar transistors (npn or pnp) are back to back diodes and in this case, one of the diodes is short circuited.

Current Mirror Example 1

- Given $I_{\text {ref }}=40 \mu \mathrm{~A}, W_{1}=2 \mu \mathrm{~m}$ and
$\mu_{n} C_{o x}=120 \mu \mathrm{~A} / \mathrm{V}^{2} ; V_{t n}=0.3 \mathrm{~V} ; \lambda_{n}^{\prime}=50 \mathrm{~nm} / \mathrm{V}$
$L_{1}=L_{2}=200 \mathrm{~nm}$
(a) Find W_{2} so that $I_{D 2}=20 \mu \mathrm{~A}$
(b) Find the output impedance, R_{0}, of the current source for M_{2}
(c) Find the lowest possible output voltage, V_{o}, for the current source while keeping M_{2} active
(d) At what value of V_{o} does $I_{D 2}=20 \mu \mathrm{~A}$?
(e) Estimate the value of $I_{D 2}$ if $V_{o}=1 \mathrm{~V}$ based on small signal analysis

Current Mirror Example 1

Solution
(a) $I_{D 2}=\left(W_{2} / W_{1}\right) I_{D 1}$ and we have
$I_{D 1}=I_{\text {ref }}=40 \mu \mathrm{~A} ; W_{1}=2 \mu \mathrm{~m} ; I_{D 2}=20 \mu \mathrm{~A}$
Solving, we find $W_{2}=1 \mu \mathrm{~m}$
(b) The output impedance of the current source is the output impedance of M_{2} which is r_{02}
$r_{O 2}=L /\left(\lambda_{n}^{\prime} I_{D 2}\right)=(200 e-9) /(50 e-9 * 20 e-6)=200 \mathrm{k} \Omega$
So $R_{o}=r_{o 2}=200 \mathrm{k} \Omega$
(c) Since we are finding a dc bias voltage, we will assume $\lambda_{n}^{\prime}=0$ $I_{D 2}=0.5 \mu_{n} C_{o x}\left(W_{2} / L_{2}\right) V_{\text {ov } 2}^{2}$
$20 e-6=0.5(120 e-6)(1 / 0.2) V_{\text {ov2 }}^{2}$
Solving for $V_{\text {ov } 2}$, we find $V_{\text {ov2 }}=0.258 \mathrm{~V}$
(we ignore the negative solution since that would make the transistor cutoff)
For M_{2} to remain active, $V_{D S 2} \geq V_{\text {ov2 }}$ and since $V_{o}=V_{D S 2}$ the minimum output voltage for V_{o} is 0.258 V

Current Mirror Example 1

Solution

(d) The current mirror will be perfectly matched when $V_{D S 2}=V_{D S 1}$ since all the other values are the same (except for W which scales the output current).
$V_{D S 1}=V_{G S 1}=V_{o V 1}+V_{t n}$ and since $V_{G S 1}=V_{G S 2}$ and the threshold voltages are the same, $V_{o v 1}=V_{\text {ov2 }}=0.258 \mathrm{~V}$
$V_{D S 1}=0.258+0.3=0.558 \mathrm{~V}$
So the $I_{D 2}=20 \mu \mathrm{~A}$ when $V_{0}=0.558 \mathrm{~V}$
When $V_{o}>0.558, I_{D 2}$ will be higher than $20 \mu \mathrm{~A}$
When $V_{o}<0.558, I_{D 2}$ will be lower than $20 \mu \mathrm{~A}$

Current Mirror Example 1

Solution

(e) From small signal analysis, we have
$\Delta I_{D 2}=\Delta V_{0} / R_{0}$ where R_{0} is the output impedance of the current source and we found $R_{0}=200 \mathrm{k} \Omega$
We know from above $I_{D 2,0.558}=20 \mu \mathrm{~A}$ at $V_{o}=0.558 \mathrm{~V}$ and we want to estimate the current at $V_{o}=1 \mathrm{~V}$ In this case, the change in output voltage is
$\Delta V_{0}=1-0.558=0.442 \mathrm{~V}$
$I_{D 2}=I_{D 2,0.558}+\Delta I_{D 2}=20 e-6+\left(\Delta V_{o} / R_{0}\right)$
$I_{D 2}=20 e-6+(0.442 / 200 e 3)=22.2 \mu \mathrm{~A}$

