Problem Set 1 - Circuit Review

Question 1

Consider the circuit shown below where it is desired to find the Norton and Thevenin equivalent circuits between nodes A / B. Use $i_{s c}$ for the short circuit output current and $v_{o c}$ for the open circuit output voltage and $R_{\text {out }}$ for the output resistance.
Solve by using Thevenin/Norton source transformations.

Solution

$R_{1}=3 \Omega, R_{2}=6 \Omega, R_{3}=6 \Omega$,
We replace I_{1} and R_{1} with the thevenin equivalent such that

$$
V_{2}=-I_{1} * R_{1}=-(2) *(3)=-6 \mathrm{~V}
$$

and R_{1} is moved in series with V_{2}.

Combine resistors R_{1} and R_{2} as well as voltages V_{2} and V_{1} resulting in the following equivalent circuit

$$
\begin{gathered}
R_{4}=R_{1}+R_{2}=(3)+(6)=9 \Omega \\
V_{4}=V_{2}-V_{1}=(-6)-(2)=-8 \mathrm{~V}
\end{gathered}
$$

Replace V_{4} and R_{4} with their Norton equivalent circuit

$$
I_{4}=V_{4} / R_{4}=(-8) /(9)=-0.8889 \mathrm{~A}
$$

Combine R_{4} and R_{3} into one resistor which is $R_{\text {out }}$

$$
R_{\text {out }}=R_{4}\left\|R_{3}=(9)\right\|(6)=3.6 \Omega
$$

and the short circuit current is then

$$
i_{s c}=I_{4}=(-0.8889)=-0.8889 \mathrm{~A}
$$

Now, we find the output open circuit voltage, $v_{o c}$

$$
v_{o c}=i_{s c} * R_{\text {out }}=(-0.8889) *(3.6)=-3.2 \mathrm{~V}
$$

So the 2 equivalent circuits are ...

Thevenin Equivalent

Norton Equivalent

Note that the output resistance, $R_{\text {out }}$ could have also been found directly from the first circuit by zeroing the 2 independent sources. In this case, we would have

$$
R_{\text {out }}=R_{3}\left\|\left(R_{1}+R_{2}\right)=(6)\right\|((3)+(6))=3.6 \Omega
$$

Question 2

Consider the circuit shown below where it is desired to find the Norton and Thevenin equivalents circuits for the port A / B. Use $i_{s c}$ for the short circuit output current and $v_{o c}$ for the open circuit output voltage and $R_{\text {out }}$ for the output resistance.
Solve by using superposition to find $v_{o c}$ and find $R_{o u t}$ directly from the above circuit. Then find $i_{s c}$.

Solution

The output resistance, $R_{\text {out }}$ can been found directly from the above circuit by zeroing the 2 independent sources. In this case, we have the circuit below...

so $R_{\text {out }}$ is found as

$$
R_{\text {out }}=R_{3}\left\|\left(R_{1}+R_{2}\right)=(6)\right\|((3)+(6))=3.6 \Omega
$$

For $v_{o c}$, we are going to use superposition. We first find the voltage at AB due to I_{1} alone (with $V_{1}=0$), then find the voltage at AB due to V_{1} alone (with $I_{1}=0$) and then combine the 2 results to find the voltage at AB due to both I_{1} and V_{1}. Setting $V_{1}=0$ (V_{1} is then a short circuit), results in the following circuit ...

From the above circuit,

$$
V_{x}=-I_{1} * R_{1}\left\|\left(R_{2}+R_{3}\right)=-(2) *(3)\right\|((6)+(6))=-4.8 \mathrm{~V}
$$

which leads to $v_{\text {ocl1 }}$ being found as

$$
v_{o c l 1}=V_{x} *\left(R_{3} /\left(R_{3}+R_{2}\right)\right)=(-4.8) *((6) /((6)+(6)))=-2.4 \mathrm{~V}
$$

Now, setting $I_{1}=0\left(I_{1}\right.$ is then an open circuit) we have the following circuit ...

which leads to $v_{o c V_{1}}$ being found as

$$
v_{o c V 1}=-V_{1} *\left(R_{3} /\left(R_{1}+R_{2}+R_{3}\right)\right)=-(2) *((6) /((3)+(6)+(6)))=-0.8 \mathrm{~V}
$$

