Problem Set 3 - Cascode

Question 1

Given a two-stage common-source amplifier where the biasing current sources I_{1} and I_{2} have output resistances equal to those of M_{1} and M_{2} respectively, determine an expression for the voltage gain, v_{o} / v_{s}, in terms of $g_{m 1}, g_{m 2}, r_{o 1}$ and $r_{o 2}$.

Solution

Looking at the first stage, and defining v_{1} to be the small signal voltage at the drain of M_{1}, we have an output impedance at v_{1} given by

$$
r_{\text {out } 1}=r_{o 1} \| r_{l 1}=r_{o 1} / 2
$$

since it was given that the output impedance of I_{1} is equal to $r_{o 1}$.
As a result, we get a voltage transfer function of:

$$
v_{1} / v_{s}=-g_{m 1} r_{o u t 1}=-g_{m 1} r_{o 1} / 2
$$

Looking at the second stage, we get a voltage transfer function of:

$$
v_{o} / v_{1}=-g_{m 2} r_{o u t}=-g_{m 2} r_{o 2} / 2
$$

As such, the total transfer function is:

$$
\begin{gathered}
v_{o} / v_{s}=\left(v_{1} / v_{s}\right)\left(v_{o} / v_{1}\right)=\left(g_{m 1} g_{m 2} r_{o 1} r_{o 2}\right) / 4 \\
v_{o} / v_{s}=\left(g_{m 1} g_{m 2} r_{o 1} r_{o 2}\right) / 4
\end{gathered}
$$

Question 2

Given transistor M_{1} which has $\mu_{n} C_{o x}=240 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda_{n}^{\prime}=50 \mathrm{~nm} / \mathrm{V}, V_{t}=0.5 \mathrm{~V}, W=1 \mu \mathrm{~m}$, and $L=200 \mathrm{~nm}$:
a) Ignoring any DC current in R_{2} and assuming $r_{0} \rightarrow \infty$, determine $V_{G S}$.
b) Determine the DC current in R_{2}, determine $V_{D S}$, and justify your neglection of the DC current when calculating $V_{G S}$ in part a).
c) Determine the small-signal voltage gain $v_{o} / v_{i n}$. (Assume an ideal current source)
d) Assuming the negative swing of the output limits the overall output swing, what is the min output voltage, max output voltage and output peak-to-peak swing?
e) What is the corresponding input amplitude, max and min voltages at the gate?

Solution

a) Assuming all the current goes through the channel and none goes into R_{2} since it is so large:

$$
\begin{gathered}
I_{D}=0.5 \mu_{n} C_{o x}(W / L) V_{o v}^{2} \\
V_{\text {ov }}=\operatorname{sqrt}\left(2 * I_{D} /\left(\mu_{n} C_{o x} *(W / L)\right)\right)=\operatorname{sqrt}(2 *(200 e-6) /((240 e-6) *((1 e-6) /(200 e-9))))=0.5774 \mathrm{~V}
\end{gathered}
$$

$$
V_{G S}=V_{o v}+V_{t}=(0.5774)+(0.5)=1.077 V
$$

b) Rearanging the voltage division rule: $V_{G S}=V_{D S} * R_{1} /\left(R_{1}+R_{2}\right)$

$$
\begin{gathered}
V_{D S}=V_{G S}+R_{2} * V_{G S} / R_{1}=(1.077)+(3 e 6) *(1.077) /(2 e 6)=2.693 \mathrm{~V} \\
V_{D S}=2.693 \mathrm{~V}
\end{gathered}
$$

As such, the current in R_{2} is:

$$
I_{F B}=V_{D S} /\left(R_{1}+R_{2}\right)=(2.693) /((2 e 6)+(3 e 6))=538.7 \mathrm{nA}
$$

This is quite small compared to $I_{D 1}$ so ignoring this current in part (a) is justified.
c) First, g_{m} and r_{o} are calculated:

$$
\begin{gathered}
g_{m}=2 * I_{D} /\left(V_{G S}-V_{t}\right)=2 *(200 e-6) /((1.077)-(0.5))=692.8 \mu \mathrm{~A} / \mathrm{V} \\
r_{o}=L /\left(\lambda_{n}^{\prime} * I_{D}\right)=(200 e-9) /((50 e-9) *(200 e-6))=20 \mathrm{k} \Omega
\end{gathered}
$$

