## **University of Toronto**

#### Term Test 2

Date - Mar 18, 2009

Duration: 7:15pm - 9pm

ECE334 — Digital Electronics
Lecturer - D. Johns

## ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY

- 1. Assume the parameters on the parameter sheet (last page) unless otherwise stated (mosfets are from a 0.25um CMOS technology)
- 2. Single handwritten aid sheet allowed.
- 3. Only tests written in pen will be considered for a re-mark.
- 4. Grading indicated by []. Attempt all questions since a blank answer will certainly get 0.



### [6] Question 2:



Consider the 5 state "ring oscillator" shown above. The oscillation frequency is given by  $f = 1/(2Nt_d)$  where N is the number of inverters and  $t_d$  is the delay through a single inverter. Use the CMOS parameters on the last page and only account for gate capacitance.

a) Find 
$$f_1$$
 assuming  $W_n = 1 \mu m$  and  $W_p = 2 \mu m$  for each inverter.

$$t_d = \frac{t_d r + t_d f}{2} \qquad CL_1 = \left(2 \times 0.25\right) + (1 \times 0.25) \times 6 f f / \mu m^2$$

$$= 4.5 f f$$

$$R_N = \frac{2.5}{m_N Cox(2)(V_{00} - V_{tN})} \qquad t_d = 1.2 C_L \left(\frac{R_N + R_P}{2}\right)$$

$$= 2.48 k \Omega \qquad t_d = 20 p S$$

$$R_P = \frac{2.5}{m_P Cox(2)p(V_{00} + V_{tP})} \qquad t_d = \frac{1}{20 p S} \qquad t_d$$

b) Find  $f_2$  assuming  $W_n = 4 \mu \text{m}$  and  $W_p = 8 \mu \text{m}$  for each inverter.

$$C_{L2} = 4 \times C_{L_1} = 18 \, \text{fF}$$

$$R_{N2} = \frac{R_{N_1}}{4} + R_{P2} = \frac{R_{P1}}{4}$$

$$= ) + 2 = +1$$

[6] Question 3: Consider an aluminum wire that is  $2\mu m$  above the substrate, is  $0.7\mu m$  in height and has a width of w. Recall:

$$C = \varepsilon_{ox} l \left[ \frac{w}{h} + 0.77 + 1.06 \left( \frac{w}{h} \right)^{0.25} + 1.06 \left( \frac{t}{h} \right)^{0.5} \right] \qquad R = \left( \frac{\rho}{t} \right) \left( \frac{l}{w} \right)^{0.5}$$

Resistivity of Aluminum is 2.8  $\mu\Omega$  • cm

a) For the case of  $w = 0.4 \mu \text{m}$ , find  $R_{\Box}$  ( $\Omega$ /square) and  $C_l$  (fF/ $\mu \text{m}$ ).

$$R_{II} = \frac{e}{t} = \frac{2.8e - 8 \Omega \cdot m}{0.7e - 6 m} = 0.64 \Omega /_{II}$$

$$C_{L} = \mathcal{E}_{ox} \left[ \binom{w}{h} + 0.77 + 1.06 \binom{w}{h} \binom{0.25}{1.06} + 1.06 \binom{t}{h} \binom{0.5}{1.06} \right]$$

$$= 3.9 \times 8.854 e - 12 \left[ 2.317 \right]$$

$$= 80 \text{ pF/m} = 0.08 \text{ fF/mm}$$

b) Repeat a) but for  $w = 1.2 \mu m$ .

$$R_{\Box} = 0.04 \ \Omega / \Box \ AI \ ABOVE$$
 $C_{l} = 3.9 \times 8.854 e^{-12} [2.93]$ 
 $C_{l} = 101 \ PF/m = 0.1 \ FF/m$ 
 $C_{l} = 0.14 F/m$ 

c) Compare the capacitance increase in parts a) and b) and explain what phenomenon causes such a small capacitance increase although the width increased by a factor of three.

FRINGING DOMINATES CAPACITANCE SO A WIDER WIRE HAS SIMILAR CAPACITANCE/M

[6] Question 4: Consider the Schmitt trigger shown below where it is desired to have thresholds at 1.0V and 1.2V..



a) Find the width of either  $M_5$  or  $M_6$  such that the Schmitt trigger has one threshold at

1.2V (only one of these 2 transistors sets this threshold). Ignore body effect.

$$V_{x} = V_{M4} - V_{tN1} = 1.2 - 0.25 = 0.95 V$$

$$V_{tN5}$$

$$I_{03} = I_{05} = \left(\frac{200 e - 6}{2}\right) \left(\frac{1}{0.2}\right) \left(1.2 - 0.25\right)^{2}$$

$$= \left(\frac{200 e - 6}{2}\right) \left(\frac{w_{5}}{0.2}\right) \left(1.9 - 0.95 - 0.25\right)$$

$$W_{5} = \frac{(0.95)^{2}}{(0.6)^{2}} = 2.51$$

b) If the body effect is taken into account, would the thresholds move further apart, move closer together, both move up, both move down or stay the same? Explain.

