MOSFET Caps and Miller's Theorem

David Johns

University of Toronto
david.johns@utoronto.ca

High Frequency Cutoff

- For HF cutoff
- Some capacitors might be added to reduce bandwidth (say, for noise reduction)
- However, there are also parasitic capacitors that always occur that limits high freq bandwith
- There is also parasitic inductances but these are generally small enough to be ignored in many circuits
- Parasitic capacitor examples
- Wiring capacitances
(there is capacitance between any 2 conductors)
- Transistor internal capacitances
- MOSFET transistor parasitic capacitances
$-C_{g s}, C_{g d}$: they are inherent to the operation of the transistor Not possible to ever be zero
- $C_{d b}, C_{s b}$: depend on the drain/source region area

MOSFET Capacitor Model

MOSFET Capacitor Model

- ACTIVE REGION

$$
\begin{gather*}
C_{g s}=\left(\frac{2}{3}\right) W L C_{o x}+W L_{o v} C_{o x} \tag{1}\\
C_{g d}=W L_{o v} C_{o x} \tag{2}\\
C_{d b}=\frac{C_{d b 0}}{\sqrt{1+\left(V_{d b} / V_{0}\right)}} \quad C_{s b}=\frac{C_{s b 0}}{\sqrt{1+\left(V_{s b} / V_{0}\right)}} \tag{3}
\end{gather*}
$$

- $C_{o x}$ is the gate capacitance per unit area
- $\left(\frac{2}{3}\right) W L C_{o x}$ is capacitance under the gate to the channel which is connected to the source when in the active region
- $\left(\frac{2}{3}\right)$ is due the shape of the channel when in the active region (a triangle shape)
- $L_{o v}$ is the overlap length of the gate extending over the drain/source regions

MOSFET Capacitor Model

- $W L_{o v} C_{o x}$ is the overlap capacitance
- $C_{d b 0}$ is the drain to body capacitance when $V_{d b}=0$ This value depends on the total junction surface area
- $V_{d b}$ is the reverse bias diode voltage of drain to bulk
- V_{0} is the diode built-in voltage ($V_{0} \approx 0.7 \mathrm{~V}$)
- $C_{d b}$ value depends on the reverse bias voltage
- Similar descriptions for $C_{s b}$
- TRIODE REGION
- $C_{g d}, C_{d b}, C_{s b}$ all the same
- However, $C_{g s}=W L C_{o x}+W L_{o v} C_{o x}$ since channel is now rectangular shaped

Active Region Small Signal Model with Caps

- Assuming $V_{s b}=0$ (bulk tied to source)

- Would like a figure of merit for transistor speed
- Unity-Gain Frequency $\left(f_{T}\right)$
- Where the short circuit current gain =1 Recall $\omega_{T}=2 \pi f_{T}$ (can be in Hz or rad/s)

MOSFET Unity Gain Freq

- By definition for ω_{T}...

$$
\begin{equation*}
\left|\frac{i_{0}}{i_{i}}\left(j \omega_{T}\right)\right|=1 \tag{4}
\end{equation*}
$$

MOSFET Unity Gain Freq

- $i_{r_{0}}=0$ and $i_{C_{d b}}=0$ since they both have zero volts across them

$$
\begin{gather*}
v_{g s}=i_{i}\left(\frac{1}{s\left(C_{g s}+C_{g d}\right)}\right) \tag{5}\\
i_{1}=\frac{v_{g s}}{\left(\frac{1}{s C_{g d}}\right)}=s C_{g d} v_{g s} \tag{6}\\
i_{0}=g_{m} v_{g s}-i_{1}=g_{m} v_{g s}-s C_{g d} v_{g s} \tag{7}\\
i_{0}=\left(g_{m}-s C_{g d}\right) v_{g s} \tag{8}
\end{gather*}
$$

- combining (5) with (8)

$$
\begin{equation*}
\frac{i_{o}}{i_{i}}(s)=\frac{g_{m}-s C_{g d}}{s\left(C_{g s}+C_{g d}\right)} \tag{9}
\end{equation*}
$$

