
1 9 7 9
T u r i n g
A w a r d
Lecture

N o t a t i o n
as a Tool o f T h o u g h t

KENNETH E. IVERSON
IBM T h o m a s J. Watson Research Center

The 1979 ACM 7bring Award was presented to Kenneth E. Iverson by Walter
Carlson, Chairman of the Awards Committee, at the ACM Annual Con-
ference in Detroit, Michigan, October 29, 1979.

in making its selection, the General Technical Achievement Award
Committee cited Iverson for his pioneering effort in programming languages
and mathematical notation resulting in what the computing field now
knows as APL. Iverson's contributions to the implementation of interactive
systems, to the educational uses of APL, and to programming language
theory and practice were also noted.

Born and raised in Canada, Iverson received his doctorate in 1954
from Harvard University. There he served as Assistant Professor of Applied
Mathematics from 1955 to 1960. He then joined International Business
Machines Corp. and in 1970 was named an IBM Fellow in honor of his con-
tribution to the development of APL.

Dr. Iverson is presently with I.P. Sharp Associates in Toronto. He has
published numerous articles on programming languages and has written four
books about programming and mathematics: A Programming Language
[1962), Elementary Functions (1966], Algebra: An Algorithmic Treatment
(1972), and Elementary Analysis (1976).

Author's present address: I. P. Sharp Associates, 2 First Canadian Place, Suite 1900,
Toronto, Ontario MSX 1B3, Canada.

339

ACM
Note
Postscript for this article is available at www.acm.org/awards/ps/a1979-iverson_ps.pdf

The importance of nomenclature, notation, and language as tools
of thought has long been recognized. In chemistry and in botany, for
example, the establishment of systems of nomenclature by Lavoisier
and Linnaeus did much to stimulate and to channel later investigation.
Concerning language, George Boole in his Laws of Thought [1, p. 24]
asserted "That language is an instrument of human reason, and not
merely a medium for the expression of thought, is a truth generally
admitted."

Mathematical notation provides perhaps the best-known and best-
developed example of language used consciously as a tool of thought.
Recognition of the important role of notation in mathematics is clear
from the quotations from mathematicians given in Cajori's A History
of Mathematical Notations [2, pp. 332, 331]. They are well worth reading
in full, but the following excerpts suggest the tone:

By relieving the brain of all unnecessary work, a good notation sets it free to
concentrate on more advanced problems, and in effect increases the mental power
of the race.

A. N. Whitehead

The quantity of meaning compressed into small space by algebraic signs, is another
circumstance that facilitates the reasonings we are accustomed to carry on by their
aid. ~.

Charles Babbage

Nevertheless, mathematical notation has serious deficiencies. In
particular, it lacks universality, and must be interpreted differently
according to the topic, according to the author, and even according to
the immediate context. Programming languages, because they were
designed for the purpose of directing computers, offer important
advantages as tools of thought. Not only are they universal (general-
purpose), but they are also executable and unambiguous. Executability
makes it possible to use computers to perform extensive experiments
on ideas expressed in a programming language, and the lack of
ambiguity makes possible precise thought experiments. In other
respects, however, most programming languages are decidedly inferior
to mathematical notation and are little used as tools of thought in ways
that would be considered significant by, say, an applied mathematician.

The thesis of the present paper is that the advantages of executability
and universality found in programming languages can be effectively
combined, in a single coherent language, with the advantages offered
by mathematical notation. It is developed in four stages:

(a) Section 1 identifies salient characteristics of mathematical notation
ana ffses simple problems to illustrate how these characteristics may
be provided in an executable notation.

(b) Sections 2 and 3 continue this illustration by deeper treatment of
a set of topics chosen for their general interest and utility. Section
2 concerns polynomials, and Section 3 concerns transformations
between representations of functions relevant to a number of topics,
including permutations and directed graphs. Although these topics
might be characterized as mathematical, they are directly relevant
to computer programming, and their relevance will increase as

340 KENNETH E. IVERSON

programming continues to develop into a legitimate mathematical
discipline.

(c) Section 4 provides examples of identities and formal proofs. Many
of these formal proofs concern identities established informally and
used in preceding sections.

(d) The concluding section provides some general comparisons with
mathematical notation, references to treatments of other topics, and
discussion of the problem of introducing notation in context.

The executable language to be used is APL, a general-purpose
language which originated in an attempt to provide clear and precise
expression in writing and teaching, and which was implemented as a
programming language only after several years of use and development
[31.

Although many readers will be unfamiliar with APL, I have chosen
not to provide a separate introduction to it, but rather to introduce it
in context as needed. Mathematical notation is always introduced in
this way rather than being taught, as programming languages commonly
are, in a separate course. Notation suited as a tool of thought in any
topic should permit easy introduction in the context of that topic; one
advantage of introducing APL in context here is that the reader may
assess the relative difficulty of such introduction.

However, introduction in context is incompatible with complete
discussion of all nuances of each bit of notation, and the reader must
be prepared to either extend the definitions in obvious and systematic
ways as required in later uses, or to consult a reference work. All of
the notation used here is summarized in Appendix A, and is covered
fully in pages 24-60 of APL Language [4].

Readers having access to some machine embodiment of APL may
wish to translate the function definitions given here in direct definition
form [5, p. 10] (using a and ~ to represent the left and right argu-
ments} to the canonical form required for execution. A function for
performing this translation automatically is given in Appendix B.

I 9 7 9

" l . , ' ing
t~ %%'II I ' l l

Ut't ' l | irv

1
Important Characterist ics

of Notat ion
In addition to the executability and universality emphasized in the

introduction, a good notation should embody characteristics familiar
to any user of mathematical notation:

• Ease of expressing constructs arising in problems.
• Suggestivity.
• Ability to subordinate detail.
• Economy.
• Amenability to formal proofs.

Notation as a Tool of Thought 341

The foregoing is not intended as an exhaustive list, but will be used
to shape the siabsequent discussion.

Unambiguous executability of the notation introduced remains
important, and will be emphasized by displaying below an expression
the explicit result produced by it. To maintain the distinction between
expressions and results, the expressions will be indented as they
automatically are on APL computers. For example, the integer function
denoted by ~ produces a vector of the first /V integers when applied
to the argument N, and the sum reduction denoted by + / produces the
sum of the elements of its vector argument, and will be shown as
follows:

15
1 2 3 4 5

+/~5
15

We will use one nonexecutable bit of notation: the symbol ÷÷ appearing
between two expressions asserts their equivalence.

1.1
Ease of Expressing Constructs

Arising in Problems
If it is to be effective as a tool of thought, a notation must allow

convenient expression not only of notions arising directly from a
problem but also of those arising in subsequent analysis, generaliza-
tion, and specialization.

Consider, for example, the crystal structure illustrated by Figure 1,
in which successive layers of atoms lie not directly on top of one
another, but lie "close-packed" between those below them. The
numbers of atoms in successive rows from the top in Figure 1 are
therefore given by ~ 5, and the total number is given by +/1 5.

o

o o

o o o

o o o o

o o o o o

FIGURE 1

The three-dimensional structure of such a crystal is also close-
packed; the atoms in the plane lying above Figure 1 would lie between
the atoms in the place below it, and would have a base row of four
atoms. The complete three-dimensional structure corresponding to
Figure 1 is therefore a tetrahedron whose planes have bases of
lengths 1, 2, 3, 4, and 5. The numbers in successive planes are
therefore the partial sums of the vector l 5, that is, the sum of the first

342 KENNETH E. IVERSON

element, the sum of the first two elements, etc. Such partial sums of
a vector V are denoted by + \ V, the function + \ being called s u m s c a n .

Thus:

I 9 7 9

' l U l i n g

/%ward

I , [' ('h l I'e

+ \ t 5
1 3 6 10 15

+ / + \ t 5
35

The final expression gives the total number of atoms in the tetrahedron.
The sum + / l 5 can be represented graphically in other ways, such

as shown on the left of Figure 2. Combined with the inverted pattern
on the right, this representation suggests that the sum may be simply
related to the number of units in a rectangle, that is, to a product.

O OOOO0
O0 O00O
OOO OOO
OOO0 OO
OOOOO O

FIGURE 2

The lengths of the rows of the figure formed by pushing together
the two parts of Figure 2 are given by adding the vector t 5 to the same
vector reversed. Thus:

t5
1 2 3 4 5

¢ t 5
5 4 3 2 1

(t 5) + (¢ t 5)
6 6 6 6 6

This pattern of 5 repetitions of 6 may be expressed as 5 p 6, and we
have:

506
6 6 6 6 6

+ / 5 p 6
3O

3O
6x5

The fact that + / 5 p 6 +÷ 6 x 5 follows from the definition of multiplica-
tion as repeated addition.

The foregoing suggests that + / t 5 * * (6 x 5) ÷ 2 and, more gener-
ally, that:

+~iN ÷÷ ((N+i)xN)÷2 A.1

Notation as a Tool of Thought 343

1 .2
Suggestivity

A notat ion will be said to be suggestive if the forms of the expres-
sions arising in one set of p rob lems suggest related expressions which
find applicat ion in other problems. We will now consider related uses
of the funct ions in t roduced thus far, namely:

The example:

~ P + / + \

5p2
2 2 2 2 2

x / S p 2
32

suggests that × / M p N +-* N * M, where * represents the power function.
The similarity be tween the definit ions of p o w e r in t e rms of t imes, and
of t imes in t e rms of plus m a y therefore be exhibited as follows:

x / M p N ÷-~" N * M
+ / M p N ÷÷ NxM

Similar expressions for part ial sums and partial products m a y be
developed as follows:

x k 5 0 2
2 4 8 16 32

2 " 1 5
2 4 8 16 32

x \ M o N ÷ ÷ N * I M
+ \ M o N ÷-~ N x I M

Because they can be represen ted by a triangle as in Figure 1, the
sums + \ ~ 5 are called triangular numbers . They are a special case of
the figurate num ber s obta ined by repeated applicat ions of sum scan,
beginning either with + \ ~ N, or with + \No 1. Thus:

501 + \ + \ 5 p l
1 1 1 1 1 1 3 6 10 15

+\5pi + \ + \ + \ 5 0 1
i 2 3 4 5 I 4 i 0 2o 35

Replacing sums over the successive integers by products yields the
factorials as follows:

15

1 2 3 4 5

×/15 x\15

120 1 2 6 24 120

:5 :15

120 1 2 6 24 120

344 KENNETH E. IVERSON

Part of the suggestive power of a language resides in the ability to
represent identities in brief, general, and easily remembered forms. We
will illustrate this by expressing dualities between functions in a form
which embraces DeMorgan's laws, multiplication by the use of
logarithms, and other less familiar identities.

If V is a vector of positive numbers, then the product x / V may be
obtained by taking the natural logarithms of each element of V (denoted
by ® V), summing them (+ / ® V), and applying the exponential func-
tion (* + / ® V). Thus:

1 0 7 9

'I i , r | i ig
Awa rd
l,cl'lui'c

xlV ÷÷ * + / e V

Since the exponential function * is the inverse of the natural logarithm
®, the general form suggested by the right side of the identi ty is:

IG FIG V

where IG is the function inverse to G.

