Problem Set 1-Circuit Review

Question 1

Consider the circuit shown below where it is desired to find the Norton and Thevenin equivalent circuits between nodes A / B. Use $i_{s c}$ for the short circuit output current and $v_{o c}$ for the open circuit output voltage and $R_{\text {out }}$ for the output resistance.
Solve by using Thevenin/Norton source transformations.

Answer

$R_{\text {out }}=3.6 \Omega$
$v_{o c}=-3.2 \mathrm{~V}$
$i_{s c}=-0.8889 \mathrm{~A}$

Question 2

Consider the circuit shown below where it is desired to find the Norton and Thevenin equivalents circuits for the port A / B. Use $i_{s c}$ for the short circuit output current and $v_{o c}$ for the open circuit output voltage and $R_{\text {out }}$ for the output resistance.
Solve by using superposition to find $v_{o c}$ and find $R_{\text {out }}$ directly from the above circuit. Then find $i_{s c}$.

Answer

$R_{\text {out }}=3.6 \Omega$
$v_{o c}=-3.2 \mathrm{~V}$
$i_{s c}=-0.8889 \mathrm{~A}$

Question 3

Find the Norton equivalent circuit and the Thevenin equivalent circuit for the circuit shown below between nodes A and B. Use $i_{s c}$ for the short circuit output current and $v_{o c}$ for the open circuit output voltage and $R_{\text {out }}$ for the output resistance.

Answer

$R_{\text {out }}=8 \Omega$
$v_{o c}=-10 \mathrm{~V}$
$i_{s c}=-1.25 \mathrm{~A}$

Question 4

Find the Norton equivalent circuit and the Thevenin equivalent circuit for the circuit shown below between nodes A and B. Use $i_{s c}$ for the short circuit output current and $v_{o c}$ for the open circuit output voltage and $R_{\text {out }}$ for the output resistance.

Answer

$R_{\text {out }}=-2 \Omega$
$v_{o c}=-40 \mathrm{~V}$
$i_{s c}=20 \mathrm{~A}$

Question 5

Find the Norton equivalent circuit and the Thevenin equivalent circuit for the circuit shown below between nodes A and B. Use $i_{s c}$ for the short circuit output current and $v_{o c}$ for the open circuit output voltage and $R_{\text {out }}$ for the output resistance.

Answer

$$
\begin{aligned}
& R_{\text {out }} \rightarrow \infty \\
& v_{o c} \rightarrow \infty \\
& i_{s c}=-0.7692 \mathrm{~A}
\end{aligned}
$$

