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ABSTRACT

Recently, a new architecture was proposed which utilizes the
concept of time-interleaving in oversampling converters.
Using this architecture, one is theoretically able to achieve
higher resolutions by using an array of interconnected
modulators without increasing the oversampling ratio or
order of the modulators. Alternatively, the same resolution
can be maintained with wider bandwidth input signals. This
paper presents the first experimental results on this new
family of modulators. As well, the practical issue of
component mismatch for these converters are studied and
some suggestions are made to alleviate the effects of this
problem.
L. INTRODUCTION

The speed and resolution of data converters are of utmost
importance in mixed digital-analog applications. The
emergence of new applications, such as HDTYV, accelerates
the need for the implementation of high-speed and
high-resolution converters. In the area of high speed
converters, Nyquist rate designs are the popular choice
whereas in the high-resolution domain, oversampling
modulators are the most favorable ones. Up to now, the latter
one, due to the nature of oversampling, is suitable for lower
speed applications such as digital audio.

To realize faster oversampling converters, a new architecture
was recently proposed where the idea of time-interleaving
was exploited [1]. The time-interleaving concept was
proposed for Nyquist-rate converters in the early 80’s [2]. In
this paper, time-interleaved oversampling modulators are
studied from a practical point of view. Specifically, the
practical issue of performance deterioration due to
component mismatch is considered in detail.

The paper organization is as follows. In section 2, the
theoretical background of time-interleaved oversampling
converters is presented. Section 3 covers an illustrative
example as well as experimental results for a second-order
time-interleaved D/A converter. In section 4, the problem of
component mismatch and its effect on aliasing is addressed.
Also, methods for reducing the amount of aliasing due to
component mismatch are briefly discussed. Finally,
conclusions are given in section 3.

I1I. TIME-INTERLEAVED ARCHITECTURE
A time-interleaved structure is basically a multi-rate system
in which parallelism is exploited to reduce the speed
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requirement on each processing eclement. Consider the
following single-input single-output transfer function
Y(z) = H(z)X(z). An equivalent system with the same
input-output transfer function is depicted in Fig. 1, in which
H(z) is an MxM transfer function matrix, where H;;
represents the contribution of the j’th input into the i’th
output. The general structure of H (z) is as follows,

EO(Z) El (2) E2(Z) EM—I(Z)
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in which the elements of the first row of H(z) are type 1
poly-phase components of H (z) , or mathematically,
M-1

Hz) = Y 2E; (™) )

1=0

The above realization is referred to as block digital filtering
[3]. Now consider the general interpolative AX architecture
as shown in Fig. 2(a). Using the equivalent block digital filter
H;(2) instead of H,(z) and applying several topological
identities on the structure (using a linear model for the
quantizer), one derives the proposed architecture shown in
Fig. 2(b). Note that the proposed structure is in fact a
multi-rate nonlinear system and as far as authors are aware
this is the first reported application of such a system. Also
note that, the same procedure is applicable to other AZ
structures such as error-feedback or cascade-of-integrators
topologies. In fact in [1], simulation results were given for a
second-order modulator based on cascade of integrators
topology.

II1. Illustrative Example and Experimental Results
We illustrate the design procedure of a second-order
time-interleaved D/A in this section. An error-feedback
topology as depicted in Fig. 3(a) is chosen for this purpose.
The feedback transfer function is H(z) = -2z +z72,

Assuming a time-interleaving factor of two (i.e. M = 2), one

has the following polyphase components for H(z):
Ey(2) = 27" and E, () = -2. Hence,
— ~1
Haz = |7 ~ 3)
—2771 77t
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Based on the derived H (z), the equivalent time-interleaved
structure is derived and shown in Fig. 3(b). This architecture
was implemented on an FPGA chip and tested with the
following experimental setup. A DAT machine generates a 1
kHz 16 bit digital signal sampled at 44.1 kHz. The data is
interpolated 8 times by a simple zero-order hold which is
interleaved by two in the case of a time-interleaved
modulator. Hence the final clocks for the conventional and
time-interleaved modulators are 352.8 kHz and 176.2 kHz
respectively. It is also worth mentioning that the interpolator
section can be designed in a time-interleaved fashion as well,
resulting in the clocking frequency in the interpolation
portion of time-interleaved modulator also being 176.2 kHz
(Fig. 3(b)). In fact, the only circuitry clocked at 352.8 kHz is
the final demultiplexor bringing the two outputs back into
one bitstream.

- To make a fair comparison, a conventional second-order
modulator was also tested. Fig. 4 shows the output spectrums
of the two designs when both are clocked at the same rate.
Here, one can see that the time-interleaved modulator has
15dB better SNR as expected by theory. In fact the two
parallel modulators inside a time-interleaved structure work
as one modulator clocked at twice the rate.