Using ^ and v to denote the functions and and or, and ~ to de-
note the self-inverse function of logical negation, we may express
DeMorgan's laws for an arbi t rary number of elements by:

^IB ÷ ÷ ~v l~B
v / B ÷÷ ~ ^ I ~ B

The elements of B are, of course, restricted to the boolean values 0 and
1. Using the relation symbols to denote functions (for example,
X < Y yields 1 if X is less than y and 0 otherwise) we can express further
dualities, such as:

* I B ÷÷ ~ = / ~ B
=IB ÷+ ~ * I ~ B

Finally using I and L to denote the maximum and minimum func-
tions, we can express dualities which involve ari thmetic negation:

[I V +÷ - L I - V

L /V ÷÷ - [l - g

It may also be noted that scan (F \) may replace reduction (F /) in any
of the foregoing dualities.

Notation as a Tool of Thought 345

1 . 3

S u b o r d i n a t i o n

o f D e t a i l

As Babbage r emarked in the passage cited by Cajori, brevi ty
facilitates reasoning. Brevity is achieved by subordinat ing detail, and
we will here consider three impor tant ways of doing this: the use of
arrays, the ass ignment of names to funct ions and variables, and the
use of operators .

We have already seen examples of the brevi ty provided by one-
d imensional arrays (vectors) in the t r ea tment of duality, and fur ther
subordinat ion is provided by matr ices and other arrays of higher rank,
since functions defined on vectors are extended systematically to arrays
of higher rank.

In particular, one m a y specify the axis to which a funct ion applies.
For example, ¢ [1] M acts along the first axis of a matrix M to reverse
each of the columns, and q~ [2]M reverses each row; M, [1] N caten-
a tes c o l u m n s (p lac ing M a b o v e N), and M, [2 IN ca tena tes rows;
and + / [1] M sums co lumns and + / [2] M sums rows. If no axis is
specified, the funct ion applies along the last axis. Thus +/M sums
rows. Finally, reduct ion and scan along the first axis m a y be denoted
by the symbols t and \ .

Two uses of names m a y be distinguished: constant names which
have fixed referents are used for entities of very general utility, and
ad hoc names are assigned (by means of the symbol ÷) to quanti t ies
of in teres t in a n a r r o w e r context . For example , the cons tan t (name)
1 4 4 has a fixed referent , but the names CRATE, LAYER, and ROW
assigned by the expressions

CRATE ÷ 144

LAYER ÷ CRATE÷8

ROW ÷ LAYER÷3

are ad hoc, or variable names . Cons tan t n a m e s for vec to rs are also
provided, as in 2 3 5 7 11 for a numer i c vec tor of five e lements ,
and in ' A BCDE ' for a character vector of five e lements .

Analogous distinctions are made in the names of functions. Con-
stant n a m e s such as +, x, and *, are ass igned to so-called primitive
funct ions of general utility. The detailed definitions, such as +/Mo N
for N × M and x / M 0 N, for N * M, are subordinated by the constant names
x a n d , .

Less familiar examples of constant funct ion names are provided
by the c o m m a which catenates its a rguments as i l lustrated by:

/

(15),(qb5) +÷ 1 2 3 4 5 5 4 3 2 1

346 KENNETH E. IVERSON

and by the base-representation function T, which produces a represent-
ation of its right a rgument in the radix specified by its left a rgument .
For example:

I ~J 7 9

'I u r h ~ g
AWaHI
I , u t l u , c

2 2 2 T

2 2 2

B N ÷ 2
BN

0 0 0 0 1 1 1
0 0 1 1 0 0 1
0 1 0 1 0 1 0

3 ÷ ÷ 0 1 1

T 4 ÷ ÷ 1 0 0

2 2 T 0 1 2 3

1
1

1

4 5 6 7

BN,¢BN

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 1 1 0 0 I 1 1 1 0 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

The matr ix BN is an impor tan t one, since it can be v iewed in sev-
eral ways. In addi t ion to r ep re sen t ing the b ina ry n u m b e r s , the col-
u m n s represent all subsets of a set of three elements, as well as the
entries in a t ruth table for three boolean arguments . The general ex-
pression for N e lements is easily seen to be(No 2) T (t 2 *N) - 1, and
we may wish to assign an ad hoc name to this function. Using the
direct definition for [Appendix B), the name T is assigned to this func-
tion as follows:

_ T : (~ p 2) T (1 2 * t o) - I A.2

The symbol ~o represen ts the a rgument of the function; in the case of
two arguments the left is represented by a. Following such a definition
of the func t ion £, the express ion _? 3 yields the boolean mat r ix B/V
shown above.

Three expressions, separated by colons, are also used to define a
funct ion as follows: the middle expression is executed first; if its value
is zero the first expression is executed, if not, the last expression is
executed. This fo rm is convenient for recursive definitions, in which
the function is used in its own definition. For example, a function which
produces binomial coefficients of an order specified by its a rgument
may be defined recursively as follows:

B C : (X , O) + (O , X ÷ B C ~-i):~=0:i A.3

Thus BC 0 ÷-~ 1 a n d B C 1 ÷÷ 1 1 and BC 4 ÷ ~ 1 4 6 4 1.

The t e rm operator, used in the strict sense defined in mathemat ics
rather than loosely as a s ynonym for function, refers to an enti ty which
applies to functions to produce functions; an example is the derivat ive
operator.

Notation as a Tool of Thought 347

We have already met two operators, reduction, and scan, denoted
by / and \ , and seen how they cont r ibute to brevi ty by applying to
different functions to produce families of related functions such as
÷ / and × / and ^ / . We will now illustrate the notion further by intro-

ducing the inner product operator denoted by a period. A function
(such as + /) produced by an operator will be called a derived function.

If P and Q are two vectors, then the inner product ÷. × is defined
by:

p+ .xQ ÷÷ +IPxQ

and analogous definitions hold for funct ion pairs other than + and ×.
For example:

P÷2 3 5
Q÷2 1 2
p+. xQ

17

300
p x . . Q

PL .+Q
q

Each of the foregoing expressions has at least one useful interpre-
tation: P+. x Q is the total cost of order quantities Q for items whose
prices are given by P ; because P is a vector of primes, P x . , Q is the
n u m b e r w h o s e p r ime d e c o m p o s i t i o n is g iven by the exponen t s Q;
and if P gives distances f rom a source to t ranshipment points and Q
gives distances f rom the t ranshipment points to the destination, then
P [. + Q gives the min imum distance possible.

The function +. × is equivalent to the inner product or dot product
of mathematics, and is extended to matrices as in mathematics. Other
cases such as ×. * are extended analogously. For example, if _T is the
funct ion defined by A.2, then:

~ 3
0 0 0 0 1 1
0 0 1 1 0 0
0 1 0 1 0 1

p + . x T
0 5 3 8 2 7

1 1

1 1

0 1

3 P× • *T_ 3

5 10 1 5 3 15 2 10 6 30

These examples bring out an important point: if B is boolean, then
P + . ×B p roduces sums over subsets of P specif ied by I ' s i n B , and
P ×. * B produces products over subsets.

The phase o . × is a spec ia l use of the i n n e r p r o d u c t o p e r a t o r to
produce a derived function which yields products of each element of
its left argument with each e lement of its right. For example:

2 3 5o . x 1 5
2 4 6 8 10

3 6 9 12 15

5 10 15 20 25

348 KENNETH E. IVERSON

The function o . × is called ou te r p r o d u c t , as it is in tensor analysis
and functions such as o • + and ° • * and o • < are def ined analogous-
ly, producing "function tables" for the particular functions. For example:

I 9 7 9
r l u r l n g

I,e(' l lHe

D÷0 1 2 3
D o . F D D o . a D D o . ! D

0 1 2 3 1 0 0 0 1 1 1 1
1 1 2 3 1 1 0 0 0 1 2 3
2 2 2 3 1 1 1 0 0 0 1 3

3 3 3 3 1 1 1 1 0 0 0 1

The symbol : denotes the binomial coefficient function, and the table
D o . : D is seen to con ta in Pasca l ' s t r iangle wi th its apex at the left;
if ex tended to negat ive a rguments (as wi th D ÷ - 3 2 1 0 1 2 3)
it will be seen to contain the tr iangular and higher-order figurate
number s as well. This extension to negative a rguments is interesting
for other funct ions as well. For example, the table D o . × D consists of
four quadrants separated by a row and a co lumn of zeros, the quad-
rants showing clearly the rule of signs for multiplication.

Patterns in these funct ion tables exhibit other proper t ies of the func-
tions, allowing brief s ta tements of proofs by exhaustion. For example,
commutat ivi ty appears as a symmet ry about the diagonal. More precisely,
if the result of the t ranspose funct ion ~ (which reverses the order of the
axes of its argument} applied to a table 2+ D o . fD agrees with 2, then the
funct ion f is commuta t ive on the domain. For example, T = ~ T ÷ D o . F D

produces a table of l ' s because F is commuta t ive .
Cor r e spond ing tests of assoc ia t iv i ty requi re r ank 3 tables of the

fo rm D ° . f(D o . fD) and (D o . fD) o . fD. For example:

D÷O 1
Do.^(Do.^D) (Do.^D)o.^D Do.~(Do.~D) (Do.~D)o.~D

O 0 O 0 1 1 0 1
O 0 O 0 1 1 0 1

0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1

1 . 4

E c o n o m y

The utility of a language as a tool of thought increases with the range
of topics it can treat, but decreases wi th the amoun t of vocabula ry and
the complexity of grammatical rules which the user must keep in mind.
Economy of notat ion is therefore important .

Economy requires that a large n u m b e r of ideas be expres-
sible in te rms of a relatively small vocabulary. A fundamenta l scheme
for achieving this is the introduct ion of grammat ica l rules by which
meaningful phrases and sentences can be constructed by combining
e lements of the vocabulary.

Notation as a Tool of Thought 349

This scheme may be illustrated by the first example t r ea t ed - - the
re la t ively s imple and wide ly useful not ion of the sum of the first/V
integers was not introduced as a primitive, but as a phrase constructed
f rom two more general ly useful notions, the funct ion ~ for the pro-
duction of a vector of integers, and the function + / for the summation
of the elements of a vector. Moreover, the derived function + / is itself
a phrase, summation being a derived funct ion constructed from the
more general notion of the reduct ion operator applied to a particular
function.

Economy is also achieved by generality in the functions introduced.
For example, the defini t ion of the factorial funct ion denoted by ! is
not restricted to integers, and the gamma function of X may therefore
be wri t ten as : X- 1. Similarly, the relations defined on all real argu-
ments provide several important logical functions when applied to
boolean arguments: exclusive-or (-), material implication (~), and
equivalence (=).

The economy achieved for the matters treated thus far can be
assessed by recalling the vocabulary introduced:

I p do T ,

/ \

+ - x ÷ * ® ; I - L ~
VA~<<=>>~

The five functions and three operators listed in the first two rows are
of pr imary interest, the remaining familiar functions having been
int roduced to illustrate the versatili ty of the operators.