MOSFET Unity Gain Freq

- Using the definition in (4)

$$
\begin{gather*}
\left|\frac{g_{m}-j \omega_{T} C_{g d}}{\left(j \omega_{T}\right)\left(C_{g s}+C_{g d}\right)}\right|=1 \tag{10}\\
\left|\left(\frac{g_{m}}{\left(j \omega_{T}\right)\left(C_{g s}+C_{g d}\right)}\right)-\left(\frac{C_{g d}}{\left(C_{g s}+C_{g d}\right)}\right)\right|=1 \tag{11}
\end{gather*}
$$

- In most technologies, $C_{g d} \ll C_{g s}$ so if we ignore the term $C_{g d} /\left(C_{g s}+C_{g d}\right)$

$$
\begin{equation*}
\left|\left(\frac{g_{m}}{\left(j \omega_{T}\right)\left(C_{g s}+C_{g d}\right)}\right)\right| \approx 1 \tag{12}
\end{equation*}
$$

- solving for ω_{T}, we have

$$
\begin{equation*}
\omega_{T} \approx \frac{g_{m}}{C_{g s}+C_{g d}} \quad f_{T} \approx \frac{g_{m}}{2 \pi\left(C_{g s}+C_{g d}\right)} \tag{13}
\end{equation*}
$$

MOSFET Unity Gain Freq

- How does f_{T} change with technology or circuit choices?
- Recall

$$
\begin{gather*}
g_{m}=\mu_{n} C_{o x}(W / L) V_{o v} \tag{14}\\
C_{g s} \approx \frac{2}{3} W L C_{o x} \tag{15}
\end{gather*}
$$

MOSFET Unity Gain Freq

- If we assume $C_{g d} \ll C_{g s}$

$$
\begin{gather*}
f_{T} \approx \frac{g_{m}}{2 \pi C_{g s}}=\frac{\mu_{n} C_{o x}(W / L) V_{o v}}{2 \pi \frac{2}{3} W L C_{o x}} \tag{16}\\
f_{T} \approx \frac{3 \mu_{n} V_{o v}}{4 \pi L^{2}} \tag{17}
\end{gather*}
$$

- f_{T} is ...
- independent of W
- proportional to $1 / L^{2}$ and $V_{o v}$ and μ_{n}
- Circuit designers can choose $W, L, V_{o v}$ while μ_{n} is given for a technology

MOSFET Unity Gain Freq

- Why does the definition of f_{T} use current gain instead of voltage gain?
- If an ideal voltage source drives the gate, at high frequencies, the input impedance goes to zero (due to $C_{g s}$) and therefore the input current would need to go to ∞
- Also, at very high freq, the output gain would be a voltage divider between $C_{g d}$ and $C_{d b}$
- It also turns out that f_{T} is a good estimate of the voltage gain when a transistor single transistor drives another transistor of the same size and bias conditions.
- Generally, circuits are designed to operate up to about $f_{T} / 10$ or lower
- So f_{T} is an important parameter to know when designing circuits

Miller's Theorem

- In many amplifiers, there is an impedance between the input and output of the amplifier which complicates analysis
- Miller's Theorem can be used to modify the circuit to simplify the analysis
- A common example is $C_{g d}$ in a transistor amplifier
- Miller's theorem can be used to replace $C_{g d}$ with 2 grounded capacitors ...
one at the gate and one at the drain

Miller's Theorem

- Given a circuit where $V_{2}=K V_{1}$ and Z is connected between nodes V_{1} and V_{2}, Z can be replaced by 2 grounded impedances where

$$
\begin{equation*}
Z_{1}=\frac{Z}{1-K} \quad Z_{2}=\frac{Z}{1-\frac{1}{K}} \tag{18}
\end{equation*}
$$

