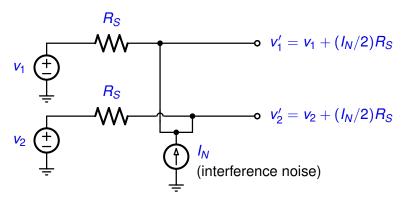
Differential Amplifiers

David Johns

University of Toronto david.johns@utoronto.ca

Differential Signals

- Many circuits make use of differential signals
 - ethernet, SATA, PCIe, memory interfaces, ADCs, DACs, ...
- Advantage of differential signalling
 - Rejection of common-mode noise
 - EMI (electromagnetic interference) reduction to other circuits



Differential Signals

 If the 2 signals are matched, the interference noise is the same on each wire so ...

• $v'_2 - v'_1 = v'_2 - v_1$

- Taking the difference between the 2 wires cancels "common-mode" noise
- In general, define

 $v_2 = V_{CM} + v_{id}/2$ $v_1 = V_{CM} - v_{id}/2$

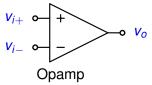
Differential signal

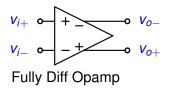
 $V_{id} = V_2 - V_1$

- Difference of 2 signals
- Common-mode signal $V_{CM} = (v_2 + v_1)/2$
 - Average of 2 signals

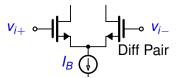
Differential Amplifiers

• Differential inputs used in opamps



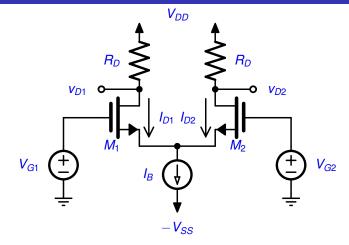


• Opamp input stage: transistor differential pair



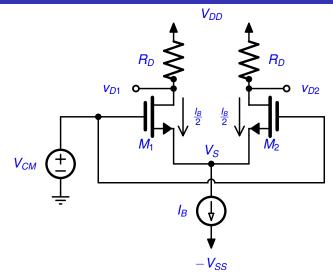
• Look at large-signal and small-signal for MOS diff pair

Diff Pair - Large Signal



- M_1 , M_2 are identical
- $i_{D1} + i_{D2} = I_B$
- If $V_{G1} = V_{G2}$ - $i_{D1} = i_{D2} = I_B/2$
- If $V_{G1} > V_{G2}$ - $i_{D1} > i_{D2}$
- If $V_{G1} < V_{G2}$ - $i_{D1} < i_{D2}$
- Can use diff pair to "steer" the current, IB

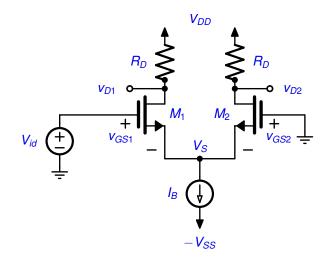
Diff Pair - Large Signal - Common-Mode Input



Diff Pair - Large Signal - Common-Mode Input

- Define V_{CS} be the min voltage required across I_B for it to operate correctly (i.e. be in the active region)
- If $V_{S} V_{SS} \ge V_{CS}$ then - $V_{D1} = V_{D2} = V_{DD} - (\frac{I_{B}}{2})R_{D}$
- If M_1/M_2 both active
 - $I_{D1} = I_B/2 = 0.5 \mu_n C_{ox} (W/L) V_{ov}^2$
 - $V_{ov} = \sqrt{I_B/(\mu_n C_{ox}(W/L))}$
- Maximum V_{CM}
 - Occurs when gate is V_t above drain voltage
 - $V_{CM,max} = V_t + V_{DD} (\frac{I_B}{2})R_D$
- Minimum V_{CM}
 - Occurs when V_S is low enough that I_B does not have min voltage across it
 - Occurs when $V_S = -V_{SS} + V_{CS}$
 - $V_{CM,min} = -V_{SS} + V_{CS} + V_t + V_{ov}$