IV. Mismatch Analysis of Block Digital Filtering
Block digital filtering is based on perfect aliasing
cancellation. Therefore, any deviation of Hy;’s from their
ideal values is reflected into aliasing generation. Such
deviations could be due to coefficient mismatches if the
block filter is built with analog components (i.e. SC filters).
Thus an architecture based on block digital filters, such as
time-interleaved AX converters, would also have the same
problem. For example, in a time-interleaved AX A/D
converter, the SC modulator block will incur some
mismatching whereas the digital decimation block would be
mismatch free. Conversly, in a time-interleaved AX D/A
converter, the digital modulator behaves ideally whereas the
analog post-filtering block will suffer from mismatching. In
this section an attempt has been made to compute the effect
of mismatching on the overall performance of a block digital
filter.

Consider Fig. 1 again. The input-output relation is as follows.

M 1
Y(z) = = Z X (zWh z W‘”‘ 2 z_kz M=1=p (M @)
l (}2 k=0 s=0
where W = ¢ 737 . Using the following notations,
X = [X(@,X(@W), .., X (WM %
W= (W Zs (6)
V= Vo2,V (2 Vy_ D] Q)
A =200 ®)
where V, () = 3 2 M 179n (M), and Wt is

complex conjugate of W, one can rewrite (4) in its matrix
form as

Y(2) =X (A2 )
If there is no mismatch then,
A" = [H(2),0,...,0] (10)

and hence, Y(z) = X(2)H(2).
However, in presence of mismatch one can write,

hy 1 (2) = B, 4 (2) + Ak, 4 (2) an
where h‘ £(2) is the ideal term and Ahg ,(2) is the error
term. Insertmg (11) into (4), we have

Y(2) = X(2)H(2) +X (2)AA(2) (12)
in which, 34 () = W& ﬁ}’ ) and
M-1
AV, (2) = Y M A (M) (13)
s=0 ’
AN (D) = = z W"lkAVk(z) (14)
Hence, the input-output relatlon can be written as
Y(z) = (H(2) +AA,(2) YX(z) +L(2) (15)

M-1
where, L(2) = 3, X (zW)AA,(2) are the aliasing terms. In
other words, aliased versions of the input spectrum
(X (zW") ’s) will first get attenuated by AA,(z) and then fold
back into the band of interest. Hence, it is important to study
AA,(z) more thoroughly. While equation (15) is in its most

general form, more insightful results can be driven for a
special case where H(z) is an FIR filter. In this case,
Ak (M) = 2 a

o ks ka7 Where N, is the order of

each FIR term in H(2), a ’s are the mismatch ratios and

l
h.\'kn

s, k,n
s are the ideal coefficients. Hence,

(16)
h —Il
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1M 1 N =1

AA,(2) =—ZW‘“‘"‘Z ~(M-1-5) Z a
k—0 s=0 n=0

In the context of low-pass oversampling converters only the

amount of aliasing around DC is important. Hence, the
characteristic of AA,(z) is only important around DC or
z = 1. Therefore, we focus our study on AA, (1) which is
L M- IkM—le,k_l .
AA (1) = M 2 w Z Z as,k,nhf\',k.n
k [} s=0 n=0
Knowing that a _, s (mismatch ratios) are random

variables, one can conclude that |AA, (1)| s are random
variables too. Recall that |AA, (1)] is the amount of
attenuation applied to the input spectrum before being folded
back into the band of interest around DC. Hence, |AA,(1)] is
a good gauge for performance deterioration of a block digital
structure due to mismatching. In fact the following
corollaries help one to determine the expected and
worst-case values of |AA, (1)| after building a block digital
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structure such as a time-interleaved oversampling converter

in the presence of mismatching.

Corollary 1: If mlsmatch ratios (a

zero mean and have E(as kn

mean, independent, and have

0-2M 1N -1

M Z Z (hs k, n
: 0 n=0

Proof: Only the proof for second part is given here. The

proof for AA,(1) being zero mean is straightforward

o ka S) are independent
) = c , then AA, (1) ’s are zero

E(JaA (D)D) = (8)

E(AA, (I)AA (1)) _._i 2 ZW—-(II:HI:)Z

K0 2 =P —o
N“-IN
e 0 ;E(asknskn)hsknh;kn (19)
Knowing that o, , ,’s are independent we conclude:
N, -1 (20)
E(AA(1)AA, (1) ) = — Z k- z 2 G
s=0 n=0

N—l

2 (hs,k n

the coefficients of row number k of H(z). This double
summation is independent of & due to pseudocirculant nature
of H (z) . Hence, we conclude

in which is the square summation of all

0'2M 1N, -1
S A AR EY.
. s=0 n=0
E(AA(DAAL (1)) = 21
0 otherwise
Corollary 2: If a . n€ [-A,A] and M is even, then
M-1N, -1
Max|AA, ()| = A X 2 4L 22)
s=0 n=0