Combining the two $v_{o c}$ results we have

$$
v_{o c}=v_{o c l 1}+v_{o c V 1}=(-2.4)+(-0.8)=-3.2 \mathrm{~V}
$$

Finally, the relationship between $v_{o c}, R_{\text {out }}$ and $i_{s c}$ is $i_{s c}=v_{o c} / R_{\text {out }}$ which leads to \ldots

$$
i_{s c}=v_{o c} / R_{\text {out }}=(-3.2) /(3.6)=-0.8889 \mathrm{~A}
$$

So, the 2 equivalent circuits are ...

Thevenin Equivalent

Norton Equivalent

Question 3

Find the Norton equivalent circuit and the Thevenin equivalent circuit for the circuit shown below between nodes A and B. Use $i_{s c}$ for the short circuit output current and $v_{o c}$ for the open circuit output voltage and $R_{\text {out }}$ for the output resistance.

Solution

To find $R_{\text {out }}$ at port AB , we zero independent sources which in this case is V_{1}, so we set $V_{1}=0$ which is equivalent to V_{1} being a short circuit. Then we apply a voltage V_{z} at port AB and determine the resulting current, I_{z} as seen below. The output resistance is then defined to be $R_{\text {out }}=V_{z} / I_{z}$

$I_{g m}$ is defined to be the current through the voltage-controlled current source. So we have

$$
I_{g m}=g_{m} v_{x}=-I_{z}
$$

and we also have

$$
v_{x}=-V_{z}
$$

Combining the above 2 equations, we have

$$
g_{m}\left(-V_{z}\right)=-I_{z}
$$

which gives

$$
\begin{gathered}
V_{z} / I_{z}=1 / g_{m}=R_{\text {out }} \\
R_{\text {out }}=1 / g_{m}=1 /(0.125)=8 \Omega
\end{gathered}
$$

To find $V_{\text {oc }}$, we leave port AB open circuit and find the output voltage as shown below

Here, the current through port A is 0 since it is an open circuit which means the current $g_{m} v_{x}=0$ as well. Since g_{m} is not zero, then $v_{x}=0$ From nodal analysis, we have

$$
v_{1}-v_{x}-v_{o c}=0
$$

and with $v_{x}=0$, we have

$$
v_{o c}=V_{1}=(10)=10 \mathrm{~V}
$$

Finally, we can find $i_{s c}$ though the relationship,

$$
\begin{gathered}
i_{s c}=v_{\text {oc }} / R_{\text {out }} \\
i_{\text {sc }}=v_{\text {oc }} / R_{\text {out }}=(10) /(8)=1.25 \mathrm{~A}
\end{gathered}
$$

So the 2 equivalent circuits are ...

Thevenin Equivalent

Norton Equivalent

Question 4

Find the Norton equivalent circuit and the Thevenin equivalent circuit for the circuit shown below between nodes A and B. Use $i_{s c}$ for the short circuit output current and $v_{o c}$ for the open circuit output voltage and $R_{\text {out }}$ for the output resistance.

Solution

To find $R_{\text {out }}$ at port AB, we zero independent sources (which in this case is V_{1}) so we set $V_{1}=0$ which is equivalent to V_{1} being a short circuit. Then we apply a voltage V_{z} at port $A B$ and determine the resulting current, I_{z} as seen below. The output resistance is then defined to be $R_{\text {out }}=V_{z} / I_{z}$

$$
\begin{gathered}
I_{z}=\frac{V_{z}}{R_{1}+R_{2}}-g_{m} V_{x} \\
V_{x}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) V_{z} \\
I_{z}=V_{z}\left(\frac{1}{R_{1}+R_{2}}\right)-g_{m}\left(\frac{R_{1}}{R_{1}+R_{2}}\right) V_{z} \\
I_{z}=V_{z}\left(\frac{1-g_{m} R_{1}}{R_{1}+R_{2}}\right) \\
R_{\text {out }}=V_{z} / I_{z} \\
R_{\text {out }}=\frac{R_{1}+R_{2}}{1-g_{m} * R_{1}}=\frac{(4)+(6)}{1-(1.5) *(4)}=-2 \Omega
\end{gathered}
$$

We see here that $R_{o} u t$ is negative which means that current flows in the opposite direction of what would normally occur when a voltage is attached to the port.

