University of Toronto

Lab 4:

Preparation

1. $A_{d}=-g_{m 4}\left(r_{o 4} \| r_{o 2}\right)$
$A_{c}=-g_{m 4} r_{o 4} \frac{1 / g_{m 2}}{2 g_{m e 4} r_{o 4} r_{o 5}+1 / g_{m 2}} \approx-1 / 2 g_{m 2} r_{o 5}$
$\mathrm{CMRR}=A_{d} / A_{c}=2 g_{m 2} g_{m 4} r_{o 5}\left(r_{o 4} \| r_{o 2}\right)$
$f_{3 \mathrm{~dB}}=1 / 2 \pi\left(r_{o 4} \| r_{o 2}\right) C_{L}$
2. $A_{d}=-65.1=36.3 \mathrm{~dB}$
$A_{c}=-1 / 231.8=-47.3 \mathrm{~dB}$
CMRR $=83.6 \mathrm{~dB}$
$f_{3 d B}=5.18 \mathrm{kHz}$
3. $V_{C M}=V_{o v 5}+V_{g s 4}=667 \mathrm{mV}+1.18 \mathrm{~V}=1.85 \mathrm{~V}$
4. $v_{d}=v_{i p}-v_{i n}=v_{s}-0=v_{s}$
$v_{c}=\left(v_{i p}+v_{i n}\right) / 2=\left(v_{s}+0\right) / 2=v_{s} / 2$
5. $v_{o}=A_{d} v_{d}+A_{c} v_{c}=A_{d} v_{s}+A_{c} v_{s} / 2=v_{s}\left(A_{d}+A_{c} / 2\right) \approx A_{d} v_{s}$

Then, $A_{d} \approx v_{o} / v_{s}$.
6. See Figures 1 and 2.
$A_{d}=33.6 \mathrm{~dB}$
$A_{c}=-44.4 \mathrm{~dB}$
$\mathrm{CMRR}=78.0 \mathrm{~dB}$

Lab

- The measured common-mode gain should be much more than calculated/simulated due to the transistor mismatch.
- The averaging feature of the oscilloscope may be needed to show the small input voltage required to prevent clipping of the output. Proper triggering is essential for correct measurements. Use a reliable clean signal (either the opamp output or sync out of the signal source) as a trigger source.