Original Circuit

Miller Equivalent

Miller's Theorem Proof

Original Circuit

- Define

$$
\begin{equation*}
K \equiv \frac{V_{2}}{V_{1}} \tag{19}
\end{equation*}
$$

- Break Z into Z_{1} and Z_{2}
- Find Z_{1}, Z_{2} such that the following 2 equations hold

$$
\begin{align*}
& Z_{1}+Z_{2}=Z \tag{20}\\
& V_{3^{\prime}}=V_{3}=0 \tag{21}
\end{align*}
$$

Miller's Theorem Proof

$$
\begin{equation*}
V_{3^{\prime}}=V_{1}+Z_{1}\left(\frac{V_{2}-V_{1}}{Z_{1}+Z_{2}}\right) \tag{22}
\end{equation*}
$$

- Combining (19) - (22), we find

$$
\begin{equation*}
Z_{1}=\frac{Z}{1-K} \quad Z_{2}=\frac{Z}{1-\frac{1}{K}} \tag{23}
\end{equation*}
$$

- We can now attach $V_{3^{\prime}}$ to V_{3} since both are at the same voltage
- no extra current flows in or out of V_{3} since the current through Z_{1} equals the negative value of the current through Z_{2}
[Davidovic, IEEE Trans. on Ed, 1999]

Miller's Theorem

- Note that for $Z>0$
- For $K<0$, both Z_{1} and Z_{2} will be positive
- For $K>0$, one of Z_{1}, Z_{2} will be negative
- For $K=1$, both Z_{1}, Z_{2} go to ∞
- For $Z=R$

$$
\begin{equation*}
R_{1}=\frac{R}{1-K} \quad R_{2}=\frac{R}{1-\frac{1}{K}} \tag{24}
\end{equation*}
$$

- For $Z=\frac{1}{s C}$

$$
\begin{equation*}
C_{1}=C(1-K) \quad C_{2}=C\left(1-\frac{1}{K}\right) \tag{25}
\end{equation*}
$$

Miller's Theorem Example

- Find $R_{i n}$ and v_{o} / v_{i} in the circuit below where the amplifier is ideal and has a gain of -10 .

- We can use Miller's Theorem to find the equiv circuit

Miller's Theorem Example

$$
\begin{gather*}
R_{2,1}=\frac{R_{2}}{1-A}=\frac{10 \mathrm{k}}{11}=909.1 \Omega \tag{26}\\
R_{2,2}=\frac{R_{2}}{1-(1 / A)}=\frac{10 \mathrm{k}}{1.1}=9.1 \Omega
\end{gather*}
$$

- Here, we see that $R_{\text {in }}=R_{2,1}=909.1 \Omega$
- We can find v_{1} / v_{i} as \ldots

$$
\begin{equation*}
\frac{v_{1}}{v_{i}}=\frac{R_{i n}}{R_{i n}+R_{1}}=\frac{909.1}{909.1+2 \mathrm{k}}=0.3125 \mathrm{~V} / \mathrm{V} \tag{28}
\end{equation*}
$$

- And since $v_{o}=-10 v_{1}$, we have

$$
\begin{equation*}
v_{o} / v_{i}=\frac{v_{1}}{v_{i}} \times \frac{v_{o}}{v_{1}}=0.3125 \times-10=-3.125 \mathrm{~V} / \mathrm{V} \tag{29}
\end{equation*}
$$

Miller's Theorem Example

- Find the input capacitance of the following circuit where the amplifier is ideal.

- Using Miller's Theorem

$$
\begin{equation*}
C_{e q}=C(1-A)=101 C=101 \mathrm{pF} \tag{30}
\end{equation*}
$$

Miller's Theorem Example - Bootstrapping

- When the amplifier is slightly less than 1 , the input capacitance can be reduced while the input resistance is increased.

$$
\begin{equation*}
C_{e q}=C(1-A)=0.05 C=50 \mathrm{fF} \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
R_{\text {in }}=\frac{R}{1-A}=\frac{1 \mathrm{k}}{0.05}=20 \mathrm{k} \Omega \tag{32}
\end{equation*}
$$

Topics Covered

- High freq cutoff
- Mosfet cap modelling
- Mosfet unity gain freq
- Miller's theorem

