Frequency Response

David Johns

University of Toronto david.johns@utoronto.ca

- An Linear Time-Invariant (LTI) system must be both... LINEAR and TIME-INVARIANT
- LTI systems are important as they allow us to define...
 - Frequency response
 - impulse/step response
 - a relation between the impulse response and freq response
- From now on, we will assume all systems are LTI systems unless otherwise stated

- A system is LINEAR if and only if ...
 - If $u_1(t)$ results in $y_1(t)$ and $u_2(t)$ results in $y_2(t)$
 - then $u_1(t) + u_2(t)$ results in $y_1(t) + y_2(t)$ for all $u_1(t), u_2(t)$
 - In other words, if you sum 2 different inputs, the output should be the sum of the 2 different outputs
- A system is TIME-INVARIANT if and only if ...
 - If $u_1(t)$ results in $y_1(t)$
 - then $u_1(t-\tau)$ results in $y_1(t-\tau)$ for all $u_1(t), \tau$
 - In other words, if you shift the input in time by any amount, the output should also shift in time by the same amount

Impulse/Freq Response

- We characterize an LTI system by
 - its impulse response, h(t)
 - its frequency response H(s)
 - where H(s) is the Laplace transform of h(t)U(s)/Y(s) is the Laplace transform of u(t)/y(t)
- In the time domain

$$u(t)$$
 o $h(t)$ **o** $y(t)$

• In the freq domain
$$U(s) \quad \bullet \quad H(s) \quad \bullet \quad Y(s)$$

 $H(s) \equiv \mathcal{L}[h(t)]$ where \mathcal{L} is the Laplace transform

Impulse Response

- Impulse response of a system
 - the output, y(t), when $u(t) = \delta(t)$ where $\delta(t)$ is the Dirac Delta function

• If you take the integral of the impulse function

Impulse Response

- Given the impulse response, h(t) for a system
- Can find y(t) for an any u(t) as

 $y(t) = h(t) \circledast u(t)$

where \circledast is the convolution operator

• Can find Y(s) for any U(s) as

Y(s) = H(s)U(s)

- Convolution in the time domain is multiplication in the freq domain
- For sinusoidal inputs, we make use of the transfer-function, *H*(*s*) where *H*(*s*) ≡ *L*[*h*(*t*)]

• *H*(*s*) is a ratio of 2 polynomials in "s" IF

- system is made up of lumped elements such as resistors, capacitors, inductors, transistors, etc
- Example

 $H(s) = rac{a_2 s^2 + a_1 s + a_0}{b_3 s^3 + b_2 s^2 + b_1 s + b_0}$

- *H*(*s*) is NOT a ratio of 2 polynomials in "s" for many other systems such as ...
 - transmission line
 - distributed RC wire

Transfer-function, H(s)

$$U(s)$$
 o $H(s)$ **o** $Y(s)$

- *H*(*s*) is the frequency response for a system
- H(s) tells us how the system will affect sinusoidal input signals
 - A sinusoidal input signal of frequency ω rad/s will result in an output sinusoidal signal at the same frequency
 - $-\omega = 2\pi f$ where *f* is the freq in Hertz
 - However, the amplitude and phase of the output signal may be changed relative to the input signal.
 - H(s) tells us this magnitude/phase change
 - We let $s = j\omega$ and find $|H(j\omega)|$ and $\angle H(j\omega)$
 - $H(j\omega)$ is a complex number

Transfer-function, H(s)

Input sinusoid

Transfer-function, H(s)

- $T = 1/f = 2\pi/\omega$ (sinusoid period)
- $T_{\phi} = (\phi/2\pi)T$ (sinusoid phase shift)
- Above example
 - T = 1 ms
 - f = 1 kHz $\omega = 2\pi \times 1000 \text{ rad/s}$
 - $T_{\phi} = 1/8 \text{ ms}$ $\phi = \pi/4 \text{ rad}$
- Magnitude Response
 - $-A_y/A_u = |H(j\omega)|$
- Phase Response

