Frequency Response

David Johns
University of Toronto
david.johns@utoronto.ca

- An Linear Time-Invariant (LTI) system must be both... LINEAR and TIME-INVARIANT
- LTI systems are important as they allow us to define...
- Frequency response
- impulse/step response
- a relation between the impulse response and freq response
- From now on, we will assume all systems are LTI systems unless otherwise stated

LTI System

- A system is LINEAR if and only if ...
- If $u_{1}(t)$ results in $y_{1}(t)$ and $u_{2}(t)$ results in $y_{2}(t)$
- then $u_{1}(t)+u_{2}(t)$ results in $y_{1}(t)+y_{2}(t)$ for all $u_{1}(t), u_{2}(t)$
- In other words, if you sum 2 different inputs, the output should be the sum of the 2 different outputs
- A system is TIME-INVARIANT if and only if ...
- If $u_{1}(t)$ results in $y_{1}(t)$
- then $u_{1}(t-\tau)$ results in $y_{1}(t-\tau)$ for all $u_{1}(t), \tau$
- In other words, if you shift the input in time by any amount, the output should also shift in time by the same amount

Impulse/Freq Response

- We characterize an LTI system by
- its impulse response, $h(t)$
- its frequency response $H(s)$
- where $H(s)$ is the Laplace transform of $h(t)$ $U(s) / Y(s)$ is the Laplace transform of $u(t) / y(t)$
- In the time domain

- In the freq domain

$H(s) \equiv \mathcal{L}[h(t)]$ where \mathcal{L} is the Laplace transform

Impulse Response

- Impulse response of a system
- the output, $y(t)$, when $u(t)=\delta(t)$ where $\delta(t)$ is the Dirac Delta function

- area of impulse is 1
- If you take the integral of the impulse function

- $h(t)=y(t)$ when $u(t)=\delta(t)$

Impulse Response

- Given the impulse response, $h(t)$ for a system
- Can find $y(t)$ for an any $u(t)$ as
$y(t)=h(t) \circledast u(t)$
where \circledast is the convolution operator
- Can find $Y(s)$ for any $U(s)$ as
$Y(s)=H(s) U(s)$
- Convolution in the time domain is multiplication in the freq domain
- For sinusoidal inputs, we make use of the transfer-function, $H(s)$ where $H(s) \equiv \mathcal{L}[h(t)]$

Transfer-function, H(s)

- $H(s)$ is a ratio of 2 polynomials in "s" IF
- system is made up of lumped elements such as resistors, capacitors, inductors, transistors, etc
- Example
$H(s)=\frac{a_{2} s^{2}+a_{1} s+a_{0}}{b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}}$
- $H(s)$ is NOT a ratio of 2 polynomials in "s" for many other systems such as ...
- transmission line
- distributed RC wire

Transfer-function, H(s)

- $H(s)$ is the frequency response for a system
- $H(s)$ tells us how the system will affect sinusoidal input signals
- A sinusoidal input signal of frequency $\omega \mathrm{rad} / \mathrm{s}$ will result in an output sinusoidal signal at the same frequency
$-\omega=2 \pi f$ where f is the freq in Hertz
- However, the amplitude and phase of the output signal may be changed relative to the input signal.
- $H(s)$ tells us this magnitude/phase change
- We let $s=j \omega$ and find $|H(j \omega)|$ and $\angle H(j \omega)$
- $H(j \omega)$ is a complex number

Transfer-function, H(s)

- Input sinusoid

$$
-u(t)=A_{u} \sin (\omega t)=A_{u} \sin (2 \pi f t)
$$

- Output sinusoid

$$
-y(t)=A_{y} \sin (\omega t+\phi)
$$

Transfer-function, $H(s)$

- $T=1 / f=2 \pi / \omega$ (sinusoid period)
- $T_{\phi}=(\phi / 2 \pi) T$ (sinusoid phase shift)
- Above example

$$
\begin{array}{lc}
-T=1 \mathrm{~ms} & \\
-f=1 \mathrm{kHz} & \omega=2 \pi \times 1000 \mathrm{rad} / \mathrm{s} \\
-T_{\phi}=1 / 8 \mathrm{~ms} & \phi=\pi / 4 \mathrm{rad}
\end{array}
$$

- Magnitude Response

$$
-A_{y} / A_{u}=|H(j \omega)|
$$

- Phase Response

$$
-\phi=\angle H(j \omega)
$$

Complex Numbers

	$1 \times \mathrm{Imag}(\mathrm{j})$	x D	
B			$\xrightarrow{\text { Real }}$
-1		1	
	-1		

$$
\begin{array}{lll}
A=1 & |A|=1 & \angle A=0^{\circ} \\
B=-1 & |B|=1 & \angle B=180^{\circ} \\
C=j & |C|=1 & \angle C=90^{\circ} \\
D=1+j & |D|=\sqrt{2} & \angle D=45^{\circ}
\end{array}
$$

