

Overview

 What is Google Search?

 Life of a Search Query

 Indexing the Web

 Classic Google
 PageRank

 Google Now
 Improving Speed (MapReduce)

 Improving Results

 Reducing Costs

 Related Topics

IN

Keywords, Phrases

OUT

Relevant, Quality Results

Google Strengths

 Extremely fast results

 Highly relevant results

 Expertise in storing and processing

enormous data sets (Petabytes)

Life of a Search Query

 Web Server

 Communicates with

user‟s browser

 Index Server

 Translates keywords

to relevant results

 Doc Server

 Loads the page

snippet shown to user

Decompose Query

 Query broken into keywords

 Canonicalization

 Minimal punctuation (keep hyphen)

 Normalize casing

 Spell checking

 Match keyword strings with Lexicon

database to get WordIDs

This, is a query! -> this is a query -> #2 #54 #3 #9285

Introduction to Data Structures

The Inverted Index

 Keyword WordID gives a list of documents and

each occurrence of the keyword in document

 These keywords in the documents are called „hits‟

 Will discuss how this is generated later

A „hit‟ in a document

 Describes a match of word in document

 Part of index database

 Annotated with:

 Location in file

 Relative font size (Headers are important)

 IsCapitalized

 Hits for words in document as well as

words in incoming link titles.

Ranking Documents

 Each document has intrinsic quality

scores independent of the query

 If two pages match a keyword,

we want higher ranked one.

 PageRank(TM) is most well known

 We will discuss later

 Google uses 200+ metrics for this

 Most are trade secrets

Back to the Query!

Simple Query

 Look up keyword in inverted index

 For each Document:

 Classify Hits by font size class

 Count number in each size class (clamped)

 Each size class has a weight

 Compute relevance score

 Add documents intrinsic ranking score

 Pick top documents (Relevant + Quality)

Multiple Keywords

 Introduce concept of proximity classes

 “Phrase Match” .. “Not Even Close”

 This allows strong matching of phrases
and proper nouns (names)

 Classify Hits by {Proximity} x {Font Size}

 Walk Index for all keywords at once

 Classify proximity of keywords in each
document

 Compute scores as before

Example

Start With Previous Results

Indexer

PageRank Searcher

Sorter

URL

Sequencing
Crawler Repository

LexiconLinks Index

Generate URL Sequence

Indexer

PageRank Searcher

Sorter

URL

Sequencing
Crawler Repository

LexiconLinks Index

Download the Web

URL

Sequencing
Crawler Repository

Indexer

PageRank Searcher

Sorter

LexiconLinks Index

Decompose Documents

Indexer

PageRank Searcher

Sorter

URL

Sequencing
Crawler Repository

LexiconLinks Index

Invert Index

Indexer

PageRank Searcher

Sorter

URL

Sequencing
Crawler Repository

LexiconLinks Index

PageRank

Indexer

PageRank Searcher

Sorter

URL

Sequencing
Crawler Repository

LexiconLinks Index

Ready to Search

Indexer

PageRank Searcher

Sorter

URL

Sequencing
Crawler Repository

LexiconLinks Index

Indexing Summary

Indexer

PageRank Searcher

Sorter

URL

Sequencing
Crawler Repository

LexiconLinks Index

Classic Google

 Academic version started at Stanford

 Documented in a few papers

 Included the PageRank algorithm

 Fun Fact!

 Stanford University owns the PageRank

patent and Google simply licenses it

 Stanford was given shares of company in

exchange for license, which were sold off for

$330 Million

PageRank Algorithm

PageRank

 Basis of Google‟s original success

 Still used today

 Treat Internet as a graph

 Page is node, Hyperlink is edge

 Use of back links not a new

concept but specific scoring is

Key Ideas

 Internet has natural graph structure

through hyperlinks

 Internet is full of garbage

 Traditional keyword search performs poorly

 Link structure much harder to

manipulate in large ways

 A „good‟ page is one that is cited

often by other „good‟ pages.

Random Walk Model

 PageRank can be understood as a

random walk of the graph

 Pages we end up at most often are the ones

linked by other highly cited pages.

 The probability of ending up at a given

page forms it‟s PageRank

 Ignore problems with cycles for now

PageRank Formula

 R(u) is PageRank of

page u

 Bu is set of incoming

links

 Nv is the number of

outgoing links

 c is a constant

slightly smaller than

one. Ignore for now.