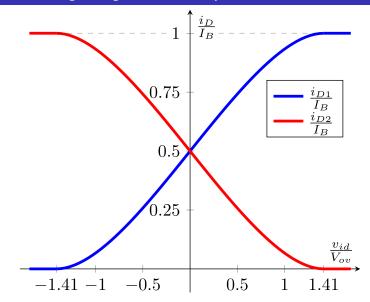
Diff Pair - Large Signal - Diff Input



Diff Pair - Large Signal - Diff Input

- if $v_{id} \gg 0$
 - All I_B flows through M_1
- if *v_{id}* ≪ 0
 - All I_B flows through M_2
- At what v_{id} does M₂ "just" turn off
 - If $i_{D2} \approx 0$, $V_{GS2} = V_{tn}$ so $V_S = -V_{tn}$ since $V_{G2} = 0$
 - $-V'_{GS1} = V_{tn} + V'_{ov}$ where V'_{ov} is overdrive voltage when $I_D = I_B$
 - V_{ov} is the overdrive voltage when $I_D = I_B/2$
 - $V_{ov}' = \sqrt{2I_B/(\mu_n C_{ox}(W/L))}$
 - $V'_{ov} = \sqrt{2} V_{ov}$
 - $v_{id} = V_S + v_{GS1}$
 - $v_{id,max} = -V_{tn} + V_{tn} + V_{ov}' = \sqrt{2}V_{ov}$
 - So $I_{D2} = 0$ for $v_{id} > v_{id,max}$
 - Similarly, $I_{D1} = 0$ for $v_{id} < -v_{id,max}$

Diff Pair - Large Signal - Diff Input

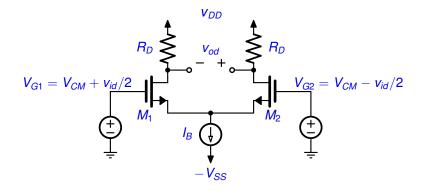


Can show

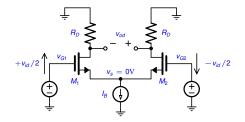
$$i_{D1} = \frac{I_B}{2} + \left(\frac{I_B}{V_{ov}}\right) \left(\frac{v_{id}}{2}\right) \sqrt{1 - \left(\frac{v_{id}/2}{V_{ov}}\right)^2}$$
$$i_{D2} = \frac{I_B}{2} - \left(\frac{I_B}{V_{ov}}\right) \left(\frac{v_{id}}{2}\right) \sqrt{1 - \left(\frac{v_{id}/2}{V_{ov}}\right)^2}$$

- For $v_{id} \approx 0$, i_d is roughly linear equation
- More non-linear as *v_{id}* increases

Diff Pair - Small-Signal

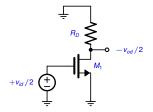


Small-Signal - Balanced



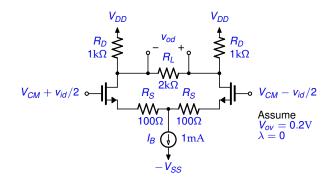
- IF circuit is **balanced**
- Diff input applied
 - v_{G1} goes up while v_{G2} goes down the same amount
 - Results in $v_s = 0V$
- Can do our analysis with half-circuit

Small-Signal - Balanced



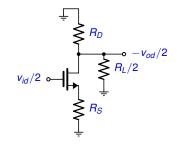
- Above is half circuit
- $-v_{od}/2 = -g_{m1}(r_{o1}||R_D)(v_{id}/2)$
- $v_{od}/v_{id} = g_{m1}(r_{o1}||R_D)$
- Recall that M_1/M_2 are matched
 - $g_{m1} = g_{m2}$ and $r_{o1} = r_{o2}$

Example - Balanced



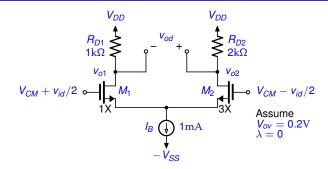
- $g_m = 2I_D/V_{ov} = 2(I_B/2)/V_{ov} = 5 \text{mA/V}$
- $r_o \rightarrow \infty$
- For half circuit, split R_L into 2 1k Ω

Example - Balanced



- $R_o = (R_L/2) || R_D = 500 \ \Omega$
- $G_m = \frac{-1}{(1/g_m) + R_S} = \frac{-1}{300} \text{ A/V}$
- $(-v_{od}/2)/(v_{id}/2) = G_m R_o = -1.67 \text{ V/V}$
- $v_{od}/v_{id} = 1.67 \text{ V/V}$

Small-Signal - UnBalanced



3X implies M₂ is 3 times W/L compared to 1X M₁

• $I_{D2} = 3I_{D1}$ and $I_{D1} + I_{D2} = 1$ mA $- I_{D2} = 0.75$ mA, $I_{D1} = 0.25$ mA $- g_{m2} = 7.5$ mA/V and $g_{m1} = 2.5$ mA/V $- r_o \rightarrow \infty$