To find $V_{o c}$, we leave port AB open circuit and find the output voltage as shown below

$$
V_{1}+V_{R 1}-v_{x}=0
$$

and since $V_{R 1}=g_{m} v_{x} R_{1}$, we have

$$
v_{1}+g_{m} v_{x} R_{1}-v_{x}=0
$$

which leads to

$$
v_{x}=\frac{V_{1}}{1-g_{m} R_{1}}
$$

In a similar way, we find a second equation

$$
v_{x}+g_{m} v_{x} R_{2}-v_{o c}=0
$$

and rearranging, we have

$$
v_{o c}=v_{x}\left(1+g_{m} R_{2}\right)
$$

Finally, substituting in for v_{x} found earlier, we have

$$
\begin{gathered}
v_{o c}=\left(\frac{1+g_{m} R_{2}}{1-g_{m} R_{1}}\right) V_{1} \\
v_{o c}=\frac{1+g_{m} * R_{2}}{1-g_{m} * R_{1}} * V_{1}=\frac{1+(1.5) *(6)}{1-(1.5) *(4)} *(20)=-40 \mathrm{~V}
\end{gathered}
$$

Finally, we can find $i_{s c}$ though the relationship, $i_{s c}=v_{o c} / R_{\text {out }}$

$$
i_{\text {sc }}=v_{\text {oc }} / R_{\text {out }}=(-40) /(-2)=20 \mathrm{~A}
$$

So the 2 equivalent circuits are ...

Thevenin Equivalent

Norton Equivalent

Question 5

Find the Norton equivalent circuit and the Thevenin equivalent circuit for the circuit shown below between nodes A and B. Use $i_{s c}$ for the short circuit output current and $v_{o c}$ for the open circuit output voltage and $R_{\text {out }}$ for the output resistance.

Solution

To find $R_{\text {out }}$ at port AB, we zero independent sources which in this case is V_{1}, so we set $V_{1}=0$ which is equivalent to V_{1} being a short circuit. Then we apply a voltage V_{z} at port AB and determine the resulting current, I_{z} as seen below. The output resistance is then defined to be $R_{\text {out }}=V_{z} / I_{z}$

Defining V_{Y} as shown (although it is clear here that $V_{Y}=0$ we shall leave it as V_{Y} for generality and then set it equal to zero), we find the current through R_{1} has 2 equations. First, we have

$$
I_{R 1}=g_{m} v_{x}
$$

and second, we have

$$
I_{R 1}=\frac{V_{Y}-v_{X}}{R_{1}}
$$

Combining, we have

$$
\frac{V_{Y}-v_{X}}{R_{1}}=g_{m} v_{x}
$$

Rearranging to find v_{x}, we have

$$
v_{x}=\frac{1 / g_{m}}{\left(1 / g_{m}\right)+R_{1}} \times V_{Y}
$$

So v_{x} is a scaled version of V_{Y} where the scaling is a resistance divider equation between $1 / g_{m}$ and R_{1}.
In this case, $V_{Y}=0$ so $v_{X}=0$. Since $v_{x}=0$, then $I_{g m}=0$ so $I_{z}=0$. Since $I_{z}=0$,

$$
R_{\text {out }} \rightarrow \infty
$$

Since $R_{\text {out }} \rightarrow \infty$, it makes little sense to find $v_{o c}$ as that will also go to ∞.

$$
v_{o c} \rightarrow \infty
$$

For $i_{s c}$, we use the circuit below

First, we can find v_{x} from the general equation we found above

$$
v_{x}=\frac{1 / g_{m}}{\left(1 / g_{m}\right)+R_{1}} * V_{1}=\frac{1 /(0.125)}{(1 /(0.125))+(5)} *(10)=6.154 \mathrm{~V}
$$

Next, we have $i_{s c}=-l_{g m}$ leading to

$$
i_{s c}=-g_{m} * v_{x}=-(0.125) *(6.154)=-0.7692 \mathrm{~A}
$$

So the 2 equivalent circuits are ...

