1.4 Sketch a transistor-level schematic for a single-stage CMOS logic gate for each of
the following functions:
 a) \(Y = \overline{ABC + D} \)
 b) \(Y = (\overline{AB} + C) \cdot D \)
 c) \(Y = \overline{AB} + C \cdot (A + \overline{B}) \)

1.6 Sketch a transistor-level schematic of a CMOS 3-input XOR gate. You may assume
you have both true and complementary versions of the inputs available.

1.7 Sketch transistor-level schematics for the following logic functions. You may assume
you have both true and complementary versions of the inputs available.

 a) A 2:4 decoder defined by
 \[
 Y0 = \overline{A0} \cdot \overline{A1} \\
 Y1 = A0 \cdot A1 \\
 Y2 = \overline{A0} \cdot A1 \\
 Y3 = A0 \cdot \overline{A1}
 \]

 b) A 3:2 priority encoder defined by
 \[
 Y0 = \overline{A0} \cdot (A1 + A2) \\
 Y1 = A0 \cdot A1
 \]

1.8 Sketch a stick diagram for a CMOS 4-input NOR gate from Exercise 1.3.

1.11 Figure 1.72 shows a stick diagram of a 2-input NAND gate. Sketch a side view
(cross-section) of the gate from X to X'.

1.13 Draw a transistor-level schematic for the latch of Figure 1.73. How does the sche-
matic differ from Figure 1.30(b)?

1.14 Consider the design of a CMOS compound OR-AND-INVERT (OAI21) gate
computing \(F = (A + \overline{B}) \cdot C \).

 a) sketch a transistor-level schematic

 b) sketch a stick diagram

1.16 A 3-input majority gate returns a true output if at least two of the inputs are true. A
minority gate is its complement. Design a 3-input CMOS minority gate using a
single stage of logic.

 a) sketch a transistor-level schematic

1.17 Design a 3-input minority gate using CMOS NANDs, NORs, and inverters. How
many transistors are required? How does this compare to a design from Exercise
1.16(a)?