Small-Signal - UnBalanced

Use superposition

- Find i'_{sc1} and i'_{sc2} due to $v_{id}/2$ while $-v_{id}/2 = 0$
- Find i''_{sc1} and i''_{sc2} due to $-v_{id}/2$ while $v_{id}/2 = 0$
- $i_{sc1} = i'_{sc1} + i''_{sc1} \qquad i_{sc2} = i'_{sc2} + i''_{sc2}$
- These 2 currents go into the 2 load resistors so ...
- $v_{od} = i_{sc2}R_{D2} i_{sc1}R_{D1}$

Small-Signal - UnBalanced

•
$$i'_{sc1} = \frac{-v_{id}/2}{1/g_{m1}+1/g_{m2}} = -i'_{sc2}$$

• $i''_{sc2} = \frac{-(-v_{id}/2)}{1/g_{m1}+1/g_{m2}} = -i''_{sc1}$
• $i_{sc1} = \frac{-v_{id}}{1/g_{m1}+1/g_{m2}} = 1.875e - 3(-v_{id})$
• $i_{sc2} = \frac{v_{id}}{1/g_{m1}+1/g_{m2}} = 1.875e - 3(v_{id})$

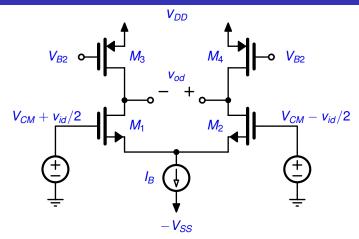
• In general, with an unbalanced diff pair

$$-i_{sc1} = -i_{sc2} = \frac{-v_{id}}{1/g_{m1}+1/g_{m2}}$$

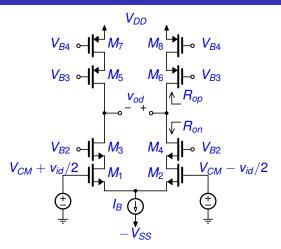
•
$$v_{od} = i_{sc2}(2e3) - i_{sc1}(1e3) = 5.625v_{id}$$

- $v_{od}/v_{id} = 5.625 \text{ V/V}$
- Note that this is a very unusual case as the voltage swing at v_{o2} is twice that at v_{o1} and this is generally undesirable.

Diff Pair - Current Source Loads

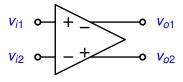


Diff Pair - Current Source Loads



- $v_{od}/v_{id} \approx g_{m1}(R_{op}||R_{on})$
- $R_{on} \approx (g_{m3}r_{o3})r_{o1}$ $R_{op} \approx (g_{m5}r_{o5})r_{o7}$

Diff Amp - Various Gains



Fully Diff Amplifier

- $\begin{array}{ll} v_{i1} = V_{CMi} + v_{id}/2 & v_{o1} = V_{CMo} v_{od}/2 \\ v_{i2} = V_{CMi} v_{id}/2 & v_{o2} = V_{CMo} + v_{id}/2 \\ v_{id} = v_{i1} v_{i2} & v_{od} = v_{o2} v_{o1} \\ V_{CMi} = \frac{v_{i1} + v_{i2}}{2} & V_{CMo} = \frac{v_{o1} + v_{o2}}{2} \end{array}$
- We can define 4 gains through the amplifier

Diff Amp - Various Gains

Differential Gain

 $A_d \equiv \frac{v_{od}}{v_{id}}$

- This is what we are MOST interested in
- Common-mode-to-differential gain

 $A_{CM}\equiv rac{v_{od}}{v_{cmi}}$

- Common-mode "signals" may convert to differential signal This would result in "noise" in the differential signal
- Common-mode-to-common-mode gain
 - $A_{cm-cm} \equiv \frac{V_{cmo}}{V_{cmi}}$
 - Generally not too critical but we want it less than 1 so we do not amplify common-mode signals
- Differential-to-common-mode gain
 - $A_{d-cm} \equiv \frac{v_{cmo}}{v_{id}}$
 - Generally not an issue to worry about so generally not looked at

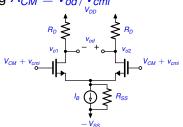
Diff Amp - Various Gains

- Most important are A_d and A_{CM}
- Want $A_d \gg A_{CM}$
 - So common-mode signals are rejected relative to diff signals
- Define common-mode rejection ratio (CMRR)