Complex Numbers

- $z=a+j b$
- z complex
- a, b are real
- $|z|=\sqrt{\left(a^{2}+b^{2}\right)}$
- $\angle z=\tan ^{-1}(b / a) \quad$ if $a>0$
- $\angle z=\tan ^{-1}(b / a)+\pi \quad$ if $a<0$
- Can write z in polar form (better for multiplication/division)
- $z=|z| e^{j \angle z}$
- $z=\frac{z_{1}}{z_{2}}$
$|z|=\left|z_{1}\right| /\left|z_{2}\right|$
$\angle z=\angle z_{1}-\angle z_{2}$

Ohm's Law with Impedances

Resistor of size R
$Z=R$
Capacitor of size $C \quad Z=1 / s C$
Inductor of size $L \quad Z=s L$

- "s" is the Laplace transform variable
- We let $s=j \omega$ to evaluate what happens for a sinusoidal signal at frequency $\omega \mathrm{rad} / \mathrm{s}$

Capacitor Impedance

$$
I_{C}=I_{S}
$$

- Given $I_{S}=A_{l} \sin (\omega t)$
- We want to find $V_{C}=A_{C} \sin (\omega t+\phi)$ across the capacitor
- Want to find A_{C} and ϕ
- Define $H(s) \equiv \frac{v_{C}(s)}{l_{C}(s)}$

Capacitor Impedance

- From Ohm's Law, we have
$I_{C}(s)=V_{C}(s) / Z_{C}$
resulting in
$H(s)=V_{C}(s) / I_{C}(s)=Z_{C}$
Since $Z_{C}=1 / s C$, we have
$H(s)=1 / s C$
- Magnitude response

$$
\begin{aligned}
& -\left|H(j \omega)=\left|\frac{1}{j \omega C}\right|=\frac{1}{\omega C}\right. \\
& -\left|V_{C}(s)\right|=\left(\frac{1}{\omega C}\right) \times\left|I_{C}(s)\right| \\
& -A_{V}=\frac{A_{1}}{\omega C}
\end{aligned}
$$

- Phase response

$$
\begin{aligned}
-\angle H(j \omega) & =\angle\left(\frac{1}{j \omega C}\right)=\angle(1)-\angle(j \omega C) \\
\angle H(j \omega) & =0^{\circ}-90^{\circ}=-90^{\circ}
\end{aligned}
$$

- So the capacitor voltage sinusoid is always shifted by 90° compared to the capacitor current sinusoidal signal for all frequencies

Capacitor Impedance

- Example

$$
\begin{aligned}
- & A_{I}=1 \mathrm{~mA} \\
& f=1 \mathrm{kHz} \Rightarrow \omega=6.283 \mathrm{krad} / \mathrm{s} \\
& C=1 \mu \mathrm{~F}
\end{aligned}
$$

- $A_{V}=A_{I} /(\omega C)=(1 e-3) /(6.283 e 3 \times 1 e-6)$ $A_{V}=0.159 \mathrm{~V}$
- $\phi=-90^{\circ}$
- So the peak cap voltage is 0.159 V and the cap voltage sinusoid leads the cap current by 90°

Transfer-Function of LTI System

- We will restrict ourselves to
- Real-valued impulse response (some wireless systems make use of complex input/output signals)
- Circuit with lumped elements (resistors, capacitors, inductors, independent/dependent voltage/current sources)
- Polynomial Form for $H(s)$

$$
\begin{equation*}
H(s)=\frac{a_{o}+a_{1} s+a_{2} s^{2}+\ldots+a_{m} s^{m}}{1+b_{1} s+b_{2} s^{2}+\ldots+b_{n} s^{n}} \tag{1}
\end{equation*}
$$

- Root Form for $H(s)$

$$
\begin{equation*}
H(s)=\left(\frac{a_{m}}{b_{n}}\right) \frac{\left(s+z_{1}\right)\left(s+z_{2}\right) \ldots\left(s+z_{m}\right)}{\left(s+\omega_{1}\right)\left(s+\omega_{2}\right) \ldots\left(s+\omega_{n}\right)} \tag{2}
\end{equation*}
$$

- Shows the zeros $\left(-z_{i}\right)$ and poles $\left(-\omega_{i}\right)$

Transfer-Function of LTI System

- Zeros
- Values of s where $H(s)=0$
- Zero at $s=-z_{1} \Rightarrow H\left(-z_{1}\right)=0$
- Poles
- Values of s where $H(s) \rightarrow \infty$
- pole at $s=-\omega_{1} \Rightarrow H\left(-\omega_{1}\right) \rightarrow \infty$
- In general poles and zeros can be complex values
- for real-valued transfer-functions, complex poles (and zeros) will occur in complex conjugate pairs.
- Real-valued transfer-functions... all a_{i}, b_{i} are real
- Complex conjugate pairs... if $x+j y$ is a pole (or zero) then $x-j y$ is also a pole (or zero) for $y \neq 0$

Stability of LTI System

- 3 types of stability for a system
- Strictly STABLE
- Integral of magnitude of impulse response is finite
- Marginally STABLE
- Integral of magnitude of impulse response grows at most linear in time
- UNSTABLE
- Integral of magnitude of impulse response grows faster than linear in time
- Can also look at transfer-function to determine stability of a system

