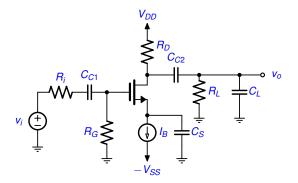
High Freq Cutoff

David Johns

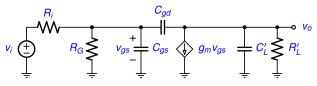
University of Toronto

david.johns@utoronto.ca



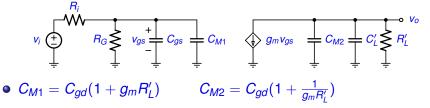
 Capacitors C_{C1}, C_{C2}, C_S are low freq caps and are all shorted for high frequency analysis

• Small signal model for high freq analysis



- $C'_L = C_L ||C_{db}$ $R'_L = R_L ||r_o||R_D$
- $\frac{v_o}{v_{gs}} = -g_m R'_L$

• Break C_{gd} into C_{M1} and C_{M2}



- We see that for a large gain for $\frac{V_o}{V_{gs}}$, C_{M1} can be large and limit the high freq response.
- $\omega_{p1} = \frac{1}{(C_{gs}+C_{M1})(R_i||R_G)}$

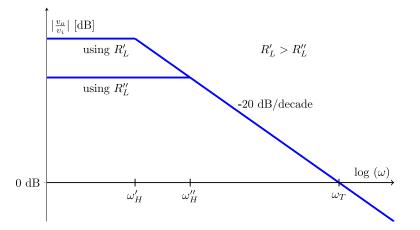
• $\omega_{p2} = \frac{1}{(C'_L + C_{M2})R'_L}$

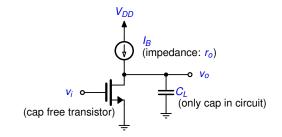
$$rac{m{v}_o}{m{v}_i} = rac{-m{g}_m m{R}'_L imes \left(rac{m{R}_G}{m{R}_G + m{R}_i}
ight)}{(1 + rac{m{s}}{\omega_{
ho 1}})(1 + rac{m{s}}{\omega_{
ho 2}})}$$

(1)

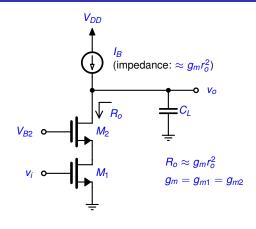
• We can estimate the high freq cutoff, ω_H , as $\omega_H \approx \omega_{p1} ||\omega_{p2}$

- It is interesting to look at case where $R_i = 0$
- Here, $\omega_{p1} \to \infty$
- $\omega_H = \omega_{p2} = \frac{1}{(C'_L + C_{M2})R'_L}$
- Low freq gain, $A_M = -g_m R'_L$
- This is a single-time constant circuit
- Assuming $|A_M| \gg 1$ then $C_{M2} \approx C_{gd}$
- The unity gain freq, ω_t can be found as $\omega_t \approx |A_M| \omega_H = \frac{g_m}{C'_L + C_{gd}}$
- The unity gain freq, ω_t , is **INDEPENDENT** of R'_L





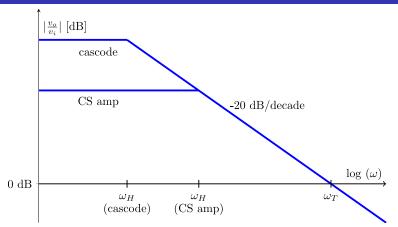
- DC Gain: $-g_m(r_o/2)$
- $\omega_H = \frac{1}{C_L(r_o/2)}$ $\omega_t = \frac{g_m}{C_L}$