PageRank Example

PageRank as Eigenvector

 Consider the Adjacency Matrix

 Normalize values such that the sum of

each column is 1

 Thus each entry in column is 1/N

 Some variants this is non-uniform!

 Compute Principal Eigenvector

 The resultant vector is PageRank values

No Outbound Links Problems

 If we have a cycle with no exits,

PageRank cannot converge.

 Leaf nodes with no outgoing links can also be

problematic.

The Solution

 Introduce a damping factor

 In random walk model, we say that N%

of the time, a random page will be

selected instead of a linked one

 Damping value E is uniform over pages

PageRank (cont)

 Temporarily remove all leaf nodes until

we let algorithm converge, and then

reintroduce them and update their ranks.

 The value is computed iteratively until it

converges within desired threshold

Personalized PageRank

 Proposed in PageRank paper, but not

used by Google.

 If we set the damping function to be

higher pages a user likes, the ranking

will be biased to pages expanded from

that source. This gives a personalized

ranking system.

Google Now

 Google search has rapidly evolved, but
a lot of the details developed since
leaving Stanford remain secrets.

 Fundamentally the search is the same,
but hundreds of new metrics for ranking,
and heuristics for query processing have
been developed.

 We can look at three big facets to see
how things changed: Speed, Quality,
Cost

Improving Speed

 As Google‟s dataset grows, they have

evolved the way they manage certain

big computation tasks.

 One of these tools is MapReduce, which

the search indexer now runs on.

MapReduce

What is MapReduce

 It is a software framework created by

Google for doing data intensive

computations (Petabytes) on huge

clusters of machines (1000‟s).

 Inspired by the map and reduce

functions common to functional

programming.

 Operates on key-value pairs of strings.

Map

 Translates one list of key-value pairs

into another list with appropriate keys.

 User provided function takes a single

pair at a time and returns a list of zero or

more key-value pairs.

 list<k,v> user_map(k,v)

Reduce

 Combines all values with a given key

into a new list of values

 list<v> user_reduce(k,list<v>)

Example – Word Frequency

map(key, value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, 1);

reduce(key, list<values>):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += v;

Emit(result);

MapReduce Benefits

 If problem can be stated as map reduce,

it is extremely parallel

 The framework provides mechanisms to

distribute data as needed.

 The framework assigns jobs to

computers automatically.

 The framework provides automatic fault

detection and failover

Other Examples

 Distributed Grep

 Inverted Index

 Distributed Sort

Improving Quality

Quality of Results

 There is constant work by Google to

improve results with new metrics

 They have a wide variety of additional

sources of data to utilized in creating

results:

 Links previous searches clicked

 Adwords detects how often a page is viewed

Threats to Search Quality

 There is constant interest in

manipulating Google to increase the

presence of people‟s websites.

 Original PageRank was extremely

effective against manipulation, but as

things like botnets grow, manipulation

attempts get bigger.

 Ranking algorithms attempt to detect link

farming automatically and penalize results

Reducing Cost

Costs Reduction Measures

 Some estimate that Google has over

450 000 servers under their control

 Prefer multi-core over high clock

 Prefer cheap hard drives since they will

fail anyways and their systems handle it

 Consumer-grade Intel processors

 Developing own power supplies with

only 12 volt rails to increase efficiency

Related Topics

 Google File System

 Distributed, redundant file system optimized

for huge files

 BigTable

 Google‟s take on databases

 Powers most MapReduce tasks

Advertising and Mixed Motives

“Currently, the predominant business model for commercial search
engines is advertising. The goals of the advertising business model
do not always correspond to providing quality search to users. ...

... In general, it could be argued from the consumer point of view that
the better the search engine is, the fewer advertisements will be
needed for the consumer to find what they want. This of course
erodes the advertising supported business model of the existing
search engines. However, there will always be money from
advertisers who want a customer to switch products, or have
something that is genuinely new. But we believe the issue of
advertising causes enough mixed incentives that it is crucial to have a
competitive search engine that is transparent and in the academic
realm.”

The Anatomy of a Large-Scale Hypertextual Web Search Engine,

Sergey Brin and Lawrence Page