 $-\phi = \angle H(j\omega)$

Complex Numbers

Complex Numbers

- z = a + jb
 - z complex
 - a, b are real
- $|z| = \sqrt{(a^2 + b^2)}$
- $\angle z = \tan^{-1}(b/a)$ if a > 0
- $\angle z = \tan^{-1}(b/a) + \pi$ if a < 0
- Can write z in polar form (better for multiplication/division)
- $z = |z|e^{j \angle z}$

• $Z = \frac{z_1}{z_2}$ $|Z| = |Z_1|/|Z_2|$ $\angle Z = \angle Z_1 - \angle Z_2$

Ohm's Law with Impedances

$$\begin{array}{c} + & \downarrow \\ V & Z \\ - & \downarrow \\ \end{array}$$
 $I = \frac{V}{Z}$

Resistor of size RZ = RCapacitor of size CZ = 1/sCInductor of size LZ = sL

- "s" is the Laplace transform variable
- We let $s = j\omega$ to evaluate what happens for a sinusoidal signal at frequency ω rad/s

Capacitor Impedance

$$I_C = I_S$$

- Given $I_S = A_I \sin(\omega t)$
- We want to find $V_C = A_C \sin(\omega t + \phi)$ across the capacitor
- Want to find A_C and ϕ
- Define $H(s) \equiv \frac{V_C(s)}{I_C(s)}$

Capacitor Impedance

- From Ohm's Law, we have $I_C(s) = V_C(s)/Z_C$ resulting in $H(s) = V_C(s)/I_C(s) = Z_C$ Since $Z_C = 1/sC$, we have H(s) = 1/sC
- Magnitude response
 - $|H(j\omega)| = \left|\frac{1}{j\omega C}\right| = \frac{1}{\omega C}$
 - $|V_C(s)| = \left(\frac{1}{\omega C}\right) \times |I_C(s)|$

$$-A_V = \frac{A_I}{\omega C}$$

- Phase response
 - $\angle H(j\omega) = \angle \left(\frac{1}{j\omega C}\right) = \angle (1) \angle (j\omega C)$ $\angle H(j\omega) = 0^{\circ} 90^{\circ} = -90^{\circ}$
 - So the capacitor voltage sinusoid is always shifted by 90° compared to the capacitor current sinusoidal signal for all frequencies

Capacitor Impedance

Example

- $A_{l} = 1 \text{ mA}$ $f = 1 \text{ kHz} \Rightarrow \omega = 6.283 \text{ krad/s}$ $C = 1 \mu\text{F}$
- $A_V = A_I / (\omega C) = (1e 3) / (6.283e3 \times 1e 6)$ $A_V = 0.159 \text{ V}$
- $\phi = -90^{\circ}$
- So the peak cap voltage is 0.159 V and the cap voltage sinusoid leads the cap current by 90°

Transfer-Function of LTI System

- We will restrict ourselves to
 - Real-valued impulse response (some wireless systems make use of complex input/output signals)
 - Circuit with lumped elements (resistors, capacitors, inductors, independent/dependent voltage/current sources)
- Polynomial Form for *H*(*s*)

$$H(s) = \frac{a_0 + a_1 s + a_2 s^2 + ... + a_m s^m}{1 + b_1 s + b_2 s^2 + ... + b_n s^n}$$

Root Form for H(s)

$$H(s) = \left(\frac{a_m}{b_n}\right) \frac{(s+z_1)(s+z_2)...(s+z_m)}{(s+\omega_1)(s+\omega_2)...(s+\omega_n)}$$

- Shows the zeros $(-z_i)$ and poles $(-\omega_i)$

(1)

(2)

Transfer-Function of LTI System

- Zeros
 - Values of s where H(s) = 0
 - Zero at $s = -z_1 \Rightarrow H(-z_1) = 0$
- Poles
 - Values of s where $H(s) \rightarrow \infty$
 - pole at $s = -\omega_1 \Rightarrow H(-\omega_1) \to \infty$
- In general poles and zeros can be complex values
 - for real-valued transfer-functions, complex poles (and zeros) will occur in complex conjugate pairs.
 - Real-valued transfer-functions... all *a_i*, *b_i* are real
 - Complex conjugate pairs... if x + jy is a pole (or zero) then x jy is also a pole (or zero) for $y \neq 0$