A significant economy of symbols, as opposed to economy of func-
tions, is attained by allowing any symbol to represent both a monadic
function (i.e., a function of one argument) and a dyadic function, in
the same manner that the minus sign is commonly used for both
subtraction and negation. Because the two functions represented may,
as in the case of the minus sign, be related, the burden of remember-
ing symbols is eased.

For example, X * Y and * Y represent power and exponential, X® Y
and ® Y represent base X logarithm and natural logarithm, X ÷ Y and
÷Y represent division and reciprocal, and X : Y and I Y represent
the b inomial coeff ic ient func t ion and the factorial (that is,
X ' Y * + (: Y) ÷ (I X) x (: Y - X)) . The symbol p used for the dyadic
function of replication also represents a monadic function which gives
the shape of the argument {that is, X÷+p Xp i'), the symbol do used for
the monadic reversal function also represents the dyadic rotate func-
tion exemplified by 2 dO l 5 ÷÷ 3 44 5 1 2, and by - 2 do l 5 ÷÷ ~ 5 1
2 3, and finally, the comma represents not only catenation, but also
the monadic ravel, which produces a vector of the elements of its argu-
ment in " row-major" order. For example:

T 2 ,T 2

0 0 1 1 0 0 1 1 0 1 0 1
0 1 0 1

350 KENNETH E. IVERSON

Simplicity of the grammatical rules of a notation is also important.
Because the rules used thus far have been those familiar in
mathematical notation, they have not been made explicit, but two
simplifications in the order of execution should be remarked:

(1) All functions are treated alike, and there are no rules of precedence
such as x being executed before + .

(2) The rule that the right argument of a monadic funct ion is the
value of the entire expression to its right, implicit in the order of
execut ion of an expression such as S I N LOG : IV, is extended
to dyadic functions.

The second rule has certain useful consequences in reduct ion and
scan. Since F / V is equivalent to placing the funct ion F be tween the
elements of V the expression - / v gives the alternating sum of the ele-
ments of V, and ÷ / V gives the alternating product. Moreover, if B is a
boolean vector, then < \ B "isolates" the first I in B, since all elements
following it become 0. For example:

<\0 0 1 1 0 1 1 ÷÷ 0 0 1 0 0 0 0

Syntactic rules are fur ther simplified by adopting a single form for
all dyadic functions, which appear be tween their arguments, and for
all monadic functions, which appear before their arguments. This
contrasts with the variety of rules in mathematics. For example, the
symbols for the monadic functions of negation, factorial, and magnitude
precede, follow, and surround their arguments, respectively. Dyadic
functions show even more variety.

1 .5

A m e n a b i l i t y

t o F o r m a l P r o o f s

The importance of formal proofs and derivations is clear f rom their
rolb in mathematics. Section 4 is largely devoted to formal proofs, and
we will limit the discussion here to the introduction of the forms used.

Proof by exhaustion consists of exhaustively examining all of a finite
number of special cases. Such exhaustion can often be simply expressed
by applying some outer product to arguments which include all ele-
men t s of the re levant domain . For example, if D÷O 1, t hen V o . ^19
gives all cases of application of the and function. Moreover, DeMorgan's
law can be proved exhaustively by comparing each element of the
matrix D o . ^ V with each element of ~ (~D) o . v (~D) as follows:

'1 H r i l l g

A i ~ H (I

I . (' (h l l ("

0 0 0 0
0 1 0 1

(Do. AD)= (~(~D) o. v(~D))
1 1
1 1

-(-D)o .v(~D)

^ / , (Do . ^D)=(~ (~ D)o . v (~ D))

Notation as a Tool of Thought 351

Questions of associativity can be addressed similarly, the following
expressions showing the associativity of and and the nonassociativity
of not-and:

^/ ,((Do.^D)o.^D)=(Do.A(Do .AD))

^ I , ((Do .mD)o • ~D)= (Do .~(Do .~D))

A proof by a sequence of identities is presented by listing a sequence
of expressions, annotating each expression with the supporting evidence
for its equivalence with its predecessor. For example, a formal proof
of the identi ty A.1 suggested by the first example t reated would be
presented as follows:

+~iN
+ / d~ l N + is associative and commutative
((+ / ~ N) + (+ ~ @ i N))*2 (X+X)÷2+÷X
(+ / ((I N) + (d p l N))) ÷ 2 + is associative and commutative
(+/((N+I)0N))÷2 Lemma
((N + i) x N) ÷ 2 Definition of x

The fourth annotat ion above concerns an identity which, after ob-
servat ion of the pa t te rn in the special case (l 5) + (@ l 5), might be
considered obvious or might be considered wor thy of formal proof in
a separate lemma.

Inductive proofs proceed in two steps: (1) some identi ty (called the
induction hypothesis} is assumed true for a fixed integer value of some
p a r a m e t e r N a n d this a s sumpt ion is used to p rove that the iden t i ty
also holds for the value N + 1 and (2) the identi ty is shown to hold for
some integer value K. The conclusion is that the identi ty holds for all
integer values of N which equal or exceed K.

Recursive definitions often provide convenient bases for inductive
proofs. As an example we will use the recursive definition of the
binomial coefficient funct ion BC given by A.3 in an induct ive proof
showing that the sum of the binomial coefficients of order N is 2 * N.

As the induction hypothesis we assume the identity:

+/BC N ÷÷ 2*N

and proceed as follows:

+IBCC N+I
+ / (X , O) + (O , X ÷ B C N)
(+ /X ,O)+(+ / O , X)
(+ / X) + (+ / X)
2 x + / X
2 x + / B C N
2 x 2 * N
2*N+I

+ is
A.3

associative and commutative
0 + Y÷÷Y

Y+Y÷÷2xY
Definition of X

Induction hypothesis
Property of Power (*)

352 KENNETH E. IVERSON

It remains to show that the induction hypotheses is true for some
integer value of N. From the recursive definition A.3, the value of
B_C 0 is the value of the rightmost expression, namely 1. Consequently,
.¢-/BC 0 is 1, and therefore equals 2 , 0 .

We will conclude with a proof that DeMorgan's law for scalar
arguments, represented by:

1 9 7 9

' l u r ing
Aw;Hd
I, l 'dllrt '

A^B ÷ + ~(~A)v(~B) A.4

and proved by exhaustion, can indeed be extended to vectors of arbitrary
length as indicated earlier by the putative identity:

^ I V * * ~ v l ~ Y A.5

As the induction hypothesis we will assume that A.5 is true for vectors
of length (p V) - 1.

We will first give formal recursive definitions of the derived func-
tions and-reduction and or-reduction (^ / and v /), using two new
primitives, indexing, and drop. Indexing is denoted by an expression
of the form X [I], where I is a single index or array of indices of
the v e c t o r X . For example, if X+2 3 5 7, t h e n X [2] i s 3 , and
X[2 1] i s 3 2. Drop is denoted b y g ~ , X a n d i s defined to drop IK
(i.e., the magnitude of//} elements from X, f rom the head if / /> 0 and
from the tail if / /< 0. For example, 2 + X is 5 7 and - 2 + X is 2 3. The
take function (to be used later) is denoted by 4 and is defined anal-
ogously. For example, 3 + X i s 2 3 5 a n d - 3 4 X i s 3 5 7.

The following functions provide formal definitions of and-reduction

and or-reduction:

ANDRED:~[I]^ANDRED l+~:O=pw:l
ORRED :m[l]v ORRED l+~:O=pm:O

A.6
A.7

The inductive proof of A.5 proceeds as follows:

^IV
(V[l])^(AII~,V)
~(~V[1])v(~^II+V)
~(~V[1]) v (~ ~ v / ~ l + V)
~ (~ V [1]) v (v l ~ l + V)
~ v / (~ v [1]) , (~ l + v)
~ v / ~ (V [1] , l + V)
~ v l ~ V

A.6
A.4
A.5

~ ~ X ÷ * X
A.7

v distributes over ,
Definition of , (catenation)

Notation as a Tool of Thought 353

2
Polynomials

If C is a vector of coefficients and X is a scalar, then the polynomial
in X with coefficients C m a y be wri t ten s imply as + / C × X * - 1 + ~ o C,
o r + / (X * - l + l o C) × C , o r (X * - l + t o C) + . × C . However , to ap-
ply to a non scalar a r ray of a rguments X, the power f u n c t i o n .
should be replaced by the power table o . * as shown in the following
definition of the polynomia l function:

if: (t0o . . - 1 + t 0 a) + . xa B.1

Forexample , 1 3 3 1 if 0 1 2 3 4 ++ I 8 27 64 •25 . If O a
is replaced by 1 ÷ 0 a , then the funct ion applies also to matr ices and
higher d imensional arrays of sets of coefficients represent ing (along the
leading axis of a) collections of coefficients of different polynomials .

This definit ion shows clearly that the po lynomia l is a l inear func-
tion of the coefficient vector . Moreover , if a and to are vectors of
the same shape, then the pre-mult ip l ier ~0 o . * - 1 + t 0 a is the Vander-
monde matr ix of ~, and is therefore invert ible if the e lements of ~0
are distinct. Hence if C and X are vectors of the same shape, and if
Y÷C if X, then the inverse (curve-fitting) p rob lem is clearly solved
by applying the matr ix inverse funct ion ~ to the V a n d e r m o n d e matr ix
and using the identity:

C ÷÷ (~Xo.*-I+toX)+.xY

2.1

P r o d u c t s o f P o l y n o m i a l s
The "produc t of two polynomials B and C" is c o m m o n l y taken to

mean the coefficient vector D such that:

D if X +÷ (B if X)x(C _P X)

It is well known that D can be computed by taking products over all
pairs of elements from B and C and summing over subsets of these
products associated with the same exponent in the result. These prod-
ucts occur in the function table B o x C, and it is easy to show infor-
mally that the powers of X associated with the elements of B o. x C
are given by the addition table E÷(-l+tpB)o.+(-l+tpC). For
example:

X÷2
B ÷ 3 I 2 3
C÷2 0 3
E÷(-I+ t pB) o .+(-I+ toe)
Bo .xC E X*E

6 o 9 o 1 2 1 2 4
2 0 3 1 2 3 2 4 8
4 0 6 2 3 4 4 8 16

6 0 9 3 4 5 8 16 32

+/ , (Bo . x C) x X * E
518

518
(B if X)x(C if X)

354 KENNETH E. IVERSON

The foregoing suggests the following identity, which will be estab-
lished formal ly in Section 4:

1 9 7 9

"I u , ' i n g
A ~ i l r d
h-~ h , r c

(B _P X) x (C P X) ÷ ÷ + i , (B o . x C) x X , (- I + t p B) o . + (- I + l p C) B.2

Moreover , the pa t t e rn of the exponent table E shows that e l ements
of B o . × C lying on d iagona ls are a s soc ia t ed w i th the s ame power ,
and that the coefficient vector of the product po lynomia l is therefore
given by sums over these diagonals. The table B o . × C therefore pro-
vides an excellent organization for the manua l computa t ion of
products of polynomials . In the present example these sums give
the v e c t o r V÷6 2 13 9 6 9, a n d D _P X m a y be s e e n to e q u a l
(B_pX)x(CP_X)