Proof: Considering W™'* as vectors bisecting unit circles into
M equal sectors, the maximum of |AA, (D)) is when all the
contributing vectors are in the same direction and with
maximum amplitude. This happens when ! = M/2, where
only vectors of 1 and —1 are participating in (17). Using
maximum positive coefficients for 1 and minimum negative
coefficients for —1 one ends up to (22).
Corollary 3:If a_, ’s are zero mean, independent Gaussian
random variables, then [AA ()] and £A,(1) have Rayleigh
and uniform distribution respectively.
Proof: AA (1) can be written as
M-1/M-1N, -1
AA (1) = i E ( Yy ¥ ax’k,nhi’k,n)cosanIk+
k=0\s=0 n=0

Mo 1M 1N, =1 2mik
MZ( Z asknhskanm M

s5=0 n=

The real and imaginary parts are linear combination of
Gaussian random variables, hence they are Gaussian as well.
Also they are uncorrelated with respect to each other and the
variance of each of them is

(23)

431

M- 1N -1
2 Z Z (hs k, n
o}, = of, = o = —=Lr5h (24)
Hence, p = |AA,(1)| is a random variable with the

following Rayleigh distribution [4]

p2
Lo =2 p20 (23)
c
and 6 = £AA, (1) is uniformly distributed as
fo(0) = % 0<8<2n (26)
Also, using (25) it can be concluded that
1
P{‘AAI(I)‘SG '210g(m)} =p 27N

Example: Consider H(z) = (1-z7)>(1+z7"), M =2 and
’s zero mean Gaussian i.i.d. with o, = 0.01. Hence,

_ ~1 -1
A = 1-z ~-1+z
4?2 1=

and z 2 hs kn = 4. After performing a Monte Carlo
s=0 n=0

simulation for 100 times the pdf shown in Fig. 5 is obtained.

The theoretical pdf is also depicted on the same figure and

shows good agreement. Also, according to corollary 3, with

a probability of 99%, |AA, (1)| <-28.54B. Based on the 100

simulations, Max |AA | is —284B while the other 99 values

are less than -28.54dB which shows good agreement with
theory. In summary, if the modulator’s coefficients are
mismatched by around 1%, the quantization noise in the
vicinity of f,/2 will be attenuated by at least —28.5dB before
being aliased back to the band of interest in 99% of times.
Finally, the expected value of alias attenuation,
E(|AA,(1)]%) . is found to be ~33.54B based on simulation
and -37dB according to theory. Again, both results are in
good agreement with each other.

In summary, any component mismatching will cause certain
parts of the spectrum (around 2nk/M, k = 1,...,M—1) to be
aliased back into the band of interest after going through
some attenuation the amount of which is determined by the
mismatch ratio (c,). To alleviate this effect, the spectrum
should be shaped in such a way that it has very little energy
around 2nk/M. Two approaches are presented here to serve
this purpose for a time-interleaved D/A. In the first approach
a post digital filter with transfer  function
P(2) :_1+z_1+...+z_(M_1) will generate zeros at
z, = €™M for k = 1,..., M~ 1. This post digital filter can
also be implemented in block form. One problem with this
approach is that the output of such a filter is a multi-bit one
and hence one requires a multi-bit D/A in the design. The
second approach is to include these zeros in the noise
transfer function of the modulator directly which in turn
increases the complexity of the modulator block and

as, kon

(28)
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somewhat degrades SNR. As an example consider a second (b)
order noise transfer function NTF(z) = (1-z"')° and
M=2, By modifying it into

Hy(2)
MxM

Block :
Filter | _r

NTF, () = (1-21? (1+77), a zero is inserted at z = -1,
but at the same time the in-band noise would be 64B more
powerful than that of the previous case due to DC gain of
1+z7%. To compensate this extra DC gain of 2, a second zero
at 1/2 is introduced. Finally, the suggested noise transfer
function would be
NTF, () = (1-79 (1+27Y) (1-771/2).  According to
simulation, using the final NTF, (z) will still cause a 34B
loss in SNR in comparison to NTF(z) = (1-z")°. The
authors suspect that increasing the order of the modulator
causes the one bit quantizer to be overloaded more often and

y(n-M)

Fig. 2 Interpolative AX structure. (a) Conventional structure
(b) Time-interleaved structure

thus reduces thé¢ SNR. Note that the second approach is y(m
applicable for a time-interleaved A/D as well. i
V. CONCLUSION

Component mismatches in the design of recently reported
time-interleaved oversampling converters were discussed
and experimental results were given for a second-order x
time-interleaved D/A  modulator. The problem of
mismatching was addressed and analytical results were given
to estimate the amount of aliasing for a block digital filter,
particularly for an FIR structure. Finally, a method was
suggested to alleviate the effect of aliasing by reducing the
spectrum energy in the vicinity of those parts of spectrum
which would be aliased back into the band of interest.
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