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High Frequency Cutoff
For HF cutoff
− Some capacitors might be added to reduce bandwidth (say, for

noise reduction)
− However, there are also parasitic capacitors that always occur that

limits high freq bandwith
− There is also parasitic inductances but these are generally small

enough to be ignored in many circuits

Parasitic capacitor examples
− Wiring capacitances

(there is capacitance between any 2 conductors)
− Transistor internal capacitances

MOSFET transistor parasitic capacitances
− Cgs, Cgd : they are inherent to the operation of the transistor

Not possible to ever be zero
− Cdb, Csb: depend on the drain/source region area
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MOSFET Capacitor Model
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MOSFET Capacitor Model

ACTIVE REGION

Cgs =

(
2
3

)
WLCox + WLov Cox (1)

Cgd = WLov Cox (2)

Cdb =
Cdb0√

1 + (Vdb/V0)
Csb =

Csb0√
1 + (Vsb/V0)

(3)

Cox is the gate capacitance per unit area(2
3

)
WLCox is capacitance under the gate to the channel which is

connected to the source when in the active region(2
3

)
is due the shape of the channel when in the active region (a

triangle shape)

Lov is the overlap length of the gate extending over the
drain/source regions
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MOSFET Capacitor Model

WLov Cox is the overlap capacitance

Cdb0 is the drain to body capacitance when Vdb = 0
This value depends on the total junction surface area

Vdb is the reverse bias diode voltage of drain to bulk

V0 is the diode built-in voltage (V0 ≈ 0.7V)

Cdb value depends on the reverse bias voltage

Similar descriptions for Csb

TRIODE REGION
− Cgd , Cdb, Csb all the same
− However, Cgs = WLCox + WLov Cox

since channel is now rectangular shaped
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Active Region Small Signal Model with Caps

Assuming Vsb = 0 (bulk tied to source)
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Would like a figure of merit for transistor speed

Unity-Gain Frequency (fT )
− Where the short circuit current gain = 1

Recall ωT = 2πfT (can be in Hz or rad/s)
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MOSFET Unity Gain Freq

io

io

By definition for ωT ... ∣∣∣∣ ioii (jωT )

∣∣∣∣ = 1 (4)
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Cgd
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MOSFET Unity Gain Freq

iro = 0 and iCdb = 0 since they both have zero volts across them

vgs = ii

(
1

s(Cgs + Cgd )

)
(5)

i1 =
vgs(

1
sCgd

) = sCgdvgs (6)

io = gmvgs − i1 = gmvgs − sCgdvgs (7)

io = (gm − sCgd )vgs (8)

combining (5) with (8)

io
ii

(s) =
gm − sCgd

s(Cgs + Cgd )
(9)
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MOSFET Unity Gain Freq

Using the definition in (4)∣∣∣∣ gm − jωT Cgd

(jωT )(Cgs + Cgd )

∣∣∣∣ = 1 (10)∣∣∣∣( gm

(jωT )(Cgs + Cgd )

)
−
(

Cgd

(Cgs + Cgd )

)∣∣∣∣ = 1 (11)

In most technologies, Cgd � Cgs so if we ignore the term
Cgd/(Cgs + Cgd ) ∣∣∣∣( gm

(jωT )(Cgs + Cgd )

)∣∣∣∣ ≈ 1 (12)

solving for ωT , we have

ωT ≈
gm

Cgs + Cgd
fT ≈

gm

2π(Cgs + Cgd )
(13)
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MOSFET Unity Gain Freq

How does fT change with technology or circuit choices?

Recall
gm = µnCox (W/L)Vov (14)

Cgs ≈
2
3

WLCox (15)
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MOSFET Unity Gain Freq

If we assume Cgd � Cgs

fT ≈
gm

2πCgs
=
µnCox (W/L)Vov

2π 2
3WLCox

(16)

fT ≈
3µnVov

4πL2 (17)

fT is ...
− independent of W
− proportional to 1/L2 and Vov and µn

Circuit designers can choose W , L, Vov while µn is given for a
technology
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MOSFET Unity Gain Freq

Why does the definition of fT use current gain instead of voltage
gain?
− If an ideal voltage source drives the gate, at high frequencies, the

input impedance goes to zero (due to Cgs) and therefore the input
current would need to go to∞

− Also, at very high freq, the output gain would be a voltage divider
between Cgd and Cdb

− It also turns out that fT is a good estimate of the voltage gain when
a transistor single transistor drives another transistor of the same
size and bias conditions.

