Pole Zero Estimation

David Johns

University of Toronto david.johns@utoronto.ca

1st Order H(s) with finite zero

$$H(s) = \frac{R_2}{\left(\frac{1}{sC}||R_1\right) + R_2}$$
$$H(s) = \left(\frac{R_2}{R_1 + R_2}\right) \left(\frac{1 + sCR_1}{1 + sC(R_1||R_2)}\right)$$

• Zero at $s_z = -\frac{1}{CR_1}$ so $\omega_z = \frac{1}{CR_1}$
• Pole at $s_p = -\frac{1}{C(R_1||R_2)}$ so $\omega_p = \frac{1}{C(R_1||R_2)}$

(1)

(2)

- Above is a Bode Plot
 - Straight lines are drawn as an approximation to the actual transfer-function
- Not strictly a STC circuit since the finite zero (not at 0 or ∞) will change the step response

H(s) with Multiple Real-Axis Poles/Zeros

- In RC circuits that have no feedback, the circuit will have all real-axis poles/zeros
- Bode Plot
 - Used when the poles/zeros are widely spaced apart
 - Draw straight lines between poles/zeros
 - As ω is increased... Poles reduce the slope in $|H(j\omega)|$ Zeros increase the slope in $|H(j\omega)|$
- Example

$$H(s) = \frac{K_{mid} \times s(s + \omega_2)(1 + s/\omega_5)}{(s + \omega_1)(s + \omega_3)(1 + s/\omega_4)(1 + s/\omega_6)(1 + s/\omega_7)}$$
(3)

- Has zero at dc and 2 zeros at ∞ (since n - m = 2 where n/m is denominator/numerator order)

- Here we have $\omega_1 < \omega_2 < \omega_3 < \omega_4 < \omega_5 < \omega_6 < \omega_7$

Bode Plot for H(s) with Real-axis Poles/Zeros

Has a zero at dc

− Since $|H(j\omega)| \rightarrow 0$ at 20dB/dec as $\omega \rightarrow 0$

Has 2 zeros at ∞

− Since $|H(j\omega)| \rightarrow 0$ at 40dB/dec as $\omega \rightarrow \infty$

• Midband gain, K_{mid}, occurs where

 $\omega_3 < \omega < \omega_4$

Finding Zeros

- Zeros are where the output goes to zero
- Can often be found easily by ...
 - Find values of s where ...
 - series impedance goes to ∞ (but not in shunt path)
 - shunt impedance goes to zero (but not in series path)
- Example 1

- Zero due to R_1/C_1 going to ∞
- Zero due to R_2/C_2 going to zero

Finding Zeros

- $\left(\frac{1}{R_1} + sC_1\right)^{-1} \rightarrow \infty \Rightarrow \frac{1}{R_1} + sC_1 = 0 \Rightarrow s = \frac{-1}{R_1C_1}$
- $R_2 + \frac{1}{sC_2} = 0 \Rightarrow s = \frac{-1}{R_2C_2}$
- So the above example has zeros frequencies $\omega_{z1} = \frac{1}{R_1C_1}$ $\omega_{z2} = \frac{1}{R_2C_2}$
- Example 2

- Similar to above, $\omega_{z1} = \frac{1}{R_1C_1}$ and there is no zero due to C_2
- At first glance, there is a zero at infinite freq due to C₂ however ...
 At infinity freq, the series circuit also goes to zero impedance

Finding Poles

- Open/Short Circuit Time-Constant Estimation
- For use in systems with multiple real-axis poles
- In any system
 - The poles of the system **do not** depend on where the input is applied or the output is taken (not just real-axis poles systems)
- Quick method for estimating real-axis poles
 - Open/short circuit time constant estimation
 - Used by many designers to know what part of a circuit limits high or low frequency performance
 - Can quickly estimate pole locations
- Best explained with an example

Open/Short Circuit Time-Constant Estimation

• $H(s) \equiv \frac{V_o}{V_i}$

- H(s) has 2 zeros at dc due to C₁ and C₂
 we call these Low Freq (LF) caps
- H(s) has 2 zeros at ∞ due to C_3 and C_4 - we call these High Freq (HF) caps
- For midband gain
 - Short LF caps and open HF caps
 - In above case, midband gain = 1

Open/Short Circuit Time-Constant Estimation

• The above example will result in the following Bode plot

- The LF caps result in the low freq poles, ω_{p1} and ω_{p2}
- The HF caps result in the high freq freq poles, ω_{p3} and ω_{p4}
- To estimate all the poles in the circuit
 - we estimate the pole due to each capacitor