DC Gain:
$$\frac{-g_m^2 r_o^2}{2}$$

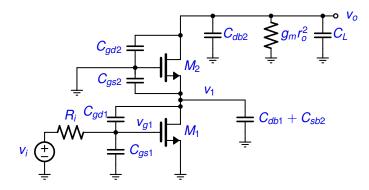
 $\omega_H = \frac{1}{C_L (r_o/2)(g_m r_o)}$
 $\omega_t = \frac{g_m}{C_L}$

increased by $g_m r_o$ decreased by $g_m r_o$ unchanged



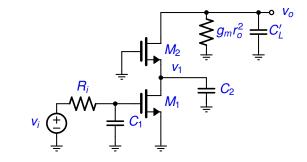
- If output load determines ω_H
 - cascode and common-source amp have the same ω_t
 - cascode amp has higher dc gain and lower ω_H

Other caps in cascode amp



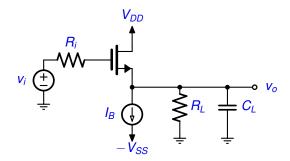
- $g_m r_o^2$ is the impedance of the top current mirror
- C_L includes the cap of top current mirror plus load cap

- Since the gate of M₂ is grounded, we do not have worry about the Miller Effect for C_{ad2}
- We can break up C_{gd1} by defining $K \equiv \frac{v_1}{v_{c1}}$ leading to ...



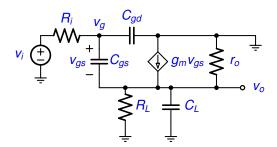
• $C'_L = C_L + C_{db2} + C_{gd2}$

- $C_2 = C_{db1} + C_{sb2} + (1 \frac{1}{K})C_{gd1} + C_{gs2}$
- $C_1 = C_{gs1} + (1 K)C_{gd1}$
- So we have 3 poles ... $\omega_{\rho 1} \approx \frac{1}{C'_L \left(\frac{g_m r_0^2}{2}\right)} \qquad \omega_{\rho 2} = \frac{1}{C_1 R_i} \qquad \omega_{\rho 3} \approx \frac{1}{C_2 \left(\frac{1}{g_{m 2}}\right)}$
- Generally we find $K \approx -\left(\frac{g_{m1}}{g_{m2}}\right)$ at frequencies that determine ω_{p2} and ω_{p3}
 - Due to C'_L impedance being much less than $g_m r_o^2$ at those frequencies
- So we do NOT see a large Miller multiplication effect for C_{gs1}
- Generally we find ω_{p1} dominates and determines ω_H



- For simplicity, assume an ideal current source
- While this circuit has a voltage gain less than 1
 - it generally has a lower output impedance than a common-source amplifier
 - It can generally drive a lower resistive load

• The small signal circuit with caps is ...



- Let $R'_L = R_L || r_o$ and $r_s = \frac{1}{g_m}$
- The midband gain is $A_M = \frac{R'_L}{R_L + r_s}$
- The output impedance is $R_{out} = r_s ||r_o|$

- It turns out that using Miller's Theorem to break up C_{gd} is not very accurate here due to the small gain from v_g to v_o as well as the freq dependency at v_o
- We can still look at the open circuit time-constant to find the poles, however ...
 - While we will find 3 poles, in fact there are only 2 poles since the 3 capacitor voltages all add up to zero and are therefore not all independent
- The 3 poles for C_{gd} , C_L , and C_{gs} are ...
- $\omega_{p1} = \frac{1}{C_{gd}R_i}$
- $\omega_{p2} = \frac{1}{C_L(R_L||r_o||r_s)} \approx \frac{1}{C_L r_s}$ (assuming $r_s \ll R_L||r_o$)

- For *C_{gs}*, we need to find impedance that *C_{gs}* "sees" when *C_{gd}*, *C_L* are both open.
 - This analysis is left to the student but is found to be ...

$$R_{gs} = rac{R_i + R'_L}{1 + g_m R'_L}$$

• $\omega_{p3} = \frac{1}{C_{gs}R_{gs}}$

- All 3 of these poles are generally higher than the common-source case, so in general, the source follower is faster
- However, it turns out there is some feedback in this circuit
 - For certain values, the circuit may have ringing in the step response
 - Need to be careful when driving large capacitive loads

- High freq cutoff
 - Common-source amp
 - Cascode amp
 - same unity gain freq as common-source amp
 - small Miller effect on input capacitance
 - more dc gain
 - Source-follower amp