9.17 Find f_{T} for a MOSFET operating at $I_{D}=100 \mu \mathrm{~A}$ and $V_{O V}=0.2 \mathrm{~V}$. The MOSFET has $C_{\mathrm{gr}}=20 \mathrm{fF}$ and $C_{\mathrm{gd}}=5 \mathrm{fF}$.
9.20 It is required to calculate the intrinsic gain A_{0} and the unity-gain frequency f_{T} of an n-channel transistor fabricaled in a $0.18-\mu \mathrm{m}$ CMOS process for which $L_{o v}=0.1 \mathrm{~L}$ $\mu_{n}=450 \mathrm{~cm}^{2} / \mathrm{V} . \mathrm{s}$, and $V_{A}^{\prime}=5 \mathrm{~V} / \mu \mathrm{m}$. The device is operated at $V_{O V}=0.2 \mathrm{~V}$. Find A_{0} and f_{T} for devices with $L=L_{\min }, 2 L_{\min }, 3 L_{\min }, 4 L_{\min }$, and $5 L_{\min }$. Present your results in a table.
9.29 In a particular common-source amplifier for which the midband voltage gain between gate and drain (i.e., $-g_{m} R_{L}^{\prime}$) is $-29 \mathrm{~V} / \mathrm{V}$, the NMOS transistor has $C_{g s}=0.5 \mathrm{pF}$ and $C_{g d}=0.1 \mathrm{pF}$. What input capacitance would you expect? For what range of signal-source resistances can you expect the $3-\mathrm{dB}$ frequency to exceed 10 MHz ? Neglect the effect of R_{G}.
(see Fig. 9.2(a))
9.33 A discrete MOSFET common-source amplifier has $R_{G}=$ $1 \mathrm{M} \Omega, g_{m}=5 \mathrm{~mA} / \mathrm{V}, r_{o}=100 \mathrm{k} \Omega, R_{D}=10 \mathrm{k} \Omega, C_{\mathrm{gs}}=2 \mathrm{pF}$, and $C_{8 d}=0.4 \mathrm{pF}$. The amplifier is fed from a voltage source with an internal resistance of $500 \mathrm{k} \Omega$ and is connected to a $10-\mathrm{k} \Omega$ load. Find:
(a) the overall midband gain A_{M}
(see Fig. 9.2(a))
(b) the upper $3-\mathrm{dB}$ frequency f_{H}

Ignore pole at output node

9.35 The NMOS transistor in the discrete CS amplifier

Fig. 9.2(a)

Fig. P9.3
9.60 A CS amplifier that can be represented by the equivzlent circuit of Fig. 9.19 has $C_{g s}=2 \mathrm{pF}, C_{g d}=0.1 \mathrm{pF}$, $C_{L}=2 \mathrm{pF}, g_{m}=4 \mathrm{~mA} / \mathrm{V}$, and $R_{\text {sig }}^{\prime}=R_{L}^{\prime}=20 \mathrm{k} \Omega$. Find the midband gain, A_{M}
Use Millers Theorem and then find the estimated pole locations at the input and output nodes.

Fig. 9.19

> 9.79 Find the de gain and the $3-\mathrm{dB}$ frequency of a MOS cascode amplifier operated at $g_{m}=1 \mathrm{~mA} / \mathrm{V}$ and $r_{o}=50 \mathrm{k} \Omega$. The MOSFETs have $C_{\mathrm{g} s}=30 \mathrm{fF}, C_{\mathrm{gd}}=10 \mathrm{fF}$, and $C_{d b}=10 \mathrm{fF}$. The amplifier is fed from a signal source with $R_{\mathrm{sig}}=100 \mathrm{k} \Omega$ and is connected to a load resistance of 2 $\mathrm{M} \Omega$. There is also a load capacitance C_{L} of 40 fF .

Use OTC method for finding f_{H}

```
9.85 A source follower has }\mp@subsup{g}{m}{}=5\textrm{mA}/\textrm{V},\mp@subsup{r}{o}{}=20\textrm{k}\Omega\mathrm{ ,
R sig}=20\textrm{k}\Omega,\quad\mp@subsup{R}{L}{}=2\textrm{k}\Omega,\quad\mp@subsup{C}{\textrm{g}t}{}=2\textrm{pF},\quad\mp@subsup{C}{\textrm{gd}}{}
0.1 pF, and C C =1 pF. Find A}\mp@subsup{A}{\Deltan}{}\mp@subsup{R}{0}{},\mathrm{ and }\mp@subsup{\textrm{f}}{\textrm{H}}{
    Use OTC method for finding f}\mp@subsup{f}{H}{
```