Short Circuit Time-Constant Estimation

- Used to find pole estimations for each LF cap
- Zero all independent sources
- Open all HF caps
- For EACH LF cap, C_i
 - Short ALL other LF caps
 - Find R_{eqi} which is the equivalent resistance "seen" by C_i

 $- \omega_{pi} = \frac{1}{R_{eqi}C_i}$

The low freq cutoff, ω_L is estimated to be

$$\omega_L \approx \sum_i \omega_{pi} \tag{4}$$

• If one ω_{pi} is MUCH larger than the others then...

$$\omega_L \approx \omega_{pi,MAX}$$
 (5)

11/18

Short Circuit Time-Constant Estimation

- Above example
- C_1 (LF cap) - $R_{eq1} = R_1 ||R_2 = 0.99 \text{ k}\Omega$ - $\omega_{p1} = \frac{1}{R_{eq1}C_1} = 101 \text{ rad/s}$
- C_2 (LF cap) - $R_{eq2} = R_2 = 100 \text{ k}\Omega$ - $\omega_{p1} = \frac{1}{R_{eq2}C_2} = 1 \text{ rad/s}$
- Since $\omega_{p1} \gg \omega_{p2}$

 $\omega_L \approx \omega_{p1} \approx 100 \text{ rad/s}$

Open Circuit Time-Constant Estimation

- Used to find pole estimations for each HF cap
- Zero all independent sources
- Short all LF caps
- For EACH HF cap, C_i
 - Open ALL other HF caps
 - Find R_{eqi} which is the equivalent resistance "seen" by C_i

 $- \omega_{pi} = \frac{1}{R_{eqi}C_i}$

• The high freq cutoff, ω_H is estimated to be

$$\omega_{H} \approx \left(\sum_{i} \frac{1}{\omega_{pi}}\right)^{-1} = \omega_{p1} ||\omega_{p2}||\omega_{p3}|| \dots$$

• If one ω_{pi} is MUCH smaller than the others then...

$$\omega_{H} \approx \omega_{pi,MIN} \tag{7}$$

13/18

(6)

Open Circuit Time-Constant Estimation

- Above example
- C_3 (HF cap) - $R_{eq3} = R_3 = 1 \text{ k}\Omega$ - $\omega_{p3} = \frac{1}{R_{eq3}C_3} = 1e9 \text{ rad/s}$
- C_4 (HF cap) - $R_{eq4} = R_3 + R_4 = 101 \text{ k}\Omega$ - $\omega_{p4} = \frac{1}{R_{eq4}C_4} = 10e6 \text{ rad/s}$
- Since $\omega_{p4} \ll \omega_{p3}$

 $\omega_H \approx \omega_{p4} \approx 10e6 \text{ rad/s}$

Open Circuit Time-Constant Accuracy

- How accurate are pole estimates for the open circuit time-constant approach?
- Example

Analysis gives

$$H(s) = \frac{1}{s^2(C_1C_2R_1R_2) + s[C_2(R_1 + R_2) + C_1R_1] + 1}$$

 Can find exact pole values by finding the roots of the denominator for various *C* and *R* values

Open Circuit Time-Constant Accuracy

- Fix value of caps to $C_1 = C_2 = 1.59 \text{ pF}$
- Example 1: $R_1 = 1 \ k\Omega$ $R_2 = 100 \ k\Omega$
 - Actual OCTC Estimate f_{p2} 990kHz 990kHz
 - *f*_{p1} 101MHz 100MHz
- Example 2: $R_1 = 10 \text{ k}\Omega$ $R_2 = 100 \text{ k}\Omega$

Actual OCTC Estimate

 f_{p2} 901kHz 909kHz

*f*_{*p*1} 11.1MHz 10MHz

• Example 1: $R_1 = 30 \text{ k}\Omega$ $R_2 = 100 \text{ k}\Omega$

Actual OCTC Estimate f_{p2} 723kHz 769kHz

 f_{p1} 4.61MHz 3.33MHz

Open Circuit Time-Constant Accuracy

- We see that as the poles get closer together
 - The pole estimates worsens
 - The estimate is better for the lower freq pole
 - The lower freq pole mainly determines ω_H so this is good
- In many circuits, the poles are more independent than the above example
 - May have gain stages between parts of the circuit
 - If the poles are independent, the estimate is exact.
 - So the above is a worse case example
- Strictly speaking, the open circuit time-constant approach was developed to only estimate ω_H
 - When all capacitor voltages are independent, it does a reasonable job of also showing where all the poles are.
 - If some capacitor voltages are dependent, then the number of poles equals the number of independent capacitor voltages.

- Bode plots for real-axis poles/zeros
- Finding zeros
- Short circuit time constant estimation
 - To estimate low freq poles
- Open circuit time constant estimation
 - To estimate high freq poles