Sums over the r equ i red diagonals of B o x C can also be ob t a ined
by border ing it by zeros, skewing the result by rotating successive
rows by successive integers, and then s umming the columns. We thus
obtain a definition for the polynomia l product funct ion as follows:

PP: 4 / (I- l pec)¢cto . x ~ , 1,1.0xc¢

We will now develop an alternative me thod based upon the simple
observa t ion that if B PP C produces the product of po lynomia ls B
and C, then PP is linear in both of its arguments . Consequently,

PP: a+. x A + . xm

where A is an array to be determined. A mus t be of rank 3, and must
depend on the exponents of the left a rgument (- 1 + t p a), of the
result (- 1 + t p 1 * a , ~) and of the right argument. The "deficiencies"
of the right exponen t are given by the d i f ference table (~ p 1 * ~ , ~0)
o . - l p ~ , and c o m p a r i s o n of these va lues wi th the left e x p o n e n t s
yields A. Thus

A ÷ (- 1 + t p a) o . =((tp14cc,oJ)o . - t p =)
and

p p : c ¢ + , x ((- 1 + l p a) o . =(t p l ~ e c , ~) o . - t p ~) + , xo~

Since a + . ×A is a matrix, this formulat ion suggests that if D*B PP
C, then C might be obtained f rom 0 by premul t ip ly ing it by the in-

verse matrix (~ B + . × A), thus providing division of polynomials. Since
B+. ×A is not square (having more rows than columns), this
will not work, but by replacing M+B +. × A by either its leading square
p a r t (2 p k / p M) + M o r by its t ra i l ing s q u a r e p a r t (- 2 O k / p M) ÷ M ,
one obtains two results, one corresponding to division with low-order re-
mainder terms, and the other to division with high-order remainder terms.

2 . 2

D e r i v a t i v e o f a P o l y n o m i a l

Since the derivative of X * N is N x X* N - 1, we may use the rules for
the derivat ive of a sum of functions and of a product of a funct ion with
a constant, to show that the derivative of the polynomia l C _P X is the
polynomia l (1 * C × - 1 + l 0 C) _P X. Using this result it is clear that

Notation as a Tool of Thought 355

the integral is the po lynomia l (A, C ÷ ~ p C) P X, where A is an ar-
b i t rary scalar constant. The expression 1 ¢ C × - 1 + ~ o C also yields
the coefficients of the derivative, but as a vector of the same shape
as C and having a final zero element .

2 . 3

D e r i v a t i v e o f a P o l y n o m i a l
w i t h R e s p e c t to I t s Root s

If R is a vector of three elements , then the der ivat ives of the
po lynomia l × / X - R with respect to each of its three roots are
- (X - R E 2]) x (X - R E 3 J) , a n d - (X - R E 1]) x (X - R [3]) , and
- (X - R [1]) x (X - R [2]) . More gene ra l ly , the d e r i v a t i v e of
x / X - R with respect t o R [J] is s imply - (X - R) x * J * 1 0 R , and
the vector of derivat ives wi th respect to each of the roots is
-(X-R)x. *Io.xI÷tpR .

The expression × / X - R for a po lynomia l wi th roots R applies
only to a scalar X, the more general expression being × / X o - R .
Consequent ly , the general expression for the matr ix of der ivat ives
[of the po lynomia l evaluated at X [I] wi th respect to root R [J])
is given by:

- (X o . - R)x . * I o • ~ I ÷ l o R B . 3

2 . 4

E x p a n s i o n o f a P o l y n o m i a l
Binomial expansion concerns the deve lopmen t of an identi ty in the

fo rm of a po lynomia l in X for the expression (X+ Y)* N. For the
special case of Y--1 we have the wel l -known expression in te rms of
the b inomial coefficients of order N :

(x . 1) . N ÷÷ ((O,~N):N)12 x

By extension we speak of the expansion of a po lynomia l as a mat-
ter of de termining coefficients D such that:

C _P X+Y ÷÷ D _P X

The coeff ic ients D are, in general , func t ions of Y. If Y : i they again
depend only on binomial coefficients, but in this case on the several
b inomial coefficients of var ious orders, specifically on the matr ix
Jo. !J÷ 1410C.

For example, if C÷3 1 2 4, and C _P X+I÷÷D P X, then D
depends on the matrix:

0 1 2 3 o . ! 0 1 2 3
1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

356 KENNETH E. IVERSON

and D mus t c lear ly be a we i gh t ed s u m of the co lumns , the weights
being the e lements of C. Thus:

D÷(do. :j÷ll+tpC)+.xC

Jotting down the matr ix of coefficients and per forming the indicated
matr ix product provides a quick and reliable way to organize the other-
wise messy manua l calculation of expansions.

If B is the appropr ia te matr ix of b inomial coefficients, then
D ÷ B + . ×C, and the expansion function is clearly linear in the coef-
ficients C. Moreover, expansion for 1' = - 1 must be given by the inverse
matr ix [BB, which will be seen to contain the al ternating binomial
coefficients. Finally, since:

C E X + (K + I) ÷ + C E (X + K) + I ÷÷ (B + . x C) E (X + K)

it follows that the expansion for positive integer values of Y mus t be
given by products of the form:

B + . x B + . × B + . × B + . x C

I !) 7 !1

' lur ing
Award
I.ct lurt.

where the B occurs Y times.
Because + . x is associative, the foregoing can be wri t ten as M +. × C,

where M is the product of Y occurrences of B. It is interesting to
examine the successive powers of B, computed either manua l ly or
by machine execution of the following inner product power function:

IPP:a+.xa IPP ~-l:~o=O:Jo.=J÷-l+11+pa

Compar i son orB I P P Kwith B for a few values of K shows an
obvious pa t te rn which may be expressed as:

B IPP K ÷ ÷ BxK*O[-Jo.-J+-1+I1+pB

The interesting thing is that the right side of this identi ty is meaningful
for noninteger values of K, and, in fact, provides the desired expres-
sion for the general expansion C E X + Y :

C P(X+Y) ÷÷ (((Jo.!J)xY*OF-Jo.-J÷-l+IpC)+.xC)P X B.4

The right side of B.4 is of the fo rm (M+. x C) _P X, w h e r e t4 itself
is of the fo rm B x y . E and can be displayed informal ly {for the case
4 = p C) as ~ l lows:

1 1 1 1 0 1 2 3
0 1 2 3 0 0 1 2
0 0 1 3 x y * 0 0 0 1
0 0 0 1 0 0 0 0

Since Y * K multiplies the single-diagonal matr ix B x (g = E), the expres-
sion for M can also be wri t ten as the inner product (Y* J) + . x T,
where T is a rank 3 array whose Kth plane is the matr ix B × (K = E).
Such a rank three array can be fo rmed f rom an upper tr iangular matr ix

Notation as a Tool of Thought 357

M by making a rank 3 array whose first plane is M (that is,
(1 = l 1 + p M) o . x M } and rotating it along the first axis by the matrix
J o - g, whose Kth superdiagonal has the value -/¢. Thus:

DS : (I o . - I) ¢ [1] (l = I ÷ l l ÷ p ~)o . x w B.5

DS Ko. !K÷-I+~3
1 0 0
0 1 0

0 0 1

0 1 0
0 0 2
0 0 0

0 0 1
0 0 0
0 0 0

Substituting these results in B.4 and using the associativity of + • x ,
we have the following identity for the expansion of a polynomial, valid
for noninteger as well as integer values of Y :

C _P X+Y ÷÷ ((Y * J) + . x (D S J o . ! J ÷ - l + t p C) + . x C) P X B.6

For example:

1 3
0 1
0 0

0 0

96 79

358

Y÷3

C÷3 1 4 2
M÷(Y*J)+.xDS Jo.:J÷-I+IoC
M
9 27
6 27
1 9
0 1

M+.xC
22 2
(M + . x C) _P X ÷ 2

C _P X+Y

358

3
Representations

The subjects of mathematical analysis and computat ion can be
represented in a variety of ways, and each representat ion may possess
particular advantages. For example, a positive integer /V may be
represented simply by N check-marks; less simply, but more compactly,
in Roman numerals; even less simply, but more convenient ly for the
performance of addition and multiplication, in the decimal system; and
less familiarly, but more convenient ly for the computat ion of the least
common multiple and the greatest co m m o n divisor, in the pr ime
decomposi t ion scheme to be discussed here.

358 KENNETH E. IVERSON

I ~) 7 ~:~

'1 l i r i l l g

A ~ l r d

| , e l ' l l i i ~ ,

and all of the
2 3 5 7 × . *

6 and:

Graphs, which concern connections among a collection of elements,
are an example of a more complex entity which possesses several useful
representat ions. For example, a s imple directed graph of N e lements
(usually called nodes) may be represented by an N by N boolean matrix
B (usually called an adjacency matrix) such that B E / ; g 3 = 1 if there is
a connect ion from node I to node J . Each connect ion represented by
a 1 in B is called an edge, and the graph can also be represented by
a ÷ / , B by N matr ix in which each row shows the nodes connected
by a part icular edge.

Functions also admit different useful representat ions. For example,
a pe rmuta t ion function, which yields a reorder ing of the e lements of
its vector a rgument X, may be represented by a permutation vector P
such that the pe rmuta t ion funct ion is s imply X [P 3, by a cycle rep-
resentat ion which presents the s tructure of the funct ion more directly,
by the boolean matr ix B * P o = l 0 P such that the pe rmuta t ion funct ion
is B + . × X, or by a radix representa t ion R which employs one of the
columns of the matrix 1 + (¢ ~ N) T - 1 + l : N÷O X, and has the proper ty
that 2 [+ / R- 1 is the par i ty of the pe rmuta t ion represented.

In order to use different representa t ions conveniently, it is impor
tant to be able to express the t ransformat ions be tween representa t ions
clearly and precisely. Convent ional ma themat ica l notat ion is often
deficient in this respect, and the present section is devoted to develop-
ing expressions for the t ransformat ions be tween representat ions useful
in a var iety of topics: n u m b e r systems, polynominals , permutat ions ,
graphs, and boolean algebra.

3.1
Number Systems

We will begin the discussion of representa t ions wi th a familiar
example, the use of different representa t ions of positive integers and
the t ransformat ions be tween them. Ins tead of the positional or base-
value representa t ions c o m m o n l y treated, we will use prime decomposi-
tion, a representa t ion whose interesting proper t ies make it useful in
introducing the idea of logari thms as well as that of n u m b e r repre-
sentat ion [6, Ch.16].