Second, using KCL:

$$
\left(\left(v_{o}-v_{i n}\right) / R_{2}\right)+\left(g_{m} v_{i n}\right)+\left(v_{o} / r_{o}\right)=0
$$

$$
\begin{aligned}
v_{o} / v_{i n}=\left(1 / R_{2}-g_{m}\right) /\left(1 / R_{2}+1 / r_{o}\right)= & (1 /(3 e 6)-(692.8 e-6)) /(1 /(3 e 6)+1 /(20 e 3))=-13.76 \mathrm{~V} / \mathrm{V} \\
& v_{o} / v_{i n}=-13.76 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

d) For M_{1} to remain in the active region, we require that $V_{D S} \geq V_{o v}$. We can also write this condition as

$$
V_{D}-V_{S} \geq V_{G}-V_{S}-V_{t}
$$

or equivalently

$$
V_{D} \geq V_{G}-V_{t}
$$

In other words, the drain voltage must stay higher than the gate voltage minus the threshold voltage for the device to remain in the active region.

Now let us write $V_{G 1}$ as $V_{G}+\Delta V_{G}$ and $V_{D 1}$ as $V_{D}+\Delta V_{D}$ where V_{G} and V_{D} are the bias voltages for the gate and drain respectively
So we have the requirement
$V_{D}+\Delta V_{D} \geq V_{G}+\Delta V_{G}-V_{t}$
Now, define $A_{v} \equiv v_{o} / v_{i n}$ and from small-signal analysis, $A_{v} \equiv \Delta V_{D} / \Delta V_{G}$ or $\Delta V_{G}=\Delta V_{D} / A_{v}$.
Putting this into the above equation, we have
$V_{D}+\Delta V_{D} \geq V_{G}+\left(\Delta V_{D} / A_{v}\right)-V_{t}$
and setting it to equality to find the $\max \Delta V_{D}$ (which is the min $V_{D 1}$), we have
$\Delta V_{D}\left(1-1 / A_{\nu}\right)=V_{G}-V_{t}-V_{D}$
From this, we can solve for ΔV_{D}

$$
\Delta V_{D}=\left(V_{G}-V_{t}-V_{D}\right) /\left(1-\left(1 / A_{v}\right)\right)=((1.077)-(0.5)-(2.693)) /(1-(1 /(-13.76)))=-1.973
$$

This gives the max output peak-to-peak output swing of

$$
\begin{gathered}
V_{o, p p}=2 *\left|\Delta V_{D}\right|=2 *|(-1.973)|=3.945 \mathrm{~V} \\
V_{o, \min }=V_{D}+\Delta V_{D}=(2.693)+(-1.973)=0.7207 \mathrm{~V} \\
V_{o, \max }=V_{D}-\Delta V_{D}=(2.693)-(-1.973)=4.666 \mathrm{~V}
\end{gathered}
$$

e) The maximum input swing at the gate is related by:

$$
V_{G, p p}=V_{o, p p} /\left|A_{V}\right|=(3.945) /|(-13.76)|=0.2868 \mathrm{~V}
$$

Since the input voltage, V_{G} is set to a dc bias of $V_{G S}=1.077 \mathrm{~V}$, the $\mathrm{min} / \mathrm{max}$ values at the gate are

$$
\begin{aligned}
& V_{G, \min }=V_{G S}-V_{G, p p} / 2=(1.077)-(0.2868) / 2=0.934 \mathrm{~V} \\
& V_{G, \max }=V_{G S}+V_{G, p p} / 2=(1.077)+(0.2868) / 2=1.221 \mathrm{~V}
\end{aligned}
$$

Question 3

In a MOS cascode amplifier, the cascode transistor is required to raise the output resistance by a factor of 40 over that of a non-cascode amplifier. If the transistor is operated at $V_{o v}=0.2 \mathrm{~V}$, what must its λ_{n} be? If the process technology specifies λ_{n}^{\prime} as $50 \mathrm{~nm} / \mathrm{V}$, what channel length must the transistor have?

Solution

Let $K \equiv 40$
A cascode current source increases the output resistance by a factor of $g_{m 2} r_{o 2}$ compared to a noncascode current source. And since $g_{m}=2 I_{D} / V_{o v}$ and $r_{o}=L /\left(\lambda_{n}^{\prime} I_{D}\right)$ we have

$$
K=g_{m 2} r_{o 2}=\frac{2 L}{\lambda_{n}^{\prime} V_{o v}}
$$

so

$$
\begin{gathered}
\lambda_{n}=\lambda_{n}^{\prime} / L=2 /\left(K V_{\text {ov }}\right) \\
\lambda_{n}=2 /\left(K * V_{\text {ov }}\right)=2 /((40) *(0.2))=0.25 \mathrm{~V}^{-1}
\end{gathered}
$$

and if $\lambda_{n}^{\prime}=50 \mathrm{~nm} / \mathrm{V}$, then

$$
L=\lambda_{n}^{\prime} / \lambda_{n}=(50 \mathrm{~nm} / \mathrm{V}) /\left(0.25 \mathrm{~V}^{-1}\right)=200 \mathrm{~nm}
$$