Stability of LTI System

- Strictly STABLE
$-n \geq m$
- All poles are in the left half plane
- Marginally STABLE
- $n \geq m$
- Has at least one pole on $j \omega$ axis and other poles in the left half plane
- UNSTABLE (if either condition occurs)
- At least one pole in the right half plane OR
- If $n<m$
(high freq gain grows without bound)

Real Valued Poles/Zeros

- For this freq analysis, all poles/zeros will be real valued unless otherwise stated.
- This is the case for LTI circuits without feedback or inductors.
- In other words, all poles/zeros will occur on the real axis.
- So all z_{i} and ω_{i} are real valued
- Examples

$$
\begin{aligned}
& H(s)=\frac{1}{s+2} \\
& \text { zeros: none } \\
& \text { poles: } \omega_{1}=-2 \\
& H(s)=\frac{s(s-2)}{(s+1)(s+3)} \\
& \text { zeros: } z_{1}=0 \quad z_{2}=2 \\
& \text { poles: } \omega_{1}=-1 \quad \omega_{2}=-3
\end{aligned}
$$

$$
H(s)=\frac{s}{s+3}
$$

$$
\text { zeros: } z_{1}=0
$$

$$
\text { poles: } \omega_{1}=-3
$$

Real Valued Poles/Zeros

$$
H(s)=\left(\frac{a_{m}}{b_{n}}\right) \frac{\left(s+z_{1}\right)\left(s+z_{2}\right) \ldots\left(s+z_{m}\right)}{\left(s+\omega_{1}\right)\left(s+\omega_{2}\right) \ldots\left(s+\omega_{n}\right)}
$$

- For above
- poles at $-\omega_{i}$
- HOWEVER, often said pole frequency is at ω_{i}
- Since if we only consider pole
- $|H(s)|$ is decreased by $\sqrt{2}$ at $H\left(j \omega_{i}\right)$
- Example
$-H(s)=\frac{1}{s+1}$
$-|H(0)|=1 \quad|H(j 1)|=\frac{1}{\sqrt{2}} \quad|H(j \infty)|=0$
- So for $\omega=1 \mathrm{rad} / \mathrm{s},|H(s)|$ decreased by $\sqrt{2}$
- Similar for zeros, often said zero frequency is at z_{i}
$-|H(s)|$ increased by $\sqrt{2}$ at zero freq

Real Valued Poles/Zeros

- Example

$$
\begin{aligned}
& -H(s)=\frac{s+2}{s+100} \\
& -|H(0)|=0.02 \quad|H(j \infty)|=1 \\
& -|H(j 2)| \approx \sqrt{2}|H(0)| \quad \text { a 3dB increase } \\
& -|H(j 100)| \approx(1 / \sqrt{2})|H(j \infty)| \quad \text { a 3db decrease }
\end{aligned}
$$

Real Valued Poles/Zeros

$$
H(s)=\left(\frac{a_{m}}{b_{n}}\right) \frac{\left(s+z_{1}\right)\left(s+z_{2}\right) \ldots\left(s+z_{m}\right)}{\left(s+\omega_{1}\right)\left(s+\omega_{2}\right) \ldots\left(s+\omega_{n}\right)}
$$

- From above, can quickly find $|H(j \infty)|$

$$
\begin{aligned}
& - \text { If } m<n:|H(j \infty)|=0 \\
& - \text { If } m=n:|H(j \infty)|=a_{m} / b_{n}
\end{aligned}
$$

- However, $|H(0)|$ not as easily found

$$
|H(0)|=\left(\frac{a_{m}}{b_{n}}\right)\left(\frac{z_{1} z_{2} \ldots z_{m}}{\omega_{1} \omega_{2} \ldots \omega_{n}}\right)
$$

Real Valued Poles/Zeros

- Alternatively, $H(s)$ can be written as

$$
H(s)=k_{d c} \times \frac{\left(1+s / z_{1}\right)\left(1+s / z_{2}\right) \ldots\left(1+s / z_{m}\right)}{\left(1+s / \omega_{1}\right)\left(1+s / \omega_{2}\right) \ldots\left(1+s / \omega_{n}\right)}
$$

- From above, can quickly find $|H(0)|$

$$
-|H(0)|=k_{d c}
$$

- However, $|H(j \infty)|$ may be easy or difficult

$$
\begin{aligned}
& - \text { If } m<n:|H(j \infty)|=0 \\
& - \text { If } m=n:|H(j \infty)|=k_{d c}\left(\frac{\omega_{1} \omega_{2} \ldots \omega_{n}}{z_{1} z_{2} \ldots z_{m}}\right)
\end{aligned}
$$

- The above root form is commonly used due to it quickly showing the dc gain value

Topics Covered

- LTI systems
- Impulse/freq response and transfer-function, $H(s)$
- Complex numbers
- Polynomial/root form for $H(s)$
- Poles/zeros and stability
- Real valued poles/zeros