If P is a vector of the first 0 P pr imes and E is a vector of non-
negative integers, then E can be used to represent the n u m b e r P x . , E,

integers ~ [/ P can be so represented. For example,
0 0 0 0 i s 1 and 2 3 5 7 x . , 1 1 0 0 is

P
2 3 5 7

ME

0 1 0 2 0 1 0 3 0 1

0 0 • 0 0 1 0 0 2 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0

P x . * M E
1 2 3 4 5 6 7 8 9 1 0

Notation as a Tool of Thought 359

The similari ty to logari thms can be seen in the identity:

x l P x . * M E ÷÷ p x . * + / M E

which m a y be used to effect mult ipl icat ion by addition.
Moreover , if we define GCO and L CM to give the greatest c o m m o n

divisor and least c o m m o n mult iple of e lements of vector arguments ,
then:

GCD p x . * M E ÷÷ p x . * L / M E
LCM p x . * M E ÷÷ p x . * [/ M E

ME V÷px . *ME

2 1 0 V

3 1 2 18900 7350 3087

2 2 0 GCD V

1 2 3 21

px . * [/ME

21

LCM V
9 2 6 1 0 0

P x . * [/ M E
9 2 6 1 0 0

In defining the funct ion GCD, we will use the opera tor / wi th a
boolean a rgumen t B la s in B /). It p roduces the compression funct ion
which selects e lements f rom its right a rgument according to the ones
i n B . For example, 1 0 1 0 1 / 1 5 is 1 3 5. Moreover , the func-
tion B / applied to a matr ix a rgument compresses rows {thus selecting

certain columns), and the funct ion B / compresses co lumns to select
rows. Thus:

GCD:GCD M,(M+k/R)IR:I~oR+(~O)/~:+/R

LCM:(x/X)÷GCD X÷(i÷~o),LCM l*c0 :0 :p~ : l

The transformation to the value of a number from its prime de-
composition representation {VFR) and the inverse transformation to
the representation from the value {RFV) are given by:

V F R : a x . * o J
RFV:D+a RFV ~ ÷ a x . * D : A / ~ D ÷ O = o t [o o : D

For example:

P VFR 2 i 3
10500

P RFV 10500
2 1 3 I

3.2

P o l y n o m i a l s

Section 2 in t roduced two representa t ions of a po lynomia l on a
scalar a rgument X, the first in t e rms of a vector of coefficients C
(that is, + / C × X * - I + l p C I , and the second in te rms of its roots R
[that is, x / X - R). The coefficient representa t ion is convenient for add-
ing polynomials {0 + D) and for obtaining der ivat ives (1 ,~ C × - 1 + l 0 C).

360 KENNETH E. IVERSON

The root representa t ion is convenient for other purposes, including
mult ipl icat ion which is given by R 1, R 2.

We will now develop a funct ion CFR {Coefficients f rom Roots)
which t ransforms a roots representa t ion to an equivalent coefficient
representation, and an inverse function RFC. The deve lopment will be
informal; a formal derivat ion of CFR appears in Section 4.

The expression for CFR will be based on Newton 's symmet r ic func-
tions, which yield the coefficients as sums over certain of the products
over all subsets of the ar i thmet ic negation (that is,- g) of the roots R.
For example, the coefficient of the constant t e rm is given by × / - R ,
the product over the entire set, and the coefficient of the next t e rm is
a sum of the products over the e lements of - H taken (p R) - I at a time.

The funct ion defined by A.2 can be used to give the products over
all subsets as follows:

'1 l , r l i i g

t~%% i I i l l

I , l ' l ' l I I I l '

P÷(-R)x . *M÷T. pR

The elements of P s u m m e d to produce a given coefficient depend upon
the n u m b e r of e lements of R excluded f rom the particular product, that
is, upon + /~ t4 , the sum of the co lumns of the c o m p l e m e n t of the
boolean "subset" matr ix _ToR.

T h e s u m m a t i o n o v e r P m a y t h e r e f o r e be e x p r e s s e d as
((0 , l p R) o . = + / ~M) + . x p, and the complete expression for the
coefficients C becomes:

C ÷ ((0 , l p R) o . = + t ~ M) + . x (- R) x . * M ÷ T pR

For example, if R÷2 3 5, then

M
0 0 0 0 1 1 1 1
0 0 1 1 0 0 i 1
0 1 0 1 0 1 0 1

(- R) x . * M
-5 - 3 1 5 - 2 1 0

((o
30 31 1

+/~M
3 2 2 1 2 1 1 0

(0 , ioR)o .=+/~M
0 0 0 0 0 0 0 1
0 0 0 1 0 • • 0

6 - 3 0 0 1 1 0 1 0 0 0
1 0 0 0 0 0 0 0

, l p R) o . = + / ~ M) + . x (- R) x . * M ÷ T pR
O 1

The funct ion CFR which produces the coefficients f rom the roots m a y
therefore be def ined and used as follows:

CFR:((O, lp~)o. :+ /~M)+.x(-~)x . *M÷_T p~ C.1

CFR 2 3 5
30 31 I0 1

(CFR 2 3 5) P X+l
8 0 0 2 0 1 2 4 0 90

x / X o . - 2 3 5
8 0 0 2 0 12 40 90

2 3 4 5 6 7 8

Notation as a Tool of Thought 361

The inverse t ransformat ion RFC is more difficult, but can be ex-
pressed as a successive approximat ion scheme as follows:

RFC:(-i+ioi+~)G
G:(~-Z)G ~:TOL~[/IZ÷a STEP ~:a-Z
S T E P : (~ (a o . - a) x . * I o . ~ I ÷ l p a) + . x (a o . * - l + l p ~) + . x ~

O÷C÷CFR 2 3
210 - 2 4 7 101 - 1 7 1

T O L ÷ I E - 8
RFC C

7 5 2 3

5 7

The order of the roots in the result is, of course, immater ia l . The final
e lement of any a rgumen t of RFC must be 1, since any po lynomia l
equivalent to × / X - R mus t necessari ly have a coefficient of 1 for the
high-order term.

The foregoing definit ion of RFC applies only to coefficients of
polynomials whose roots are all real. The left a rgument of G in RFC
provides {usually satisfactory} initial approximat ions to the roots, but
in the general case some at least mus t be complex. The following
example, using the roots of uni ty as the initial approximat ion, was
executed on an APL sys tem which handles complex numbers :

(*oOJ2x(-I+IN)÷N÷pl÷~)G~ C.2

D÷C÷CFR 1J1
10 -14 11 -4 1

RFC C
IJ-1 1J2 1J1 1J-2

1J-1 1J2 1J-2

The monadic funct ion o used above mult ipl ies its a rgument by pi.
In New t on ' s me thod for the root of a scalar funct ion F, the next

approximat ion is given by A + A - (F A) ÷ D F A, where DF is the
derivat ive of F. The funct ion S TE P is the general izat ion of N e w t o n ' s
me thod to the case whe re F is a vector funct ion of a vector. It is of
the form (~M) + . × B, where B is the value of the polynomial with coef-
ficients ~0, the original a rgument of RFC, evaluated at a , the current
approximat ion to the roots; analysis similar to that used to derive B.3
shows that M is the matr ix of der ivat ives of a po lynomia l wi th roots a ,
the derivat ives being evaluated at a .

Examinat ion of the expression for M shows that its off-diagonal
e lements are all zero, and the expression (~M) + . × B m a y therefore be
replaced by B÷ D, where D is the vector of diagonal e lements of M.
Since (I , J) + N drops I rows and J co lumns f rom a matr ix N, the
vec to rD m a y be expressed as x / 0 l + (- l + l p a) d O a o . - a ; the
definition of the function S T E P may therefore be replaced by the more
efficient definition:

S T E P : ((a o . * - l + t p ~) + . x o j) ÷ x / O l + (- l + t p ~) d o e o . - a C.3

362 KENNETH E. IVERSON

I 9 7 9

'1 , , r i n g
A w a r d
U,t'C I I I I'L'

This last is the elegant me thod of Kerner [7]. Using starting values
given by the left a rgument of G in C.2, it converges in seven steps {with
a tolerance T O L + I E - 8) for the sixth-order example given by Kerner.

3 . 3

P e r m u t a t i o n s
A vector P whose elements are some permuta t ion of its indices {that

is, ^ / 1 = + / P o . = l p P) will be called a permutat ion vector. If D is
a pe rmuta t ion vector such that (p X) = 0 D, then X [D] is a pe rmuta -
tion of X, and D will be said to be the direct representa t ion of this per-
mutat ion.

The pe rmuta t ion X [D] m a y also be expressed as B+. xXwhere
B is the boolean matr ix D o . = l 0 D. The matr ix B will be called the
boolean representa t ion of the permuta t ion . The t ransformat ions bet-
ween direct and boolean representa t ions are:

BFD : ~o . = I p~ DFB: to+ • x l l + p ~

Because permutat ion is associative, the composit ion of permutat ions
satisfies the following relations:

(X [D I]) [D 2] ÷ ÷ X [(D I [D 2])]

B 2 + . x (B I + . x X) ÷÷ (B 2 + . x B I) + . x X

The inverse of a boolean representa t ion B is ~ B, and the inverse of a
direct representa t ion is ei ther AD or D l l P D. (The grade funct ion
grades its argument , giving a vector of indices to its e lements in
ascending order, mainta ining existing order among equal elements.
Thus A 3 7 1 4 is 3 1 4 2 and ~ 3 7 3 4 is 1 3 4 2 . The
index -of funct ion t de te rmines the smallest index in its left a rgument
of each element of its right argument. For example, ' A B CDE ' i ' BA BE '

i s2 1 2 5, a n d ' B A B E ' i ' A B C D E ' i s 2 1 5 5 4.1
The cycle representa t ion also employs a pe rmuta t ion vector. Con-

sider a pe rmuta t ion vector C and the segments of C marked off by
the vector C = L \ C . For example, if C + 7 3 6 5 2 1 4 , then
C = L k C i s 1 1 0 0 1 1 0 , and the blocks are:

7
3 6 5
2
1 4

Each block de termines a "cycle" in the associated pe rmuta t ion in the
sense that if R is the result of permut ing X, then:

R[7] is X[7]
R[3] is X[6] R[6] is X[5] R[5] is X[3]
R [2] is X[2]
R [1] is X [4] R [4] is X [1]

Notation as a Tool of Thought 363

If the leading element of C is the smallest (that is, 1 }, then C
consists of a single cycle, and the permuta t ion of a vector X which it
represents is given by X[C]÷X[1¢C. For example:

X÷ ' ABCDEFG '
C÷176524
x [c] + x [l ¢ C]
x

GDA CBEFF

Since X[Q3+A is equivalent to X*AEAQ3, it follows that
X [C] ÷X [1 ¢ C 3 is equivalent to X÷X [(1 ¢ C) [i C]] , and the direct
representat ion vector D equivalent to C is therefore given [for the
special case of a single cycle} by O÷(10C) [AC].

In the more general case, the rotation of the complete vector {that
is, lOCI must be replaced by rotations of the individual subcycles
marked off by C-- L \ C, as shown in the following definition of the
t ransformation to direct f rom cycle representat ion:

DEC: (oJEiX++\X÷o~:L \~o2) [i ~]

If one wishes to catenate a collection of disjoint cycles to form a
single vector C such that C -- L \ C marks off the individual cycles, then
each cycle CI must first be brought to standard form by the r o t a
t i o n (- l + C I ~ k / C I) @ C I , and the result ing vectors must be
catenated in descending order on their leading elements.

