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LTI System

LTI
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@ An Linear Time-Invariant (LTl) system must be both...

LINEAR and TIME-INVARIANT

@ LTI systems are important as they allow us to define...

— Frequency response
— impulse/step response

— a relation between the impulse response and freq response

@ From now on, we will assume all systems are LTI systems unless

otherwise stated
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LTI System

LTI
u(t) o0— —O0 y(1)
System

@ A system is LINEAR if and only if ...
— If uy () results in yq(t)
and uy(t) results in y»(t)
— then uq(t) + ua(t) results in yq(t) + yo(1)
for all uy(t),us(t)
— In other words, if you sum 2 different inputs, the output should be
the sum of the 2 different outputs

@ A system is TIME-INVARIANT if and only if ...
— If uy(t) results in yq(t)
— then uy(t — 7) results in y1(f — 7)
for all us(t), 7
— In other words, if you shift the input in time by any amount, the

output should also shift in time by the same amount
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Impulse/Freq Response

@ We characterize an LTI system by
— its impulse response, h(t)
— its frequency response H(s)

— where H(s) is the Laplace transform of h(t)
U(s)/Y(s) is the Laplace transform of u(t)/y(t)

@ In the time domain

u(t) 00— h(t) —0 y(t)

@ In the freq domain

U(s) o— H(s) —O0 Y(s)

H(s) = L[h(t)] where L is the Laplace transform
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Impulse Response

@ Impulse response of a system
— the output, y(t), when u(t) = i(t)
where §(t) is the Dirac Delta function

u(t)

-1 1 2 3
— area of impulse is 1

@ If you take the integral of the impulse function

— [o(t)dt
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Impulse Response

@ Given the impulse response, h(t) for a system

@ Can find y(t) for an any u(t) as

y(t) = h(t) ® u(t)
where ® is the convolution operator

@ Canfind Y(s) for any U(s) as
Y(s) = H(s)U(s)
@ Convolution in the time domain is multiplication in the freq domain

@ For sinusoidal inputs, we make use of the transfer-function, H(s)
where H(s) = L[h(t)]
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Transfer-function, H(s)

@ H(s) is aratio of 2 polynomials in ”s” IF
— system is made up of lumped elements such as resistors,
capacitors, inductors, transistors, etc
— Example

2
_ a s +ais+ap
H(s) = b3 s3+bos?+bys+by

@ H(s) is NOT a ratio of 2 polynomials in ”s” for many other systems
such as ...

— transmission line
— distributed RC wire
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Transfer-function, H(s)

Us) o~ His) o Y(s)

(s) is the frequency response for a system

o H
@ H(s) tells us how the system will affect sinusoidal input signals

— A sinusoidal input signal of frequency w rad/s will result in an
output sinusoidal signal at the same frequency

— w = 2xnf where f is the freq in Hertz

— However, the amplitude and phase of the output signal may be
changed relative to the input signal.

— H(s) tells us this magnitude/phase change
— We let s = jw and find |H(jw)| and ZH(jw)
— H(jw) is a complex number
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Transfer-function, H(s)

@ Input sinusoid
— u(t) = Aysin(wt) = Ausm(27rft

ANV ANYAaL
D VB W N

@ Output sinus0|d
— y(t) = Aysin(wt + ¢)

Ay/\ VARvAE

-4, H 'T'
Ty

9/26



Transfer-function, H(s)

@ T =1/f=27/w (sinusoid period)
@ T4 = (¢/2m)T (sinusoid phase shift)
@ Above example
— T=1ms
— f=1kHz w =27 x 1000 rad/s
— Ty=1/8ms ¢ =m/4 rad
@ Magnitude Response
— Ay/As = [H(jw)]
@ Phase Response
— ¢ =ZH(jw)
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Complex Numbers

Imag (j)
1xC x D
]x3 iRcal
-1 1
14
A= Al =1 ZA=0°
B=—1 1B =1 /B =180°
C=j |IC| =1 ZC =90°
D=1+j D] =2 /D = 45°
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Complex Numbers

@ez=a+jb
— z complex
— a,barereal
° |z| = /(&% +b?)
/z=tan""(b/a) ifa>0
/z=tan"Y(b/a)+7 ifa<0

z = |z|e/“?

-4

°
°
@ Can write z in polar form (better for multiplication/division)
°
°

Z2
12| = |z1]/| 22|
LZ2=/21— /L2
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Ohm’s Law with Impedances

\l/ /

V | Z /

NI<

Resistor of size R Z=R
Capacitor of size C Z=1/sC
Inductor of size L Z=sL

@ "s” is the Laplace transform variable

@ We let s = jw to evaluate what happens for a sinusoidal signal at

frequency w rad/s
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Capacitor Impedance

lc =ls
@ Given Ig = Ajsin(wt)
@ We want to find Vs = Agsin(wt + ¢) across the capacitor
@ Want to find Ac and ¢

@ Define H(s) = \//CC((SS))
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Capacitor Impedance

@ From Ohm’s Law, we have

Ic(s) = Ve(s)/Zc

resulting in
H(s) = Vc(s)/lc(s) = Zc
Since Z; = 1/sC, we have
H(s)=1/sC
@ Magnitude response
— |H(jw) = ’,wc UJC
— [Ve(s )I = (5¢) x |lc(s)|
_ AV — wC
@ Phase response
— ZH(jw) = £ (,%c) = /(1) - Z(jwC)
ZH(jw) = 0° — 90° = —90°

