CIRCUIT FAMILIES

1) STATIC CMOS
2) RATIOED CIRCUITS
3) CASCODE VOLTAGE SWITCH LOGIC (CVSL)
4) DYNAMIC CIRCUITS
5) PASS TRANSISTOR CIRCUITS

STATIC CMOS

BUBBLE PUSHING (DEMORGAN'S LAW)
Compute \(F = AB + C \)

Using NANDS \& NORs

Start ANDs + ORs

\[\begin{align*}
A & \quad D \\
B & \quad D \\
C &
\end{align*} \]

\[\begin{align*}
A & \quad D \\
B & \quad D \\
C &
\end{align*} \]

\(\Rightarrow \)

Insert Double Inversions

\[\begin{align*}
A & \quad D \\
B & \quad D \\
C &
\end{align*} \]

\[\begin{align*}
A & \quad D \\
B & \quad D \\
C &
\end{align*} \]

\(\Rightarrow \)

Push Bubbles

Final
- Input ordering delay

\[A \rightarrow 2 \rightarrow B \rightarrow 2 \rightarrow Y \]

Delay from "A" to "Y" less than "B" to "Y".

\[A \text{ input cap = 4} \]

Asymmetric gates

\[A \xrightarrow{\text{reset}} D \xrightarrow{D} Y \]

\[\begin{align*}
Y &= A & \text{reset} &= 0 \\
Y &= D & \text{reset} &= 1
\end{align*} \]

Assuming "A" to "Y" delay critical.

\[\overline{\text{reset}} \text{ to } "Y" \text{ not critical at all} \]

\[\overline{\text{reset}} \]

\[A \text{ input cap } = \frac{4}{3} + 2 = 3 \frac{1}{3} \]

\[A \rightarrow \frac{4}{3} \rightarrow 4 \rightarrow Y \equiv \frac{1}{3} \]
SYMMETRIC NAND

Same delay for "A" and "B" inputs

- RATIO CIRCUITS (previously discussed)

- Static current draw
- Make pull-up "small" so small current draw when output low
CVSL (Cascode Voltage Switch Logic)

Generates both $Y + \overline{Y}$

No static power

(Ratioed Logic)

- Interesting approach but process sensitive makes slower than CMOS
- Slow NMOS, Fast PMOS \Rightarrow Make PMOS small so NMOS can overcome it

Slow PMOS \Rightarrow Slow pull-up

Generally slower than CMOS. More power hungry
Dynamic Circuits

- Requires clock \(\phi \) to operate
- Has precharge phase and evaluation phase
- Output only valid during eval phase
- Output precharged to \(V_{DD} \) during precharge phase
- Fast, no static power, high dynamic power

Inverter

- Footed allows input \("A" \) to be \("1" \) during precharge phase
- Unfooted requires \("A" \) to be \("0" \) during precharge phase
Strict requirement on inputs

- Inputs must be monotonic rising
 one of...
 - Low and stay low
 - Low and rise high
 - High and stay high \(\text{allowed if footed} \)
 - High and go low \(\text{not if unfooted} \)

But not high and go low

Since input is precharged high and cannot go high again if discharged

- Footed allows CMOS gates to drive dynamic gates
- Cannot connect Y directly to another gate as it violates above condition.

- Insert CMOS inverter between gates

$$\Rightarrow \text{Domino Logic (uses dynamic gates)}$$

\[\Phi \quad \Phi \quad \Phi \quad \Phi \quad \Phi \]

\[A \quad A \quad A \quad A \quad A \]

\[B \quad B \quad B \quad B \quad B \]

\[C \quad C \quad C \quad C \quad C \]

\[\text{Domino AND} \quad \text{Domino AND} \]

\[\text{OUT} \]
CAN BUILD MORE COMPLEX GATES

8 - INPUT MULTIPLEXER USING 2
4 - INPUT MUXES

ONE OF S0 -> S7 HIGH
Domino Gates inherently **non-inverting**

- *If last gate can use CMOS inverter*

- *If within domino gates, use dual-rail domino logic*

All input/output signals encoded as a pair of signals

<table>
<thead>
<tr>
<th>SIG H</th>
<th>SIG L</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Precharge</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>"0"</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>"1"</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

Similar to CVSL

NAND

\[Y_L - 0 \]
\[A_L - 1 \]
\[B_L - 1 \]

\[\Phi - 1 \]
- Clock ϕ needs to always run for logic to operate.

- Dynamic power high due to dual-rail and activity factor high due to precharge phase.

- Keepers on eval phase.

- If ϕ stopped, charge leakage on dynamic node can change logic value.

- Use small W_L PMOS transistor to overcome leakage.

![Circuit Diagram]

- K small.
CHARGE-SHARING ERRORS

If node x not precharged but $v_x = 0$ + node v_y precharged to V_{DD}

Charge sharing occurs if $B = 0$

$A = 1$

$v_x = v_y = \frac{C_y}{C_y + C_x} V_{DD}$

Might drop v_y below v_{th} of I_1

And error occurs

- Might precharge all or some internal nodes to reduce this effect