The inverse t ransformation from direct to cycle representat ion is
more complex, but can be approached by first producing the matrix
of all powers of D up to the p Dth, that is, the matrix whose successive
columns are D and O [D] and (O [D]) [D J , etc. This is obtained by
applying the functionPOW to the one-column matrix D o . + , 0 formed
from D, where POW is defined and used as follows:

POW:POW D,(D÷~[;1])[oJ]:~/p~o:~o

O÷D÷DFC C÷7,3 6 5,2,1 4
2 6 1 3 5 7

POW Do.+,O
4 1 4 1 4 1 4

2 2 2 2 2 2 2

6 5 3 6 5 3 6
1 4 1 4 1 4 1

3 6 5 3 6 5 3
5 3 6 5 3 6 5
7 7 7 7 7 7 7

If M+POW Do. +, O, then the cycle representat ion of O may be
obtained by selecting from M only "s tandard" rows which begin with
their smallest elements (SSR), by arranging these remaining rows in

364 KENNETH E IVERSON

descending order on their leading elements (O 0 L), and then catenating
the cycles in these rows (C I R). Thus:

CFD:CIR DOD SSR POW ~oo.+,0

'1 l l r i l l g

/ ~ w ; I r (I

I,{'¢' I U I'17

SSR:(^IM=I¢M÷L\m)/~
D O L : m [~ m [; 1] ;]
C I R : (, 1 , ^ \ O l + m * L k m) / , m

DFC C÷7,3 6 5,2,1 4
4 2 6 1 3 5 7

CFD DFC C
7 3 6 5 2 1 4

In the definit ion of DOL, indexing is applied to matrices. The in-
dices for successive coordinates are separated by semicolons, and a
blank entry for any axis indicates that all e lements along it are selected.
Thus M[; 1] selects co lumn 1 of M.

The cycle representa t ion is convenient for de termining the n u m b e r
of cycles in the pe rmuta t ion represented (N C : + / ~ = L \ ~), the cycle
lengths (C L ." .X - 0 , - 1 + X + (1 b ~0 = L \ ~0) / 1 0 ~0), and the power of the
pe rmuta t ion (P P : L CM CL ~). On the other hand, it is awkward for
composi t ion and inversion.

The : N co lumn vectors of the matr ix (¢ l N) T - 1 + l : N are all
distinct, and therefore provide a potent ial radix representa t ion [8] for
the i N permuta t ions of order N. We will use instead a re la ted fo rm
obtained by increasing each e lement by 1 :

RR: I +(~tm)T-I + I !aJ

RR 4
1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1

~ a n s ~ r m a t i o n s b e t w e e n t h i s r e p r e s e n t a t i o n a n d t h e d i r e c t f o r m a r e
g i v e n b y :

DFR:~[I],X+~[I]~X÷DFR l+~:O=p~:~
RFD:~[I],RFD X - ~ [1] ~ X ÷ l + m : O = p ~ : m

Some of the characteris t ics of this al ternate representa t ion are
pe rhaps best d i s p l a ~ d by m o d i ~ i n g DFR to apply to all co lumns of
a matrix argument, and ~ p ~ i n g the modified ~ n c t i o n MF to the resuk
of the funct ion RR .

M F : ~ [, 1 ;] , [1] X + ~ [(1 oX)pl;]~X÷MP 1 0 + ~ : 0 = 1 ÷ 0 ~ : ~
ME RR 4
1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3
3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2
4 3 4 2 3 2 4 3 4 1 3 1 4 2 4 1 2 1 3 2 3 1 2 1

Notation as a Tool of Thought 365

The direct pe rmuta t ions in the columns of this result occur in lexical
order (that is, in ascending order on the first e lement in which two
vectors differ); this is true in general, and the al ternate representa t ion
therefore provides a convenient w a y for producing direct representa-
tions in lexical order.

The al ternate representa t ion also has the useful p roper ty that the
par i ty of the direct pe rmuta t ion V is given by 2 [+ / - I + R F D D ,
where M [N represents the residue of N modulo ~. The pari ty of a
direct representa t ion can also be de te rmined by the function:

PAR: 2 [+ / , (I * . > I ÷ ~ poJ)^too . >o~

3 . 4

D i r e c t e d G r a p h s

A simple directed graph is defined by a set of K nodes and a set of
directed connect ions f rom one to another of pairs of the nodes. The
directed connect ions m a y be convenient ly represen ted by a K by g
boolean connection matr ix C in which C [I ; J] = 1 denotes a connec-
tion from the I th node to the J t h .

For example, if the four nodes of a graph are represen ted by
N ÷ ' Q R S T ' , and if there are connect ions f rom node S to node Q,
f rom R to T, and f rom T to Q, then the corresponding connect ion
matr ix is given by:

0 o 0 0
0 0 0 I

i 0 0 0
1 0 0 0

A connect ion f rom a node to itself (called a self-loop} is not permit ted,
and the diagonal of a connect ion matr ix mus t therefore be zero.

If P is any pe rmuta t ion vector of order 0 N, then t / l ÷ N [P] is a
reordering of the nodes, and the corresponding connect ion matr ix is
given by C [P ; P] . We m a y (and will) wi thout loss of general i ty use
the numer ic labels ~ pN for the nodes, because if N is any arbi t rary
vector of names for the nodes and L is any list of numer ic labels, then
the expression Q÷N [L] gives the corresponding list of names and,
conversely, N ~ Q gives the list L of numer ic labels.

The connect ion matr ix C is convenient for expressing m a n y useful
functions on a graph. For example, + / C gives the out-degrees of the
nodes, + / C gives the in-degrees, + / , C gives the n u m b e r of connec-
tions or edges, ~C gives a related graph with the directions of edges
reversed, and C v ~ C gives a related " s y m m e t r i c " or "und i rec ted"
graph. Moreover, if we use the boolean vector B÷v / (~ 1 0 C) * . = L to
represent the list of nodes L, then B v . ^ C gives the boolean vector
which represents the set of nodes directly reachable f rom the set
B. Consequent ly , C v . ^ C gives the connect ions for paths of length
two in the graph C , and Cv C v . ^ C gives connect ions for paths of

366 KENNETH E. IVERSON

length one or two. This leads to the following function for the transitive
closure of a graph, which gives all connections through paths of any
length:

TC:TC Z:Al,~:Z÷~v~v.A~:Z

I '~!, 7 ~

'1 n r h l g
A w a r d
I . t ' ¢ ' l t | r u

Node o r is said to be reachable from n o d e l i f (TO C) [I ; o r] = I . A
graph is strongly-connected if every node is reachable f rom every node,
that is, ^ / , 2 C C.

If D÷TC C and D [I ; I] = 1 or some I , then node I is reachable
from itself through a path of some length; the path is called a circuit,
and node I is said to be contained in a circuit.

A g r a p h / ' is called a tree if it has no circuits and its in-degrees do
not exceed 1, that is, ^ / 1 ~ + / T. Any node of a tree with an in-degree
of o is called a root, and if K÷+ / 0 = + / / ' , then /' is called a K-rooted
tree. Since a tree is circuit-free, g must be at least 1. Unless otherwise
stated, it is normally assumed that a tree is singly-rooted {that is, g = 1 };
multiply-rooted trees are sometimes called forests.

A graph C covers a graph D if ^ / . C ~ D. If a is a strongly-connected
graph and T is a {singly-rooted} tree, then /' is said to be a spanning tree
of a if G covers /' and if all nodes are reachable from the root o f / ' ,
that is,

(^I,G~T) ^ ^IRvRv. ATC T

where R is the {boolean representation of the) root o f / ' .
A depth-first spanning tree [9] of a graph a is a spanning tree pro-

duced by proceeding from the root through immediate descendants in G,
always choosing as the next node a descendant of the latest in the list
of nodes visited which still possesses a descendant not in the list. This
is a relatively complex process which can be used to illustrate the
utility of the connection matrix representation:

DFST:((,I)o.=K) R ~^Ko.v~K÷~=~l÷p~ C.4

R : (C . [1] a) R ~ ^ p o . v ~ C ÷ < \ U ^ P v . ^ ~
. ~ v / p ÷ (< X a v . ^ ~ v . ^ U ÷ ~ v / a) v . ^ a

Using as an example the graph G from [9]:

G IDFSTG
0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0 0 0 0 0 I 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 0

Notation as a Tool of Thought 367

The function OFST establishes the left argument of the recursion
R as the one-row matrix representing the root specified by the left
argument of D F S T , and the right argument as the original graph with
the connect ions into the root K deleted. The first line of the recur-
sion R shows that it cont inues by appending on the top of the list of
nodes thus far assembled in the left argument the next child C, and
by deleting from the right argument all connections into the chosen
child C except the one f rom its parent P. The child C is chosen from
among those reachable f rom the chosen parent ~ p v . ^~) , but is
limited to those as yet un touched (U n p v . ^~0) , and is taken, arbi-
trarily, as the first of these (< \ U ^ P v . ^~).

The determinat ions of P and U are shown in the second line, P
being chosen from among those nodes which have children among
the untouched nodes (o~ v . ^ U) . These are permuted to the order
of the nodes in the left argument (~ v . ^ ~0 v . ^ U), bringing them
into an order so that the last visited appears first, and P is finally chosen
as the first of these.

The last line of R shows the final result to be the resulting right
argument oJ, that is, the original graph with all connect ions into each
node broken except for its parent in the spanning tree. Since the final
value of ~ is a square matrix giving the nodes of the tree in reverse
order as visited, substitution of ~ , ¢ [1] o~ (or, equivalently, co, o ~t)
for ~o would yield a result of shape 1 2 x 0 G containing the spanning
tree followed by its "preorder ing" information.

Another representat ion of directed graphs often used, at least
implicitly, is the list of all node pairs V, W such that there is a con-
nection from V to W. The t ransformation to this list form from the
connect ion matr ix may be def ined and used as follows:

LFC : (,~) / I +DT-i + I × /D÷o~
C LFC C

0011 1 1 2 3 3 4
0 0 1 0 3 4 3 2 4 1
0 1 0 1
1 0 0 0

However , this representat ion is deficient since it does not alone deter-
mine the number of nodes in the graph, al though in the present ex-
ample this is given by r / , L F C C because the highest numbered
node happens to have a connection. A related boolean representat ion
is provided by the expression (LFC C) o . : l 1 ÷ o C, the first plane
showing the out- and the second showing the in-connect ions.

An incidence matrix representat ion often used in the t reatment
of electric circuits [10] is given by the difference of these planes as
follows:

IFC:-f(LFC ~)o.=~I~0~

368 KENNETH E. IVERSON

For example: I !I 7 ')

I,u('hul'C
1 0 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 0

(LEC
0
0
0
0
0
1

C)o . = 1 1 + p C IFC C
1 0 1 0
1 0 0 1
0 1 1 0
0 1 1 0
0 0 1 1
1 0 0 1

0 0 1 0

0 0 0 1
0 0 1 0

0 1 0 0
0 0 0 1

I 0 0 0

In dealing with nondirected graphs, one sometimes uses a representa-
tion derived as the or over these planes (v t) . This is equivalent
to [IFC C.