— So the capacitor voltage sinusoid is always shifted by 90° compared
to the capacitor current sinusoidal signal for all frequencies 15/26



Capacitor Impedance

@ Example
— A/ =1mA
f=1kHz = w=6.283 krad/s
C=1uF
@ Ay =A/(wC)=(1e—3)/(6.283e3 x 1e — 6)
Ay=0.159V
@ ¢ =-90°

@ So the peak cap voltage is 0.159 V and the cap voltage sinusoid
leads the cap current by 90°
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Transfer-Function of LTI System

@ We will restrict ourselves to
— Real-valued impulse response (some wireless systems make use
of complex input/output signals)
— Circuit with lumped elements (resistors, capacitors, inductors,
independent/dependent voltage/current sources)

@ Polynomial Form for H(s)

H(s) = ap,+ ais+ aps? + ...+ aps” )
14+ b1S+ bos?2+ ...+ bps"

@ Root Form for H(s)

_(am\ ($+z1)(5+ 22)...(5 + Zm)
H(s) = (bn> (5 +w1)(8 + w2) (S + wn) )

— Shows the zeros (—z;) and poles (—w;)
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Transfer-Function of LTI System

@ Zeros
— Values of s where H(s) =0
— Zeroats=-z1 = H(-z)=0
@ Poles
— Values of s where H(s) — oo
— poleats = —wi = H(—wiy) = =
@ In general poles and zeros can be complex values

— for real-valued transfer-functions, complex poles (and zeros) will
occur in complex conjugate pairs.

— Real-valued transfer-functions... all a;, b; are real

— Complex conjugate pairs... if x + jy is a pole (or zero) then x — jy is
also a pole (or zero) for y # 0
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Stability of LTI System

@ 3 types of stability for a system
@ Strictly STABLE
— Integral of magnitude of impulse response is finite

@ Marginally STABLE

— Integral of magnitude of impulse response grows at most linear in
time

@ UNSTABLE

— Integral of magnitude of impulse response grows faster than linear
in time

@ Can also look at transfer-function to determine stability of a
system
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Stability of LTI System

@ Strictly STABLE
- n>m
— All poles are in the left half plane
@ Marginally STABLE
- n>m
— Has at least one pole on jw axis and other poles in the left half
plane
@ UNSTABLE (if either condition occurs)
— At least one pole in the right half plane
OR
— lfn<m
(high freq gain grows without bound)

20/26



Real Valued Poles/Zeros

@ For this freq analysis, all poles/zeros will be real valued unless
otherwise stated.
— This is the case for LTI circuits without feedback or inductors.

— In other words, all poles/zeros will occur on the real axis.
— So all z; and w; are real valued

@ Examples
H(s) = 512 H(s) = st3
Zeros: none zeros: z1 =0
poles: wy = -2 poles: wy = —3

—2

H(s) = (s—i(1s)(s—|)—3)
zeros: z1 =0 20 =2
poles: wy = -1 wo = -3
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Real Valued Poles/Zeros

_(am\ (s+2z)(s+ 22)...(5+ zm)
A(s) = (bn) (5 +w1)(5 + wa)...(S + wn)
@ For above

— poles at —w;

@ HOWEVER, often said pole frequency is at w;
— Since if we only consider pole

— |H(s)| is decreased by v/2 at H(jw,)

@ Example
— H(s) = 515

— [HO)| =1 [|H(1)I=J5 |H(joo)| =0

— So for w = 1 rad/s, |H(s)| decreased by v/2

@ Similar for zeros, often said zero frequency is at z;
— |H(s)| increased by /2 at zero freq
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Real Valued Poles/Zeros

@ Example
— H(s) = £33

— |H(0)] =0.02  [H(joo)| =1
— |H(j2)| ~ V2|H(0)]  a3dBincrease
— |H(j100)| =~ (1/v/2)|H(joc)|  a 3db decrease

91

(jw)| [dB]

2 10 100 1000
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Real Valued Poles/Zeros

_(am)\ (s+21)(5+ 2)...(5 + Zm)
He) = (5) oo T e

@ From above, can quickly find |H(joo)|
— Ifm< n:|H(joo)| =0
— Ifm=n:|H(joo)| = am/bn

@ However, |H(0)| not as easily found

HO) = (%) (222

24/26



Real Valued Poles/Zeros

@ Alternatively, H(s) can be written as

_ (1+s/z1)(1 + 8/22)...(1 + 8/2m)
H(s) = kg x (1 + s/w1)(1 + s/w2)..(1 + S/wn)

@ From above, can quickly find |H(0)|
= [HO)] = K

@ However, |H(joo)| may be easy or difficult
— Ifm< n:|H(joo)| =0
— 1t m = n: |H(joo)| = koo (22

Z122...2m

@ The above root form is commonly used due to it quickly showing
the dc gain value
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Topics Covered

LTI systems
Impulse/freq response and transfer-function, H(s)

Complex numbers

°
°
°
@ Polynomial/root form for H(s)
@ Poles/zeros and stability

°

Real valued poles/zeros
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