Sending Bias Currents around a Chip

- It is common on an integrated circuit to have multiple analog circuit blocks far apart on the chip
- Blocks such as analog-to-digital converters, digital-to-analog converters, RF circuits, phase-locked-loops for clocking, SERDES, etc...
- Normally one main bias block is used to generate a constant bias current, I $I_{\text {ref }}$, and this current needs to be replicated in all the analog blocks in the chip
- The WRONG way to replicate $I_{\text {ref }}$ is to send bias voltages to far away blocks
- The CORRECT way to replicate $I_{\text {ref }}$ is to send bias currents to far away blocks

Sending Bias Currents around a Chip: WRONG way

- Wrong because the grounds at Analog Block 1/2 may be at a different voltage than main bias block
- Ground wires have resistance and current flowing through ground causes a voltage drop
- Not an issue when grounds are close to each other
- Would result in incorrect bias currents AND the bias currents would depend on current through ground wire (noisey bias currents)

Sending Bias Currents around a Chip: CORRECT way

- Send a separate bias current to EACH analog block based on main bias block

Sending Bias Currents around a Chip: CORRECT way

- Matching requirements
- M_{1} / M_{2} matched (except for W)
- $M_{3} / M_{4} / M_{5}$ matched (except for W)
- No need to match NMOS with PMOS
- $I_{R 4}=I_{\text {ref }} \times\left(W_{2} / W_{1}\right)\left(W_{4} / W_{3}\right)$
- $I_{R 5}=I_{\text {ref }} \times\left(W_{2} / W_{1}\right)\left(W_{5} / W_{3}\right)$

Cascode Current Mirror

- To increase the output impedance of current mirror - Use cascode

Cascode Current Mirror

- The output impedance for this current mirror is R_{0}

$$
R_{0}=r_{04}+\left(1+g_{m 4} r_{04}\right) r_{02} \approx g_{m 4} r_{04} r_{02}
$$

- It is at least $g_{m} r_{0}$ greater than just $r_{o 2}$
- Normally, match M_{1} / M_{2} and match M_{3} / M_{4} (except for W)
- So $L_{2}=L_{1}$ and $L_{4}=L_{3}$
- Also make $W_{4} / W_{3}=W_{2} / W_{1}$ resulting in
$I_{0}=I_{\text {ref }} \times\left(W_{2} / W_{1}\right)$
- Problem with this circuit is $V_{\text {min }}$ is too large

Cascode Current Mirror

- $V_{B 1}=V_{o v 1}+V_{t n}$
- $V_{B 2}=V_{B 1}+V_{o v 2}+V_{t n}=V_{o v 1}+V_{o v 2}+2 V_{t n}$
- $V_{\min }$ occurs when drain of M_{4} goes below the gate of M_{4} minus one threshold voltage

$$
V_{\min }=V_{B 2}-V_{t n}=V_{o v 1}+V_{o v 2}+V_{t n}
$$

- So in case where $V_{o v}=0.2 \mathrm{~V}$ and $V_{t n}=0.3 \mathrm{~V}$

$$
V_{\min }=0.2+0.2+0.3=0.7 \mathrm{~V}
$$

- It turns out, there is a way to reduce $V_{\text {min }}$

Wide Swing Current Mirror

- A wide swing current mirror is a cascode current mirror with a lower $V_{\text {min }}$

Wide Swing Current Mirror

- To make things easier, assume M_{3} / M_{1} matched including their W
- Since $I_{D 3}=I_{D 1}, V_{o v 3}=V_{\text {ov1 }}$ which we will define as $V_{o v}$
- First, we find $V_{\text {ov5 }}$ in terms of $V_{o v}$
$-I_{D 1}=0.5 \mu_{n} C_{o x}(W / L)_{1} V_{o V}^{2}$
$-I_{D 5}=0.5 \mu_{n} C_{o x}(W / L)_{5} V_{o v 5}^{2}$
- Divide the above 2 equations
$-\frac{l_{05}}{I_{D 1}}=\frac{(W / L)_{5} V_{o v}^{2}}{(W / L) V_{o v}^{2}}$
- But $I_{D 5}=I_{D 1}=I_{\text {ref }}$
- $V_{\text {ov5 }}=\sqrt{\frac{(W / L)_{1}}{(W / L)_{5}}} \times V_{\text {ov }}$
- If we choose $(W / L)_{5}=\frac{1}{4}(W / L)_{1}$, then
- $V_{\text {ov5 }}=2 V_{\text {ov }}$

