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LTI System

u(t) y(t)
LTI

System

An Linear Time-Invariant (LTI) system must be both...
LINEAR and TIME-INVARIANT

LTI systems are important as they allow us to define...
− Frequency response
− impulse/step response
− a relation between the impulse response and freq response

From now on, we will assume all systems are LTI systems unless
otherwise stated
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LTI System

u(t) y(t)
LTI

System

A system is LINEAR if and only if ...
− If u1(t) results in y1(t)

and u2(t) results in y2(t)
− then u1(t) + u2(t) results in y1(t) + y2(t)

for all u1(t),u2(t)
− In other words, if you sum 2 different inputs, the output should be

the sum of the 2 different outputs

A system is TIME-INVARIANT if and only if ...
− If u1(t) results in y1(t)
− then u1(t − τ) results in y1(t − τ)

for all u1(t), τ
− In other words, if you shift the input in time by any amount, the

output should also shift in time by the same amount
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Impulse/Freq Response
We characterize an LTI system by
− its impulse response, h(t)
− its frequency response H(s)
− where H(s) is the Laplace transform of h(t)

U(s)/Y (s) is the Laplace transform of u(t)/y(t)

In the time domain

u(t) y(t)h(t)

In the freq domain

U(s) Y (s)H(s)

H(s) ≡ L[h(t)] where L is the Laplace transform
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Impulse Response
Impulse response of a system
− the output, y(t), when u(t) = δ(t)

where δ(t) is the Dirac Delta function

− area of impulse is 1

If you take the integral of the impulse function

h(t) = y(t) when u(t) = δ(t)
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Impulse Response

Given the impulse response, h(t) for a system

Can find y(t) for an any u(t) as

y(t) = h(t)~ u(t)
where ~ is the convolution operator

Can find Y (s) for any U(s) as

Y (s) = H(s)U(s)

Convolution in the time domain is multiplication in the freq domain

For sinusoidal inputs, we make use of the transfer-function, H(s)
where H(s) ≡ L[h(t)]
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Transfer-function, H(s)

H(s) is a ratio of 2 polynomials in ”s” IF
− system is made up of lumped elements such as resistors,

capacitors, inductors, transistors, etc
− Example

H(s) = a2s2+a1s+a0
b3s3+b2s2+b1s+b0

H(s) is NOT a ratio of 2 polynomials in ”s” for many other systems
such as ...
− transmission line
− distributed RC wire

7/26



Transfer-function, H(s)

U(s) Y (s)H(s)

H(s) is the frequency response for a system

H(s) tells us how the system will affect sinusoidal input signals
− A sinusoidal input signal of frequency ω rad/s will result in an

output sinusoidal signal at the same frequency
− ω = 2πf where f is the freq in Hertz
− However, the amplitude and phase of the output signal may be

changed relative to the input signal.
− H(s) tells us this magnitude/phase change
− We let s = jω and find |H(jω)| and ∠H(jω)
− H(jω) is a complex number
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Transfer-function, H(s)
Input sinusoid
− u(t) = Au sin(ωt) = Au sin(2πft)

Output sinusoid
− y(t) = Ay sin(ωt + φ)
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Transfer-function, H(s)

T = 1/f = 2π/ω (sinusoid period)

Tφ = (φ/2π)T (sinusoid phase shift)

Above example
− T = 1 ms
− f = 1 kHz ω = 2π × 1000 rad/s
− Tφ = 1/8 ms φ = π/4 rad

Magnitude Response
− Ay/Au = |H(jω)|

Phase Response
− φ = ∠H(jω)
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Complex Numbers

A = 1 |A| = 1 ∠A = 0◦

B = −1 |B| = 1 ∠B = 180◦

C = j |C| = 1 ∠C = 90◦

D = 1 + j |D| =
√

2 ∠D = 45◦
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Complex Numbers

z = a + jb
− z complex
− a,b are real

|z| =
√
(a2 + b2)

∠z = tan−1(b/a) if a > 0

∠z = tan−1(b/a) + π if a < 0

Can write z in polar form (better for multiplication/division)

z = |z|ej∠z

z = z1
z2

|z| = |z1|/|z2|
∠z = ∠z1 − ∠z2
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Ohm’s Law with Impedances

ZV

I

I = V
Z

Resistor of size R Z = R

Capacitor of size C Z = 1/sC

Inductor of size L Z = sL

”s” is the Laplace transform variable

We let s = jω to evaluate what happens for a sinusoidal signal at
frequency ω rad/s
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Capacitor Impedance

VC

IC

CIS

IC = IS

Given IS = AI sin(ωt)

We want to find VC = AC sin(ωt + φ) across the capacitor

Want to find AC and φ

Define H(s) ≡ VC(s)
IC(s)
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Capacitor Impedance

From Ohm’s Law, we have
IC(s) = VC(s)/ZC
resulting in
H(s) = VC(s)/IC(s) = ZC
Since ZC = 1/sC, we have
H(s) = 1/sC

Magnitude response
− |H(jω) =

∣∣∣ 1
jωC

∣∣∣ = 1
ωC

− |VC(s)| =
( 1
ωC

)
× |IC(s)|

− AV = AI
ωC

Phase response
− ∠H(jω) = ∠

(
1

jωC

)
= ∠(1)− ∠(jωC)