Question 4

Design the cascode amplifier shown below to obtain $g_{m 1}=1 \mathrm{~mA} / \mathrm{V}$ and $R_{o}=400 \mathrm{k} \Omega$. Use a $0.18-\mu \mathrm{m}$ technology for which $V_{t n}=0.5 \mathrm{~V}, \lambda_{n}^{\prime}=200 \mathrm{~nm} / \mathrm{V}$ and $\mu_{n} C_{o x}=400 \mu \mathrm{~A} / \mathrm{V}^{2}$. Determine $L, W / L, V_{G 1}, V_{G 2}$, and I. Use identical transistors operated at $V_{o v}=0.2 \mathrm{~V}$, and design for the maximum possible negative signal swing at the output. What is the value of the minimum permitted output voltage?

Solution

$g_{m 1}=\frac{2 I_{D}}{V_{\text {ov }}}$, so,

$$
\begin{gathered}
I=I_{D}=g_{m 1} * V_{o v} / 2=(1 e-3) *(0.2) / 2=100 \mu \mathrm{~A} \\
R_{o}=\left(g_{m 2} r_{o 2}\right) r_{o 1}
\end{gathered}
$$

However, if we make $g_{m 2}=g_{m 1}=g_{m}$ and $r_{o 1}=r_{o 2}=r_{o}$, we can say that:

$$
r_{o}=\operatorname{sqrt}\left(R_{o} / g_{m 1}\right)=\operatorname{sqrt}((400 e 3) /(1 e-3))=20 \mathrm{k} \Omega
$$

Since $r_{o}=\frac{L}{\lambda_{n}^{\prime} I_{D}}$, we have

$$
L=\lambda_{n}^{\prime} * I_{D} * r_{o}=(200 e-9) *(100 e-6) *(20 e 3)=400 \mathrm{~nm}
$$

$g_{m}=\sqrt{2 \mu_{n} C_{o x}(W / L) I_{D}}$ so that

$$
\begin{gathered}
W / L=g_{m}^{2} /\left(2 * \mu_{n} C_{o x} * I_{D}\right)=(1 e-3)^{2} /(2 *(400 e-6) *(100 e-6))=12.5 \\
W / L=12.5
\end{gathered}
$$

Since $V_{o v}=0.2 \mathrm{~V}$ for both transistors, we have

$$
V_{G 1}=V_{o v}+V_{t n}=(0.2)+(0.5)=0.7 \mathrm{~V}
$$

For $V_{G 2}$, we want to bias it such that the drain of M_{1} is high enough such that M_{1} remains in the active region which is a value of $V_{o v}=0.2 \mathrm{~V}$. As a result, we set $V_{G 2}$ to

$$
V_{G 2}=V_{o v}+V_{t n}+V_{o v}=(0.2)+(0.5)+(0.2)=0.9 \mathrm{~V}
$$

As a result, the minimum output voltage will be

$$
V_{o, \min }=2 * V_{o v}=2 *(0.2)=0.4 \mathrm{~V}
$$

Question 5

Design the circuit shown below to provide an output of $I_{D}=100 \mu \mathrm{~A}$. Use $V_{D D}=3.3 \mathrm{~V}$, and assume the PMOS transistors to have $\mu_{p} C_{o x}=60 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t p}=-0.8 \mathrm{~V}, L=250 \mathrm{~nm}$, and $\lambda_{p}^{\prime}=-50 \mathrm{~nm} / \mathrm{V}$. The current source is to have the widest possible signal swing at its output. Design for $V_{\text {ov }}=0.2 \mathrm{~V}$, and specify the width, W, of the transistors and of $V_{G 3}$ and $V_{G 4}$. What is the highest allowable voltage at the output? What is the value of output impedance, R_{o} ?