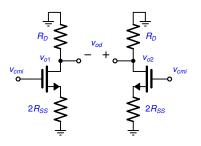
 $CMRR \equiv \frac{|A_d|}{|A_{CM}|}$ or in dB form $CMRR_{dB} \equiv 20 \log(\frac{|A_d|}{|A_{CM}|})$

• Want a high CMRR value

• Circuit for finding $A_{CM} \equiv v_{od} / \frac{v_{cmi}}{v_{oo}}$



Half circuits



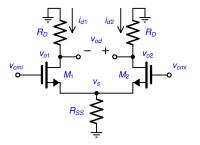
- Let $\lambda \to \infty$
- Recall $A_d = v_{od}/v_{id} = g_m R_D$
- $\frac{v_{o1}}{v_{cmi}} = \frac{v_{o2}}{v_{cmi}} = \frac{-R_D}{(1/g_m) + 2R_{SS}}$
- If perfectly matched
 - $v_{od} = v_{o2} v_{o1} = 0 \Rightarrow A_{CM} = 0$
- Resistors mismatched by ΔR_D
 - We can still used the half circuit here since the lower half of the circuit is still perfectly matched (only R_D are mismatched)

$$- R_{D1} = R_D R_{D2} = R_D + \Delta R_D - \frac{v_{o1}}{v_{cmi}} = \frac{-R_D}{(1/g_m) + 2R_{SS}} \frac{v_{o2}}{v_{cmi}} = \frac{-(R_D + \Delta R_D)}{(1/g_m) + 2R_{SS}} - A_{CM} = \frac{v_{o2} - v_{o1}}{v_{cmi}} = \frac{-\Delta R_D}{(1/g_m) + 2R_{SS}}$$

$$- A_{CM} = -\left(\frac{g_m R_D}{1+2g_m R_{SS}}\right) \left(\frac{\Delta R_D}{R_D}\right)$$

- $CMRR_{R} = \frac{(1+2g_{m}R_{SS})}{(\Delta R_{D}/R_{D})}$
- To increase CMRR, increase g_m or R_{SS} or reduce ΔR_D

- Transistors g_m mismatched by Δg_m
- We can not use half circuits as the circuit is no longer balanced
- $g_{m1} = g_m + \Delta g_m/2$ $g_{m2} = g_m \Delta g_m/2$



• $v_s = \frac{R_{SS}}{R_{SS} + 1/(2g_m)} v_{cmi}$ $i_{d1} + i_{d2} = v_s/R_{SS} = \frac{v_{cmi}}{R_{SS} + 1/(2g_m)}$

- $i_{d1} = g_{m1} v_{gs1}$ $i_{d2} = g_{m2} v_{gs2}$
- Since $v_{gs1} = v_{gs2}$, we have
 - $\frac{i_{d1}}{i_{d2}} = \frac{g_{m1}}{g_{m2}}$
- Combining the above equations, we have

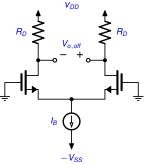
•
$$i_{d1} = \frac{g_{m1}v_{cmi}}{1+2g_mR_{SS}}$$
 $i_{d2} = \frac{g_{m2}v_{cmi}}{1+2g_mR_{SS}}$
• $v_{od} = v_{o2} - v_{o1} = -i_{d2}R_D - (-i_{d1}R_D) = \frac{(g_{m1} - g_{m2})R_Dv_{cmi}}{1+2g_mR_{SS}}$
• $A_{CM} = v_{od}/v_{cmi} = \frac{\Delta g_mR_D}{1+2g_mR_D} = (\frac{g_mR_D}{1+2g_mR_{SS}})(\Delta g_m)$

- $A_{CM} \equiv V_{od} / V_{cmi} \equiv \frac{1}{1 + 2g_m R_{SS}} \equiv \left(\frac{1}{1 + 2g_m R_{SS}}\right) \left(\frac{g_m}{g_m}\right)$
- $CMRR_{gm} = \frac{(1+2g_mR_{SS})}{(\Delta g_m/g_m)}$
- To increase CMRR, increase g_m or R_{SS} or reduce Δg_m

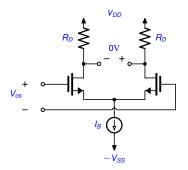
- From our original half circuit, we found
- $\frac{v_{o1}}{v_{cmi}} = \frac{v_{o2}}{v_{cmi}} = \frac{-R_D}{(1/g_m) + 2R_{SS}}$
- This is also our common-mode to common-mode gain so
- $A_{CM-CM} = \frac{-R_D}{(1/g_m)+2R_{SS}}$
- To reduce our common-mode to common-mode gain, we can increase R_{SS} or decrease g_m or R_D
 - Increasing *R_{SS}* is a better choice as it helps with the CMRR
 - Decreasing g_m or R_D also decreases our diff gain