∠H(jω) = 0◦ − 90◦ = −90◦

− So the capacitor voltage sinusoid is always shifted by 90◦ compared
to the capacitor current sinusoidal signal for all frequencies
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Capacitor Impedance

Example
− AI = 1 mA

f = 1 kHz ⇒ ω = 6.283 krad/s
C = 1 µF

AV = AI/(ωC) = (1e − 3)/(6.283e3× 1e − 6)
AV = 0.159 V

φ = −90◦

So the peak cap voltage is 0.159 V and the cap voltage sinusoid
leads the cap current by 90◦

16/26



Transfer-Function of LTI System

We will restrict ourselves to
− Real-valued impulse response (some wireless systems make use

of complex input/output signals)
− Circuit with lumped elements (resistors, capacitors, inductors,

independent/dependent voltage/current sources)

Polynomial Form for H(s)

H(s) =
ao + a1s + a2s2 + ...+ amsm

1 + b1s + b2s2 + ...+ bnsn (1)

Root Form for H(s)

H(s) =
(

am

bn

)
(s + z1)(s + z2)...(s + zm)

(s + ω1)(s + ω2)...(s + ωn)
(2)

− Shows the zeros (−zi ) and poles (−ωi )
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Transfer-Function of LTI System

Zeros
− Values of s where H(s) = 0
− Zero at s = −z1 ⇒ H(−z1) = 0

Poles
− Values of s where H(s)→∞
− pole at s = −ω1 ⇒ H(−ω1)→∞

In general poles and zeros can be complex values
− for real-valued transfer-functions, complex poles (and zeros) will

occur in complex conjugate pairs.
− Real-valued transfer-functions... all ai ,bi are real
− Complex conjugate pairs... if x + jy is a pole (or zero) then x − jy is

also a pole (or zero) for y 6= 0
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Stability of LTI System

3 types of stability for a system

Strictly STABLE
− Integral of magnitude of impulse response is finite

Marginally STABLE
− Integral of magnitude of impulse response grows at most linear in

time

UNSTABLE
− Integral of magnitude of impulse response grows faster than linear

in time

Can also look at transfer-function to determine stability of a
system
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Stability of LTI System

Strictly STABLE
− n ≥ m
− All poles are in the left half plane

Marginally STABLE
− n ≥ m
− Has at least one pole on jω axis and other poles in the left half

plane

UNSTABLE (if either condition occurs)
− At least one pole in the right half plane

OR
− If n < m

(high freq gain grows without bound)
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Real Valued Poles/Zeros
For this freq analysis, all poles/zeros will be real valued unless
otherwise stated.
− This is the case for LTI circuits without feedback or inductors.
− In other words, all poles/zeros will occur on the real axis.
− So all zi and ωi are real valued

Examples
H(s) = 1

s+2 H(s) = s
s+3

zeros: none zeros: z1 = 0
poles: ω1 = −2 poles: ω1 = −3

H(s) = s(s−2)
(s+1)(s+3)

zeros: z1 = 0 z2 = 2
poles: ω1 = −1 ω2 = −3
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Real Valued Poles/Zeros

H(s) =
(

am

bn

)
(s + z1)(s + z2)...(s + zm)

(s + ω1)(s + ω2)...(s + ωn)

For above
− poles at −ωi

HOWEVER, often said pole frequency is at ωi
− Since if we only consider pole
− |H(s)| is decreased by

√
2 at H(jωi)

Example
− H(s) = 1

s+1

− |H(0)| = 1 |H(j1)| = 1√
2

|H(j∞)| = 0

− So for ω = 1 rad/s, |H(s)| decreased by
√

2

Similar for zeros, often said zero frequency is at zi
− |H(s)| increased by

√
2 at zero freq
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Real Valued Poles/Zeros
Example
− H(s) = s+2

s+100

− |H(0)| = 0.02 |H(j∞)| = 1
− |H(j2)| ≈

√
2|H(0)| a 3dB increase

− |H(j100)| ≈ (1/
√

2)|H(j∞)| a 3db decrease
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Real Valued Poles/Zeros

H(s) =
(

am

bn

)
(s + z1)(s + z2)...(s + zm)

(s + ω1)(s + ω2)...(s + ωn)

From above, can quickly find |H(j∞)|
− If m < n: |H(j∞)| = 0
− If m = n: |H(j∞)| = am/bn

However, |H(0)| not as easily found

|H(0)| =
(

am
bn

)(
z1z2...zm
ω1ω2...ωn

)
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Real Valued Poles/Zeros

Alternatively, H(s) can be written as

H(s) = kdc ×
(1 + s/z1)(1 + s/z2)...(1 + s/zm)

(1 + s/ω1)(1 + s/ω2)...(1 + s/ωn)

From above, can quickly find |H(0)|
− |H(0)| = kdc

However, |H(j∞)| may be easy or difficult
− If m < n: |H(j∞)| = 0

− If m = n: |H(j∞)| = kdc

(
ω1ω2...ωn
z1z2...zm

)
The above root form is commonly used due to it quickly showing
the dc gain value
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Topics Covered

LTI systems

Impulse/freq response and transfer-function, H(s)

Complex numbers

Polynomial/root form for H(s)

Poles/zeros and stability

Real valued poles/zeros

26/26


