- **9.17** Find f_T for a MOSFET operating at $I_D = 100 \, \mu A$ and $V_{OV} = 0.2 \, \text{V}$. The MOSFET has $C_{gg} = 20 \, \text{fF}$ and $C_{gd} = 5 \, \text{fF}$.
- **9.20** It is required to calculate the intrinsic gain A_0 and the unity-gain frequency f_T of an n-channel transistor fabricated in a 0.18- μ m CMOS process for which $L_{ov}=0.1$ $L_{ov}=0.1$
- **9.29** In a particular common-source amplifier for which the midband voltage gain between gate and drain (i.e., $-g_m R'_L$) is -29 V/V, the NMOS transistor has $C_{gs} = 0.5 \text{ pF}$ and $C_{gd} = 0.1 \text{ pF}$. What input capacitance would you expect? For what range of signal-source resistances can you expect the 3-dB frequency to exceed 10 MHz? Neglect the effect of R_G . (see Fig. 9.2(a))
- **9.33** A discrete MOSFET common-source amplifier has $R_G = 1 \text{ M}\Omega$, $g_m = 5 \text{ mA/V}$, $r_o = 100 \text{ k}\Omega$, $R_D = 10 \text{ k}\Omega$, $C_{gs} = 2 \text{ pF}$, and $C_{gd} = 0.4 \text{ pF}$. The amplifier is fed from a voltage source with an internal resistance of 500 k Ω and is connected to a 10-k Ω load. Find:
- (a) the overall midband gain A_M (see Fig. 9.2(a)) (b) the upper 3-dB frequency f_H

Ignore pole at output node

- **9.35** The NMOS transistor in the discrete CS amplifier circuit of Fig. P9.3 is biased to have $g_m = 1$ mA/V and $r_o = 100$ k Ω . Find A_{MC} If $C_{or} = 1$ pF and $C_{od} = 0.2$ pF, find f_{HC} .
- **9.44** An amplifier with a dc gain of 60 dB has a single-pole high-frequency response with a 3-dB frequency of 10 kHz.
- (a) Give an expression for the gain function A(s).
- (b) Sketch Bode diagrams for the gain magnitude and phase.
- (c) What is the gain-bandwidth product?
- (d) What is the unity-gain frequency?
- **9.57** An ideal voltage amplifier with a voltage gain of -1000 V/V has a 0.2-pF capacitance connected between its output and input terminals. What is the input capacitance of the amplifier? If the amplifier is fed from a voltage source V_{sig} having a resistance $R_{\text{sig}} = 1 \text{ k}\Omega$, find the transfer function V_o/V_{sig} as a function of the complex-frequency variable s and hence the 3-dB frequency f_t and the unity-gain frequency f_t .

Fig. 9.2(a)

Fig. P9.3

9.60 A CS amplifier that can be represented by the equivalent circuit of Fig. 9.19 has $C_{gs}=2$ pF, $C_{gd}=0.1$ pF, $C_L=2$ pF, $g_m=4$ mA/V, and $R'_{sig}=R'_L=20$ k Ω . Find

the midband gain, $A_{\rm M}$ Use Millers Theorem and then find the estimated pole locations at the input and output nodes.

Fig. 9.19

9.79 Find the dc gain and the 3-dB frequency of a MOS cascode amplifier operated at $g_m=1\,$ mA/V and $r_o=50\,$ k Ω . The MOSFETs have $C_{gs}=30\,$ fF, $C_{gd}=10\,$ fF, and $C_{db}=10\,$ fF. The amplifier is fed from a signal source with $R_{\rm sig}=100\,$ k Ω and is connected to a load resistance of 2 M Ω . There is also a load capacitance C_L of 40 fF.

Use OTC method for finding f_H

9.85 A source follower has $g_m = 5$ mA/V, $r_o = 20$ k Ω , $R_{\rm sig} = 20$ k Ω , $R_L = 2$ k Ω , $C_{\rm gs} = 2$ pF, $C_{\rm gd} = 0.1$ pF, and $C_L = 1$ pF. Find $A_{\rm AR}$ R_o , and $f_{\rm H}$

Use OTC method for finding f_H