Input Offset of Amp with Diff Input

- The input offset is the dc voltage value, Vos, that when applied to the input of an amplifier will result in the output voltage being zero.
- V_{os} input offset for $V_o = 0$
- $V_{o,off}$ is the output offset for $v_{id} = 0$
- If in the linear range of the amp
 - $V_{os} = V_{o,off}/A_d$ where A_d is the gain of the amp



Input Offset of Diff Pair



- Offset due to mismatch for R_D , (W/L), V_{tn}
- Without showing the derivation, the input offset is ...

Input Offset of Diff Pair

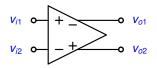
• For ΔV_{tn}

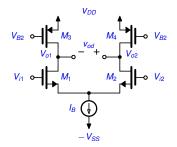
- Usually ΔV_{tn} is the dominant cause for offset
- $-V_{os} = \Delta V_{tn}$
- Typical values for $\Delta \textit{V}_{\textit{tn}}$ from 1 \rightarrow 10 mV
- For ΔR_D
 - $-V_{os} = \left(\frac{V_{ov}}{2}\right) \left(\frac{\Delta R_D}{R_D}\right)$
- For $\Delta(W/L)$

 $- V_{os} = \left(\frac{V_{ov}}{2}\right) \left(\frac{\Delta(W/L)}{(W/L)}\right)$

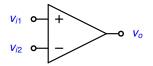
Amplifiers (First Stage)

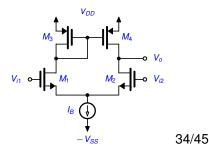
• Diff-Diff Amplifier (fully differential)





• Diff-Single Ended Amplifier

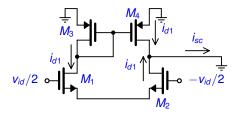




Diff-Single Ended Amplifier (First Stage)

• To find gain of first stage - find G_m and R_o

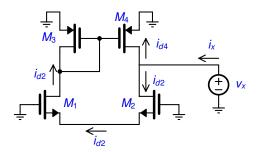
• For G_m



- $i_{d1} = g_{m1}(v_{id}/2)$
- $i_{sc} = 2i_{d1} = g_{m1}v_{id}$

Diff-Single Ended Amplifier (First Stage)

• For R_o



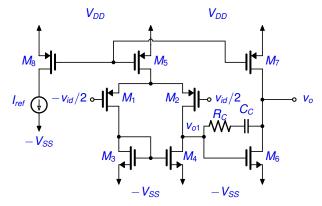
- Due to the current mirror
- $i_{d4} = v_x / r_{o4} + i_{d2}$
- $i_{d2} = v_x / R_{d2}$

Diff-Single Ended Amplifier (First Stage)

- Impedance $R_{d2} = 2r_{o2}$ is found by ...
 - Impedance of diode connected M_3 is approx $1/g_{m3}$
 - $-R_{s1} \approx (1/g_{m1}) + (1/g_{m3})/(g_{m1}r_{o1}) \approx 1/g_{m1}$
 - $R_{d2} pprox (1 + g_{m2}R_{s2})r_{o2} pprox (1 + rac{g_{m2}}{g_{m1}})r_{o2} pprox 2r_{o2}$
- $i_x = i_{d4} + i_{d2} = v_x/r_{o4} + v_x/(2r_{o2}) + v_x/(2r_{o2})$
- $i_x = v_x / r_{o4} + v_x / r_{o2}$
- $R_o = v_x / i_x = r_{o2} || r_{o4}$
- So the gain is

 $v_o/v_{id} = g_{m1}(r_{o2}||r_{o4})$ where $v_{id} = v_{i1} - v_{i2}$

2 Stage CMOS Opamp



R_C and *C_C* are used for stability when feedback is used
 For low freq gain, we assume *C_C* is an open circuit

- $A_1 = v_{o1}/v_{id} = -g_{m1}(r_{o2}||r_{o4})$ $A_2 = v_o/v_{o1} = -g_{m6}(r_{o6}||r_{07})$
- Overall gain: $v_o/v_{id} = A_1 A_2$

2 Stage CMOS Opamp

- Random dc offset
 - Random offset will result in approx 1 10 mV of input offset
- Systematic dc offset
 - Even if all transistors are matched, systematic offset may occur depending on bias currents
 - For ZERO systematic offset

$$\frac{(W/L)_6}{(W/L)_3} = 2\frac{(W/L)_7}{(W/L)_5}$$

Proof:

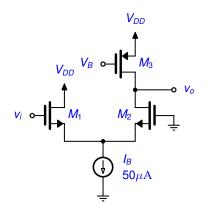
- Let $V_{id} = 0$

- $I_{D3}=I_{D4}=I_{D5}/2$ and since $V_{GS3}=V_{GS4},$ then $V_{DS4}=V_{DS3}=V_{GS6}$

 $-V_{GS6} = V_{GS3}$ means that I_{D6} is a current mirror of the current I_{D3}

(1)

- $\ I_{D6} = (W/L)_6/(W/L)_3 \times (I_{D5}/2)$
- For no systematic offset, $I_{D7} = I_{D6}$
- $I_{D7} = (W/L)_7/(W/L)_5 \times I_{D5}$
- Combining the above, we have
- $-I_{D7} = I_{D6}$
- $(W/L)_7/(W/L)_5 \times I_{D5} = (W/L)_6/(W/L)_3 \times (I_{D5}/2)$
- Dividing both sides by I_{D5} we have
- $2(W/L)_7/(W/L)_5 = (W/L)_6/(W/L)_3$
- For good current matching
 - the lengths of $M_5/M_7/M_8$ should be the same
 - the lengths of $M_3/M_4/M_6$ should be the same



$$\begin{array}{l} \mu_n C_{ox} = 240 \mu \mathrm{A}/\mathrm{V}^2 \\ V_{ln} = 0.3\mathrm{V} \\ \mu_p C_{ox} = 60 \mu \mathrm{A}/\mathrm{V}^2 \\ \lambda' = 100 \mathrm{nm}/\mathrm{V} \\ W_1 = 2 \mu \mathrm{m} \\ W_2 = 1 \mu \mathrm{m} \\ W_3 = 2 \mu \mathrm{m} \\ \mathrm{All} \ L = 200 \mathrm{nm} \\ V_B \ \mathrm{chosen} \ \mathrm{so} \ I_{\mathrm{D3}} = I_{\mathrm{D2}} \end{array}$$

• Find v_o/v_i and R_{out} - For i_{sc} , make the approximation that all $r_o \rightarrow \infty$

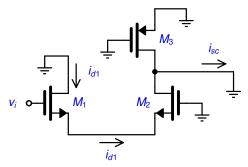
First we do dc analysis

- $I_{D1} = 2I_{D2} \qquad I_{D1} + I_{D2} = I_B = 50 \mu A$
- Combining, we have
- $-I_{D2} = I_B/3 = 16.67 \mu A$ $I_{D1} = 2I_{D2} = 33.33 \mu A$
- $I_{D3} = I_{D2} = 16.67 \mu A$

$$-g_{m1} = \sqrt{2\mu_n C_{ox}(W_1/L)I_{D1}} = 400\mu A/V$$

- $r_{o1} = L/(\lambda' I_{D1}) = 60 \mathrm{k}\Omega$
- $-g_{m2} = \sqrt{2\mu_n C_{ox}(W_2/L)I_{D2}} = 200\mu \mathrm{A/V}$
- $-r_{o2} = L/(\lambda' I_{D2}) = 120 \mathrm{k}\Omega$
- $r_{o3} = L/(\lambda' I_{D3}) = 120 \mathrm{k}\Omega$

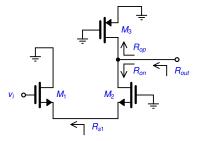
• For *i_{sc}*, we have the following circuit



$$- i_{sc} = i_{d1} = G_m v_i$$

-
$$G_m = \frac{1}{(1/g_{m1}) + (1/g_{m2})} = 133.3 \mu \text{A/V}$$

• For *R_{out}*, we have the following circuit



- $R_{s1} = ((1/g_{m1})||r_{o1}) = 2.4 k\Omega$
- $R_{on} = r_{o2} + (1 + g_{m2}r_{o2})R_{s1} = 180 k\Omega$
- $R_{op} = r_{o3} = 120 k\Omega$
- $R_{out} = R_{on} || R_{op} = 72 k\Omega$

$$- v_o/v_i = G_m R_{out} = 9.6 V/V$$

- Differential signals
- Diff amps
- Diff pair
 - Large signal
 - Small signal (balanced and unbalanced)
- Diff pair current source loads
- Diff amps 4 gains through amp
- Input offset
- 2 stage CMOS opamp