The incidence matrix I has a number of useful properties. For ex-
ample, + / I is zero, + t I gives the difference between the in- and out-
degrees of each node, 0 Ig ives the number of edges followed by the
number of nodes, and × / 0 1 gives their product. However, all of these
are also easily expressed in terms of the connect ion matrix, and more
significant properties of the incidence matrix are seen in its use in elec-
tric circuits. For example, if the edges represent components connected
between the nodes, and if g is the vector of node voltages, then the
branch voltages are given by I + . × V; if B I is the vector of branch cur-
rents, the vector of node currents is given by B I + . × I .

The inverse t ransformation from incidence matrix to connect ion
matrix is given by:

CFI:Do(-I+tx/D)cD±(I -lo.:~)+.x-l+11+D+Lk~bp~

The set membership function E yields a boolean array, of the same shape
as its left argument, which shows which of its elements belong to the
right argument.

3.5
Symbolic Logic

A boolean function of N arguments may be represented by a boolean
vector of 2*N elements in a variety of ways, including what are
sometimes called the disjunctive, conjunctive, equivalence, and exclusive-
disjunctive forms. The t ransformation be tween any pair of these forms
may be represented concisely as some 2 *// by 2 * / / m a t r i x formed by
a related inner product, such as T v . ^~T , where T ÷ Z / / is the "truth
table" formed by the function Z defined by A.2. These matters are
treated fully in [11, Ch.7].

Notation as a Tool of Thought 369

4
Identi t ies and Proofs

In this section we will introduce some widely used identities and
provide formal proofs for some of them, including Newton's symmetric
functions and the associativity of inner product, which are seldom
proved formally.

4 . 1

Dualities
in Inner Products

The dualities developed for reduction and scan extend to inner
products in an obvious way. If DF is the dual of F and DG is the dual
of G with respect to a monadic function M with inverse btI , and if
,4 and B are matrices, then:

A Y . G B ÷ ÷ MI

For example:

(M A) DF.DG (M B)

A v . ^ B ÷ ÷ ~(~A)^.v(~B)
A ^ . = B +÷ ~(~A)v.*(~B)
A L . + B + ÷ - (- A) F . + (- B)

The dualities for inner product, reduction, and scan can be used
to eliminate many uses of boolean negation from expressions, particular-
ly when used in conjunct ion with identities of the following form:

A^(~B) ++ A>B

(~ A) ^ B ÷ ÷ A<B
(~A)^(~B) ÷ ÷ A~'B

4 . 2
Partitioning Identities

Partitioning of an array leads to a n u m b er of obvious and useful
identities. For example:

x13 1 4 2 6 ÷÷ (x13 I) x (x14 2 6)

More generally, f o r a n y assoc ia t ivefunc t ion F:

F/V ÷÷ (F/K÷V) F (F/K~V)
F/V,W +÷ (F/V) F (F/W)

If F is commutat ive as well as associative, the partit ioning need
not be limited to prefixes and suffixes, and the partitioning can be made
by compression by a boolean vector U :

F/V ÷÷ (F/U/V) F (F/(~U)/V)

370 KENNETH E. IVERSON

If E is an e m p t y vector (0 = p E) , the reduct ion F / E yields the iden-
tity e lement of the funct ion F, and the identities therefore hold in the
limiting cases 0 = K and 0 = v / U.

Partitioning identities extend to matr ices in an obvious way. For
example, if V, tq, and A are arrays of ranks 1, 2, and 3, respectively,
then:

Y+.xM +÷ ((K ÷ V) + . x (K , 1 4 o M) + M) + (K + V) + . x (K , O) ~ , M D.1
(I , J) , I , A + . x V ÷÷ ((I , J , O) + A) + . x V D.2

I 9 7 9

' l u r i n g

A w a r d

I , { ' f l i I i t "

4 . 3

S u m m a r i z a t i o n a n d D i s t r i b u t i o n
Consider the definit ion and and use of the following functions:

N_: (v / < \ ~ o . =to)/to D.3
~: (N-oJ)o . =~ D . 4

A÷3 3 1 4 1

C÷I0 20 30 40 50

N- A S_ A (~ A)+.xC
3 1 4 1 1 0 0 0 30 80 40

o o 1 o 1
o o o I o

The function N- selects f rom a vector a rgument its nub, that is, the
set of distinct e lements it contains. The expression ~ A gives a
boolean "summar iza t ion matr ix" which relates the e lements of A to
the e lements of its nub. If A is a vector of account number s and C is
an associa ted vector of costs, then the expression (S A) ÷ . x C evalu-
ated above sums or " summar izes" the charges to the several account
number s occurring in A.

Used as postmultiplier, in expressions of the form W÷. x~ A, the
summar iza t ion matr ix can be used to distribute results. For example,
if F is a function which is costly to evaluate and its a rgument V has
repeated elements, it may be more efficient to apply F only to the nub
of V and distribute the results in the m a n n e r suggested by the follow-
ing identity:

F V + ÷ (Y N- V) + . x ~ V D . 5

The order of the e lements of N- g is the same as their order in V,
and it is somet imes more convenient to use an ordered nub and cor-
responding ordered summar iza t ion given by:

ON : NoJ [$~] D.6
0~ . : (O N-~) o . = ~ D . 7

The identi ty corresponding to D.5 is:

F V ÷ ÷ (F ON_ V)+.x0_S_ V D.8

The summar iza t ion funct ion produces an interesting result w h e n
applied to the function _T defined by A.2:

+ / S + I T N ÷+ (O,~N).'N

Notation as a Tool of Thought 371

In words, the sums of the rows of the summar iza t ion matr ix of the
co lumn sums of the subset matr ix of order N is the vector of b inomial
coefficients of order N.

4 . 4

D i s t r i b u t i v i t y

The distributivity of one function over another is an important notion
in mathemat ics , and we will now raise the quest ion of represent ing
this in a general way. Since mult ipl icat ion distributes to the right over
addit ion we have a x (b ÷ q) ÷ ÷ a b 4 a q , and since it distr ibutes to the left
we have (a 4 p) x b ÷ * a b 4 p b . These lead to the more general cases:

(a+p)x(b+q) ÷÷ ab+aq+pb+pq
(a+p) x (b+q) × (c+r) ÷÷ abc+abr+aqc+aqr +pbc+pbr+pqc+pqr
(a+p)×(b+q)×. . .x(c+r) ÷ ÷ a b . . . c + + p q . . . r

Using the notion that V÷A, B and W÷P, ¢~ or V÷A, B, C a n d W ÷ P ,
Q, R, etc., the left side can be wri t ten s imply in t e rms of reduct ion
as ×/V+W. For this case of three elements , the right side can be
wri t ten as the sum of the produc t over the co lumns of the following
matrix:

v [o] v [o] v [o] v [o] w [o] w [o] w [o] w [o]
v [1] v [1] w [1] w [1] v [1] v [1] W [1] W [1]
V[2] W[2] V[2] W[2] V[2] W[2] V[2] W[2]

The pat tern of V's and W's above is precisely the pa t te rn of zeros
and ones in the matr ix T+_T0 V, and so the products down}he columns
are given by (V×. * ~ T) × (W×. * T) . Consequent ly:

x/V+W ÷÷ +/(Vx.*~T)xWx.*T÷_T oF D.9

We will now present a formal induct ive proof of D.9, assuming as
the induction hypothesis that D.9 is true for all V and W of shape N {that
is, ^ / N = (0 V). 0 W) and proving that it holds for shape N+ 1, that is,
for X, V and Y, W, where X and Y are arbi t rary scalars.

For use in the induct ive proof we will first give a recurs ive defini-
tion of the funct ion 2 , equivalent to A.2 and based on the following
notion: if M÷_T 2 is the result of order 2, then:

M
0 0 1 1
0 1 0 1

O , [1] M 1 , [1] M
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

(o , [1] M) , (1 , (i)M)
0 o o o 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

372 KENNETH E. IVERSON

Thus: I 9 7 9

'1 . r i , i g
/• %%rli r (|

I , v t ' l l l r t '
~:(O,[I]T),(1,[i]T÷Tw-I):O=~:O IpO

+/((C÷X, V)x . *~Q)xDx. *Q+_Tp(D+Y,W)
+/(Cx.*~Z,U)xDx.*(Z÷O,[I] T),U+I,[I] T÷~pW
*/((Cx. *~Z),Cx. *~U)x(Dx. *Z),Dx. *U
+/((Cx. *~Z),Cx. *~U)x((y*O)xWx. *T),(Y*l)xWx. *T
+/((Cx .*~Z) ,Cx. *~U)x(Wx. *T) ,yxWx. *T
+ / ((X x V x . * ~ T) , V x . * ~ T) x (W x . * T) , Y x W x . *T
+ / (X x (Vx. *~T)xWx . * T) , (yx (Vx. *~T)xWx . * T)

D.10

D.10
NoR 1
NoR 2

Y*0 l * * l , Y
NoW 2
No~ 3

+ / (X x x / V+ W) , (Y x x / V+ W) Induction hypothesis
+ l (X , Y) x x l V + W (X x S) , (y x S) ÷ ÷ (X , Y) x S
x / (X + y) , (V + W) Definition of x /
x / (X , V) + (Y , W) + distributes over ,

Note h M+. xN oP ++ (M+ . xN) ,M+ . x p (partitioning identity on matrices)

Note2: V+.xM +÷ ((I ÷ V) ÷ . x (1 , 1 ÷ p M) ÷ M) + (1 . I . V) + . x l O~bl
(,partitioning identity on matrices and the definition of C, D, Z, and U)

Note 3: (V , W) x P , Q ÷ ÷ (V x P) , W x Q

To complete the inductive proof we must show that the putative
identity D.9 holds for some value of N. If N= 0, the vectors A and
Bareempty , a n d t h e r e f o r e X , A +÷ ,X a n d Y , B ÷÷ , Y. H e n c e t h e
left side becomes x /X+Y, or simply X+7. The right side becomes
+ / (X ×. * ~ Q) × y × . , Q, where ~ Q is the one-rowed matrix 1 0 and
Q is 0 1. The right side is therefore equivalent to + / (X, 1) × (1 , Y) ,
or X + Y. Similar examination of the case N = 1 may be found instructive.

4.5
Newton% Symmetr ic Functions

If x is a scalar and R is any vector, then × / X - R is a polynomial
in X having the roots R. It is therefore equivalent to some poly-
nomial C E X, and assumption of this equivalence implies that C is
a function of R. We will now use D.8 and D.9 to derive this function,
which is commonly based on Newton's symmetr ic functions:

xlX-R
x/X+(-R)
+I(Xx.*~T)x(-R)x.*T÷_T pR D9
(Xx.*~T)+.xp÷(-R)x.*T Def of +.x

(X,S÷+I~T)+.xp Note 1

((X * O N S) + . x 0 _ S S) + . x P D 8
(X * Q ~ S) + . x ((Q S S) + . x P) + . x is associative

(X * O , t o R) + . x ((Q S _ S) + . × P) Note 2
((O S_ S) + . × P) E X B.1 (polynomial)
((O S + / ~ T) + . x ((- R) x . * T ÷ T o R)) E X Defs of S

and P
Note 1: If X is a s c a l a r and B is a boolean vector, then

X x . * B ÷ ÷ X*+/B.