Generally, circuits are designed to operate up to about fT/10 or
lower
− So fT is an important parameter to know when designing circuits

12/22



Miller’s Theorem

In many amplifiers, there is an impedance between the input and
output of the amplifier which complicates analysis

Miller’s Theorem can be used to modify the circuit to simplify the
analysis

A common example is Cgd in a transistor amplifier
− Miller’s theorem can be used to replace Cgd with 2 grounded

capacitors ...
one at the gate and one at the drain
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Miller’s Theorem

Given a circuit where V2 = KV1 and Z is connected between
nodes V1 and V2, Z can be replaced by 2 grounded impedances
where

Z1 =
Z

1− K
Z2 =

Z
1− 1

K

(18)

1 23

Z

Original Circuit

1 23
Z1 Z2

Miller Equivalent
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Miller’s Theorem Proof

1 23

Z

Original Circuit

1 23

Z1 Z2
3′

Equivalent Circuit
Define

K ≡ V2

V1
(19)

Break Z into Z1 and Z2

Find Z1, Z2 such that the following 2 equations hold
Z1 + Z2 = Z (20)

V3′ = V3 = 0 (21)
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Miller’s Theorem Proof

V3′ = V1 + Z1

(
V2 − V1

Z1 + Z2

)
(22)

Combining (19) - (22), we find

Z1 =
Z

1− K
Z2 =

Z
1− 1

K

(23)

We can now attach V3′ to V3 since both are at the same voltage
− no extra current flows in or out of V3 since the current through Z1

equals the negative value of the current through Z2

[Davidovic, IEEE Trans. on Ed, 1999]
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Miller’s Theorem
Note that for Z > 0
− For K < 0, both Z1 and Z2 will be positive
− For K > 0, one of Z1, Z2 will be negative
− For K = 1, both Z1, Z2 go to∞

For Z = R

R1 =
R

1− K
R2 =

R
1− 1

K

(24)

For Z = 1
sC

C1 = C(1− K ) C2 = C(1− 1
K

) (25)
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Miller’s Theorem Example

Find Rin and vo/vi in the circuit below where the amplifier is ideal
and has a gain of -10.

A

R2 = 10k

A = −10Rin

R1 = 2k

vi

vo

We can use Miller’s Theorem to find the equiv circuit

-10

Rin

R1

vi

vo

R2,1 R2,2

v1
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Miller’s Theorem Example

R2,1 =
R2

1− A
=

10k
11

= 909.1Ω (26)

R2,2 =
R2

1− (1/A)
=

10k
1.1

= 9.1Ω (27)

Here, we see that Rin = R2,1 = 909.1Ω

We can find v1/vi as ...

v1

vi
=

Rin

Rin + R1
=

909.1
909.1 + 2k

= 0.3125 V/V (28)

And since vo = −10v1, we have

vo/vi =
v1

vi
× vo

v1
= 0.3125×−10 = −3.125 V/V (29)
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Miller’s Theorem Example

Find the input capacitance of the following circuit where the
amplifier is ideal.

A

C = 1pF

A = −100
Ceq

Using Miller’s Theorem

Ceq = C(1− A) = 101C = 101pF (30)
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Miller’s Theorem Example - Bootstrapping

When the amplifier is slightly less than 1, the input capacitance
can be reduced while the input resistance is increased.

A

C = 1pF

A = 0.95Ceq

Ceq = C(1− A) = 0.05C = 50fF (31)

A

R = 1k

A = 0.95Rin

Rin =
R

1− A
=

1k
0.05

= 20kΩ (32)
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Topics Covered

High freq cutoff
− Mosfet cap modelling
− Mosfet unity gain freq
− Miller’s theorem
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