Wide Swing Current Mirror

- Now, we find $V_{B 2}$ so we can find $V_{\text {min }}$
$-V_{B 2}=V_{\text {ov } 5}+V_{\text {tn }}=2 V_{\text {ov }}+V_{\text {tn }}$
- $V_{\min }$ occurs when M_{4} goes into triode which occurs when its drain voltage is lower than the gate voltage minus $V_{t n}$
- $V_{\text {min }}=V_{B 2}-V_{t n}=2 V_{o v}$
- So we have that $V_{\text {min }}=2 V_{o v}$ which is one $V_{t n}$ lower than in the non-wide-swing current mirror
- For this reason, the wide-swing current mirror is used in the majority of cases on a chip.
- The downside is that it requires an extra $I_{\text {ref }}$
- In practice, $(W / L)_{5}=(1 / 5) \times(W / L)_{1}$ to give some margin so that both M_{1} / M_{2} remain in the active region

Wide Swing Current Mirror Example

- Assume a process with
$L=0.18 \mu \mathrm{~m} ; V_{t n}=0.4 \mathrm{~V} ; \mu_{n} C_{o x}=240 \mu \mathrm{~A} / \mathrm{V}^{2} ; \lambda_{n}^{\prime}=50 \mathrm{~nm} / \mathrm{V}$
(a) Design a wide-swing current mirror with $V_{\text {min }}=0.3 \mathrm{~V}$ and $100 \mu \mathrm{~A}$ output current using 2 current references of $50 \mu \mathrm{~A}$. (use a practical choice for $(W / L)_{5}$)
Assume all $L=0.18 \mu \mathrm{~m}$
(b) Find the output impedance.

Solution
(a) We first assume that $W_{3}=W_{1}$ so that $V_{o v} \equiv V_{o v 3}=V_{o v 1}$

We find $V_{o v}$ using
$V_{\text {min }}=0.3=2 V_{\text {ov }} \rightarrow V_{O V}=0.15 \mathrm{~V}$
Now we find W_{1}
$I_{D 1}=0.5 \mu_{n} C_{o x}(W / L)_{1} V_{o v}^{2}$
$50 e-6=0.5(240 e-6)\left(W_{1} / 0.18\right)(0.15)^{2}$
$W_{1}=3.33 \mu \mathrm{~m}$ and $W_{3}=W_{1}=3.33 \mu \mathrm{~m}$

Wide Swing Current Mirror Example

Solution
(a) continued

$$
W_{5}=W_{1} / 5=0.667 \mu \mathrm{~m}
$$

Since we want $I_{o}=I_{D 2}=100 \mu \mathrm{~A}$, we have
$I_{0}=W_{2} / W_{1} \times I_{\text {ref }} \rightarrow 100=W_{2} /(3.33) \times 50$
$W_{2}=2 W_{1}=6.66 \mu \mathrm{~m}$
Finally, since $W_{3}=W_{1}$, then $W_{4}=W_{2}=6.66 \mu \mathrm{~m}$
(b) For the output impedance

$$
\begin{aligned}
& r_{o 2}=r_{04}=L /\left(\lambda_{n}^{\prime} l_{D 2}\right) \\
& r_{o 2}=r_{o 4}=(0.18 e-6) /(50 e-9 \times 100 e-6)=36 \mathrm{k} \Omega \\
& g_{m 2}=g_{m 4}=2 l_{D 2} / V_{o v 2}=(2 \times 100 e-6) / 0.15=1.3 \mathrm{~mA} / \mathrm{V} \\
& R_{o}=r_{o 4}+\left(1+g_{m 4} r_{o 4}\right) r_{o 2} \\
& R_{o}=36 e 3+(1+(1.3 e-3)(36 e 3))(36 e 3)=1.76 \mathrm{M} \Omega
\end{aligned}
$$

This is significantly higher than $36 \mathrm{k} \Omega$ that would have occurred if the current mirror was not cascoded.

Topics Covered

- Current source and specs
- Basic current mirror
- Sending bias currents around a chip
- Cascode current mirror
- Higher output impedance (better accuracy)
- Wide swing current mirror