Stability of LTI System

- 3 types of stability for a system
- Strictly STABLE
 - Integral of magnitude of impulse response is finite
- Marginally STABLE
 - Integral of magnitude of impulse response grows at most linear in time
- UNSTABLE
 - Integral of magnitude of impulse response grows faster than linear in time
- Can also look at transfer-function to determine stability of a system

Strictly STABLE

- $n \ge m$
- All poles are in the left half plane
- Marginally STABLE
 - $n \ge m$
 - Has at least one pole on $j\omega$ axis and other poles in the left half plane
- UNSTABLE (if either condition occurs)
 - At least one pole in the right half plane OR
 - − If *n* < *m*

(high freq gain grows without bound)

Real Valued Poles/Zeros

- For this freq analysis, all poles/zeros will be real valued unless otherwise stated.
 - This is the case for LTI circuits without feedback or inductors.
 - In other words, all poles/zeros will occur on the real axis.
 - So all z_i and ω_i are real valued
- Examples

 $H(s) = \frac{1}{s+2}$ zeros: none poles: $\omega_1 = -2$

$$H(s) = \frac{s}{s+3}$$

zeros: $z_1 = 0$
poles: $\omega_1 = -3$

$$H(s) = \frac{s(s-2)}{(s+1)(s+3)}$$

zeros: $z_1 = 0$ $z_2 = 2$
poles: $\omega_1 = -1$ $\omega_2 = -3$

$$H(s) = \left(\frac{a_m}{b_n}\right) \frac{(s+z_1)(s+z_2)...(s+z_m)}{(s+\omega_1)(s+\omega_2)...(s+\omega_n)}$$

- For above
 - poles at $-\omega_i$

HOWEVER, often said pole frequency is at ω_i

- Since if we only consider pole
- |H(s)| is decreased by $\sqrt{2}$ at $H(j\omega_i)$
- Example
 - $-H(s)=\frac{1}{s+1}$
 - |H(0)| = 1 $|H(j1)| = \frac{1}{\sqrt{2}}$ $|H(j\infty)| = 0$
 - So for $\omega = 1 \text{ rad/s}$, |H(s)| decreased by $\sqrt{2}$
- Similar for zeros, often said zero frequency is at z_i
 − |H(s)| increased by √2 at zero freq

Real Valued Poles/Zeros

23/26

$$H(s) = \left(\frac{a_m}{b_n}\right) \frac{(s+z_1)(s+z_2)...(s+z_m)}{(s+\omega_1)(s+\omega_2)...(s+\omega_n)}$$

• From above, can quickly find $|H(j\infty)|$

$$- ||f|m < n: |H(j\infty)| = 0$$

- If m = n: $|H(j\infty)| = a_m/b_n$

• However, |H(0)| not as easily found

 $|H(0)| = \left(\frac{a_m}{b_n}\right) \left(\frac{z_1 z_2 \dots z_m}{\omega_1 \omega_2 \dots \omega_n}\right)$

- Alternatively, H(s) can be written as $H(s) = k_{dc} \times \frac{(1 + s/z_1)(1 + s/z_2)...(1 + s/z_m)}{(1 + s/\omega_1)(1 + s/\omega_2)...(1 + s/\omega_n)}$
- From above, can quickly find |H(0)|
 - $|H(0)| = k_{dc}$
- However, $|H(j\infty)|$ may be easy or difficult
 - − If m < n: $|H(j\infty)| = 0$

- If
$$m = n$$
: $|H(j\infty)| = k_{dc} \left(\frac{\omega_1 \omega_2 \dots \omega_n}{z_1 z_2 \dots z_m} \right)$

 The above root form is commonly used due to it quickly showing the dc gain value

- LTI systems
- Impulse/freq response and transfer-function, H(s)
- Complex numbers
- Polynomial/root form for H(s)
- Poles/zeros and stability
- Real valued poles/zeros