- Q1. For the circuit of Fig. P1, each transistor has $|V_{ov}| = 0.2V$ and $|V_A| = 10V$ (including the current sources where each are built with a single transistor).
- a) Find V_o/V_s assuming $d \approx 0$.
- b) Find R_{out}.
- Q2. For the circuit of Fig. P2, assume $v_o=0$ for $v_s=0$, $\left|V_t\right|=0.7V$, $\left|V_{A'}\right|=24V/\mu m$ $\mu_n C_{ox}=2\mu_p C_{ox}=120\mu A/V^2$. Assume bias currents are ideal.
- a) Find V_0/V_s .
- b) Find R_{out}.

Q3. For the circuit of Fig. P3, $R_s = 9k$, $R_L = 1k$, $R_1 = 10k$ and $R_2 = 90k$.

A1 has $82k\Omega$ diff R_{in} , 20V/V open circuit diff voltage gain and $3.2k\Omega$ R_{out} .

A2 has $5k\Omega$ $\,R_{in}^{}$, $20mA/V\,$ short circuit transconductance and $20k\Omega$ $\,R_{out}^{}$.

A3 has $20k\Omega$ $\,R_{in}^{},\,1V/V\,$ open circuit voltage gain and $1k\Omega$ $\,R_{out}^{}.$

- a) Find V_o/V_s assuming $d \approx 0$.
- b) Find \boldsymbol{R}_{in} and $\boldsymbol{R}_{out}.$

Fig P1

Fig P2

Fig P3