Solution

$$
\begin{aligned}
I_{D 3} & =I_{D 4}=I_{D}=0.5 \mu_{P} C_{o x}(W / L) V_{o v}^{2} \\
W=\left(2 * I_{D} * L\right) /\left(\mu_{P} C_{o x} * V_{o v}{ }^{2}\right) & =(2 *(100 e-6) *(250 e-9)) /\left((60 e-6) *(0.2)^{2}\right)=20.83 \mu \mathrm{~m}
\end{aligned}
$$

For $V_{G 4}$, we can write

$$
\begin{gathered}
V_{S G 4}=V_{o v}+\left|V_{t p}\right|=(0.2)+|(-0.8)|=1 \mathrm{~V} \\
V_{G 4}=V_{D D}-V_{S G 4}=(3.3)-(1)=2.3 \mathrm{~V}
\end{gathered}
$$

For $V_{G 3}$ and maximum swing, we want to set the bias voltage of the drain of M_{4} to be at the edge of the active region, so

$$
\begin{gathered}
V_{S D 4}=V_{o v}=(0.2)=0.2 \mathrm{~V} \\
V_{D 4}=V_{D D}-V_{S D 4}=(3.3)-(0.2)=3.1 \mathrm{~V} \\
V_{S G 3}=V_{o v}+\left|V_{t p}\right|=(0.2)+|(-0.8)|=1 \mathrm{~V} \\
V_{G 3}=V_{D 4}-V_{S G 3}=(3.1)-(1)=2.1 \mathrm{~V}
\end{gathered}
$$

The highest allowable maximum voltage to keep M_{3} in the active region is

$$
V_{o, \max }=V_{D D}-2 * V_{o v}=(3.3)-2 *(0.2)=2.9 \mathrm{~V}
$$

To find R_{o}, we have

$$
r_{03}=L /\left(\left|\lambda_{p}^{\prime}\right| * I_{D}\right)=(250 e-9) /(|(-50 e-9)| *(100 e-6))=50 \mathrm{k} \Omega
$$

$$
\begin{gathered}
r_{o 4}=L /\left(\left|\lambda_{p}^{\prime}\right| * I_{D}\right)=(250 e-9) /(|(-50 e-9)| *(100 e-6))=50 \mathrm{k} \Omega \\
g_{m 3}=\left(2 * I_{D}\right) / V_{o v}=(2 *(100 e-6)) /(0.2)=1 e-3 \\
R_{o}=g_{m 3} * r_{o 3} * r_{o 4}=(1 e-3) *(50 e 3) *(50 e 3)=2.5 \mathrm{M} \Omega
\end{gathered}
$$

Question 6

For $V_{D D}=1.8 \mathrm{~V}$ and using $I_{\text {ref }}=100 \mu \mathrm{~A}$, it is required to design the circuit below to obtain an output current whose nominal value is $I_{\text {ref }}=100 \mu \mathrm{~A}$.
a) Find R if M_{1} and M_{2} are matched with channel lengths of $L=500 \mathrm{~nm}$, channel widths of $W=4 \mu \mathrm{~m}$, $V_{t n}=0.5 \mathrm{~V}$, and $\mu_{n} C_{o x}=400 \mu \mathrm{~A} / \mathrm{V}^{2}$.
b) What is the lowest possible value for V_{o} ?
c) Assuming that for this process technology $\lambda_{n}^{\prime}=50 \mathrm{~nm} / \mathrm{V}$, find the output resistance of the current source.
d) Find the current change in output current resulting from a +0.5 V change in V_{o}

Solution

a)

$$
\begin{gathered}
I_{o}=I_{D 1}=I_{\text {ref }} \\
I_{D 1}=0.5 \mu_{n} C_{o x}(W / L) V_{o v}^{2} \\
V_{o v}=\operatorname{sqrt}\left(\left(2 * I_{D 1}\right) /\left(\mu_{n} C_{o x} *(W / L)\right)\right)=0.25 \mathrm{~V} \\
V_{D S 1}=V_{G S 1}=V_{o v}+V_{t n}=(0.25)+(0.5)=0.75 \mathrm{~V} \\
R=\left(V_{D D}-V_{G S 1}\right) / I_{\text {ref }}=((1.8)-(0.75)) /(100 e-6)=10.5 \mathrm{k} \Omega
\end{gathered}
$$

b) The lowest V_{o} will be when

$$
V_{o, \min }=V_{o v}=0.25 \mathrm{~V}
$$

c) The output resistance is $r_{o} 3$

$$
r_{o 3}=L /\left(\lambda_{n}^{\prime} * I_{o}\right)=(500 e-9) /((50 e-9) *(100 e-6))=100 \mathrm{k} \Omega
$$

d)

$$
\Delta I_{D}=\Delta V_{o} / r_{o 3}=(0.5) /(100 e 3)=5 \mu \mathrm{~A}
$$