| STAY THE SAME | SINCE | = THE | BODY  | EFFE | T |
|---------------|-------|-------|-------|------|---|
| WILL INCREASE | BOTH  | Utn,  | * Vtn | 15 B | 7 |
| SAME AMOUNT   |       |       |       |      |   |
| B074.         |       |       |       |      |   |

[6] Question 5: Consider a bank of CMOS registers where 
$$T_{\text{setup}} = 300ps$$
,  $T_{\text{hold}} = 200ps$ ,

$$T_{ccq}=100ps$$
 and  $T_{pcq}=250ps$  . Also assume an average gate delay equals  $T_{\rm gate}=50ps$  .

$$T_{CLK} \ge t_{PCQ} + D + t_{SETUP} = 250 + k(50) + 300$$
  
 $1250 \ge 550 + k(50) = k \le 14$  GATE DELAYS

b) If an internal delay of 50ps is inserted into every register right at the clock input, what is the new  $T_{\rm setup}$ ,  $T_{\rm hold}$ ,  $T_{\rm ccq}$ ,  $T_{\rm pcq}$ ?

$$t_{pcq} = t_{pcq-ol0} + 50ps = 300 ps$$
  
 $t_{ccq} = t_{ccq-ol0} + 50ps = 150 ps$   
 $t_{semp} = t_{semp-ol0} - 50 = 250 ps$   
 $t_{hol0} = t_{hol0-ol0} + 50 = 250 ps$ 

c) If an internal delay of 50ps is inserted into every register right at the "D" input, what is then new  $T_{\text{setup}}$ ,  $T_{\text{hold}}$ ,  $T_{\text{ccq}}$ ,  $T_{\text{pcq}}$ ?

$$t_{PCQ} = t_{PCQ-0L0} = 250ps$$

$$t_{CCQ} = t_{CCQ-0L0} = 100 ps$$

$$t_{SETUP} = t_{SETUP} + 50 = 350ps$$

$$t_{hold} = t_{hold-0L0} - 50 = 150ps$$

ast Manic.

(blank sheet for scratch calculations)

Just I (ullite)

**Parameter Sheet** 

#### ECE334F

## **Digital Electronics**

# Physical Constants;

 $\phi_T = kT/q = 26 \text{mV (at 300K)}; \ k = 1.38 \times 10^{-23} \text{ J/K}; \ T = 300 \text{ K (at 27° C)}; \ q = 1.6 \times 10^{-19} \text{ C};$ 

$$\varepsilon_o = 8.854 \times 10^{-12} F/ \text{ m}; \ k_{ox} = 3.9; \ \phi_s = 2 |\phi_F| = 0.6 V$$

MOS Transistor; CMOS basic parameters. Channel length =  $0.25 \mu m$ ,  $m_i = 0.5$ ,  $\phi_o = 0.9 \text{V}$ 

|      | V <sub>T0</sub> (V) | γ<br>(ν <sup>0.5</sup> ) | μ $C_{ox}$ (μ4/ $V^2$ ) | λ<br>( V <sup>-1</sup> ) | $C_{ox}$ $(fF/\mu m^2)$ | C <sub>o</sub><br>(fF/ μm) | $C_j$ $(fF/\mu m^2)$ | C <sub>jsw</sub><br>[fF/ µm) |
|------|---------------------|--------------------------|-------------------------|--------------------------|-------------------------|----------------------------|----------------------|------------------------------|
| NMOS | 0.4                 | 0.4                      | 120                     | 0.06                     | 6                       | 0.3                        | 2                    | (see<br>below)               |
| PMOS | -0.4                | 0.4                      | 30                      | 0.1                      | 6                       | 0.3                        | 2                    | (see<br>below)               |

 $V_{T0}$  is the threshold voltage with zero bulk-source voltage.

γ is used to account for non-zero bulk-source voltage.

 $\mu C_{ox}$  is the transistor current gain parameter.

 $\lambda$  is to account for the transistor finite output impedance (channel length modulation).

 $C_{ox}$  is the gate capacitance per unit area.

 $C_o$  is the gate overlap capacitance per unit length.

 $C_i$  is the drain/source junction capacitance per unit area.

 $C_{jsw}$  is the drain/source junction capacitance per unit length to account for drain/source perimeter capacitance. Assume this value is the same for all perimeters **except under the gate**.

$$C_{isw} = 0.3 fF/ \mu m$$
 for both NMOS and PMOS

 $C_{iswg}$  is the drain/sourc junction capacitance per unit length under the gate.

 $C_{jswg} = 0.15 \, fF/ \, \mu m$  for both NMOS and PMOS