Q1. For the circuit of Fig. P1, each transistor has $\left|\mathrm{V}_{\mathrm{ov}}\right|=0.2 \mathrm{~V}$ and $\left|\mathrm{V}_{\mathrm{A}}\right|=10 \mathrm{~V}$ (including the current sources where each are built with a single transistor).
a) Find $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{s}}$ assuming $\mathrm{d} \approx 0$.
b) Find $R_{\text {out }}$.

Q2. For the circuit of Fig. P2, assume $\mathrm{v}_{\mathrm{o}}=0$ for $\mathrm{v}_{\mathrm{s}}=0,\left|\mathrm{~V}_{\mathrm{t}}\right|=0.7 \mathrm{~V},\left|\mathrm{~V}_{\mathrm{A}}{ }^{\prime}\right|=24 \mathrm{~V} / \mu \mathrm{m}$ $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=2 \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=120 \mu \mathrm{~A} / \mathrm{V}^{2}$.

Fig P1
Assume bias currents are ideal.
a) Find V_{o} / V_{s}.
b) Find $R_{\text {out }}$.

Q3. For the circuit of Fig. P3, $\mathrm{R}_{\mathrm{s}}=9 \mathrm{k}$, $R_{L}=1 \mathrm{k}, \mathrm{R}_{1}=10 \mathrm{k}$ and $\mathrm{R}_{2}=90 \mathrm{k}$.
A1 has $82 \mathrm{k} \Omega$ diff $\mathrm{R}_{\text {in }}, 20 \mathrm{~V} / \mathrm{V}$ open circuit diff voltage gain and $3.2 \mathrm{k} \Omega \mathrm{R}_{\text {out }}$.
A2 has $5 \mathrm{k} \Omega \mathrm{R}_{\text {in }}, 20 \mathrm{~mA} / \mathrm{V}$ short circuit transconductance and $20 \mathrm{k} \Omega \mathrm{R}_{\text {out }}$.
A 3 has $20 \mathrm{k} \Omega \mathrm{R}_{\mathrm{in}}, 1 \mathrm{~V} / \mathrm{V}$ open circuit voltage gain and $1 \mathrm{k} \Omega \mathrm{R}_{\text {out }}$.

Fig P2
a) Find V_{o} / V_{s} assuming $d \approx 0$.
b) Find $R_{\text {in }}$ and $R_{\text {out }}$.

Fig P3