N o t e 2: Since T is boolean and has pR rows, the sums of its co lumns

range f rom 0 to p R, and t h e i r o rde red nub is t he r e fo re 0 , l p R.

Notation as a Tool of Thought 373

4 . 6
D y a d i c T r a n s p o s e

The dyadic transpose, denoted by ~, is a generalization of monadic
transpose which permutes axes of the right argument, and [or I forms
"sectors" of the right argument by coalescing certain axes, all as deter-
mined by the left argument. We introduce it here as a convenient tool
for treating properties of the inner product.

The dyadic transpose will be defined formally in terms of the selec-
tion function

S F : (, t o) [l + (p t ~) ± a - l]

which selects from its right argument the element whose indices are
given by its vector left argument, the shape of which must clearly equal
the rank of the right argument. The rank of the result of K~A is [/ K ,
and if I is any suitable left argument of the selection I SF K~A then:

I SF K~A ÷ ÷ (I [K]) SF A D.11

For example, if M is a matrix, then 2 1 ~M ÷÷ ~Mand 1 1 ~M
is the diagonal o fM; i f T is a rank three array, then 1 2 2 ~ T i s a
matrix "diagonal section" of T produced by running together the last
two axes, and the vector 1 1 1 ~ T is the principal body diagonal of T.

The following identity will be used in the sequel:

J~K~A ÷÷ (J[K])~A D.12

Proof:

I SF J~K~A
(I [J]) SF K~A Definition of ~ (D.11)
((I [J]) [K]) SF A Definition of
(I [(J [K])]) SF A Indexing is associative
I S F (J [K])~A Definition of

4 . 7

I n n e r P r o d u c t s

The following proofs are stated only for matrix arguments and for
the particular inner product +. ×. They are easily extended to arrays
of higher rank and to other inner products F . G, where F and g need
possess only the properties assumed in the proofs for * and ×.

The following identity (familiar in mathematics as a sum over the
matrices formed by (outer) products of columns of the first argument
with corresponding rows of the second argumentl will be used in
establishing the associativity and distributivity of the inner product:

M + . x N ÷ ÷ + / 1 3 3 2 ~ M o . x N D.13

Proof: (I . J) S F M + . x N is defined as the sum over V, where
VEK] +÷ M E I ; K] x N E K ; J] . Similarly,

(I , J) S F +/1 3 3 2 ~ Mo.xN

374 KENNETH E. IVERSON

is the s u m over the vec tor W such that

W[K] ÷÷ (I,J,K)SF I 3 3 2

Thus :

W[K]
(I,J,K)SF 1 3 3 2 ~Mo.xN
(I,J,K)[1 3 3 2]SF Mo.xN
(I,K,K,J)SF Mo.xN
M[I;K]×N[K;J]
VEK]

Def

Mo.xN

D.12
Def of indexing

of Outer product

Mat r ix p roduc t d i s t r ibu tes over add i t ion as follows:

M+.x(N+P) ÷÷ (M+.xN)+(M+.xp)

Proof:

D.14

M + . x (N + P)
+ / (J ÷ 1 3 3 2) ~ M o . x N + p D.13
+ / J ~ (M o . × N) + (M * . x p) . x distributes over +
+ / (J ~ M o . x N) + (J ~ M o . x P) ~ distributes over +
(+ / J ~ M o . x N) + (+ / J t ~ M o . x p) + is assoc and comm
(M+. xN) + (M + . x p) D.13

Matr ix p roduc t is associat ive as follows:

M + . x (N + . x p) ++ (M + . x N) + . x P D.15

Proof: We first r educe each of the sides to s u m s over sec t ions of an
ou te r p roduct , and t h e n compare the sums. A n n o t a t i o n of the second

r educ t i on is left to the reader :

M + . x (N + . x P)
M + . x + / 1 3 3 2 ~ N o . x P D.12
+ / 1 3 3 2 ~ M o . x + / 1 3 3 2 ~ N o . x p D.12
+ / 1 3 3 2 ~ + / M o . x l 3 3 2 ~ N o . x p x distributes over +
+ / 1 3 3 2 ~ + / 1 2 3 5 5 4 ~ M o . × N o . x p Note 1
+ / + / 1 3 3 2 4 ~1 2 3 5 5 4 ~ M o . x N o . x p Note 2
+/+/1 3 3 4 4 2 ~ M o . x N o . x p D.12
+ / + / 1 3 3 4 4 2 ~ (M o . x N) o . x p x is associative
+ / + / 1 4 4 3 3 2 ~ (M o . x N) o . x p + is associative and

commutative
(M+.×N)+.xP
(+11 3 3 2~Mo.xN)+.xp
+/I 3 3 2~(+/I 3 3 2~Mo.xN)o.xp
+/1 3 3 2~+/1 5 5 2 3 4~(Mo.xN)o.xp
+/+/I 3 3 2 4~1 5 5 2 3 4~(Mo.×N)o.xp
+/+/1 4 4 3 3 2~(Mo.xN)o.xP

N o t e l : + / M o . x J ~ A * ÷ + / ((l p p M) o J + p p M) ~ M o . x A

Note 2: J ~ + / A ÷ ÷ + / (J , l + r l J) ~ A

Notation as a Tool of Thought 375

4 . 8
Product of Polynomials

The identity B.2 used for the multiplication of polynomials will now
be developed formally:

(B _P X)x(C _P X)
(+/BxX*E÷-I+ I pB) x(+/CxX*F÷- 1 + t PC) B.1
+/+/(BxX*E)o.x(CxX*F) Note 1
+ / + / (B o . x C) x ((X * E) o . x (X * F)) N o t e 2

+/+/ (Bo.xC)x(X*(Eo.+F)) Note 3

Note 1: (+/V)x(+/W)÷÷+/+/Vo.xX because x distributes over
+and + is associative and commutative, or see [12,P21] for a proof.

Note 2: The equivalence of (P x V) o . x (Q x W) and (p o . x Q) x (V o
x W) can be established by examining a typical element of each expression.

N o t e 3: (X*I)x(X*J)÷÷X*(I+J)

The foregoing is the proof presented, in abbreviated form, by Orth

[13, p. 52], who also defines functions for the composition of poly-

nomials.

4 . 9
Derivative

of a Polynomial
Because of their ability to approximate a host of useful functions,

and because they are closed under addition, multiplication, composi-
tion, differentiation, and integration, polynomial functions are very at-
tractive for use in introducing the study of calculus. Their treatment
in elementary calculus is, however, normally delayed because the
derivative of a polynomial is approached indirectly, as indicated in
Section 2, through a sequence of more general results.

The following presents a derivation of the derivative of a polynomial
directly from the expression for the slope of the secant line through
the points X, F X and (X + Y) , F (X + y) :

((C ~ X+Y)-(C P_ X))÷Y
((C Zf X+Y)-(C P Z+O))÷Y
((C P X+Y)-((O*J)+.×(A÷DS Jo..'J÷-l+tpC)+.xC) _P X)÷Y B.6
((((Y*J)+.xM) _P X)-((O*J)+.×M÷A+.xC) P X)÷Y B.6
((((Y*J)+.xM)-(O*J)..xM) P X)÷Y _P dist over -
((((Y*J)-O*J)+.xM) _P X)÷Y +.x dist over -
(((0,Y*l÷J)+.xM) ~ X)÷Y Note 1
(((Y*l+J)+.x 1 0 +M) ~ X)÷Y D.I
(((Y*l÷J)+.x(l 0 0 +A)+.xC) _p X)÷Y D.2
((Y*l+J-l)+.x(l 0 0 +A)+.xC) P X (Y*A)÷Y÷÷Y*A-I
((Y*-l+t-l+oC)+.x(l 0 0 ÷A)+.xC) _P X Def of J
(((Y * - l + t - l + p C) + . x 1 0 0 +A)+ .xC) _P X D.15

Note I: 0,0÷+1÷÷/*0 and ^/0=0*l+J

376 KENNETH E. IVERSON

The derivative is the limiting value of the secant slope for Y at zero,
and the last expression above can be evaluated for this case because
if E * - 1 + l - 1 + P C is the vector of exponents of Y, then all elements
of E are nonnegative. Moreover, 0 * E reduces to a I followed by zeros,
and the inner product with I 0 0 ¢A therefore reduces to the first
plane of 1 0 0 ~ A, or equivalently, the second plane of A.

If B ÷ J o . ! g ÷ - 1+ ~ P C is the matrix of binomial coefficients,
then A is ms B and, from the definition of D S in B.5, the second plane
of A is B x 1 = - g o . - J , that is, the matrix B with all but the first super-
diagonal replaced by zeros. The final expression for the coefficients of
the polynomial which is the derivative of the polynomial C _P ~ is
therefore:

((J o . :J)xl =-J o . -J+-l + I pC)+ . xC

For example:
C * 5 7 11 13

(Jo. :J)xl=-Jo.-J+-l+tpC

0 1 0 0
0 0 2 0'
0 0 0 3
0 0 0 0

((do. :J)×l=-Jo-J÷-l+IpC)+.xC

7 22 39 0

Since the superdiagonal of the binomial coefficient matrix
(~ N) o . : ~N is (- 1 + i N - 1) : ~N- 1or simply i N - 1, the final result
is 1 ¢ C x - 1 + ~ p C in agreement with the earlier derivation.

In concluding the discussion of proofs, we will re-emphasize the fact
that all of the statements in the foregoing proofs are executable, and
that a computer can therefore be used to identify errors. For example,
using the canonical function definition node [4, p. 81], one could define
a function F whose statements are the first four statements of the
preceding proof as follows:

VF
[1] ((c P X-~Y)-(C R x)) ÷ Y
[23 ((C P X+Y)-(C P X+O))÷y
[3] ((C P X+Y)-((O*J)+.x(A÷DS Jo.:J÷-l+IpC)+.xC) p X)÷Y
[4] ((((Y*J)+.xM) _P X)-((O*J)+.xM÷A+.xC) p X)÷Y

V

The statements of the proof may then be executed by assigning values

to the variables and executing F as follows:

2 3 1 C+5

Y+5

X÷3 X÷tl0
F F

132 66 96 132 174 222 276 336 402 474 552
132 66 96 132 174 222 276 336 402 474 552

132 66 96 132 174 222 276 336 402 474 552

132 66 96 132 174 222 276 336 402 474 552

The annotations may also be added as comments between the lines
without affecting the execution.

Notation as a Tool of Thought 377

5
Conclus ion

The preceding sections have attempted to develop the thesis that
the properties of executability and universality associated with program-
ming languages can be combined, in a single language, with the well-
known properties of mathematical notation which make it such an
effective tool of thought. This is an important question which should
receive further attention, regardless of the success or failure of this
attempt to develop it in terms of APL.

In particular, I would hope that others would treat the same ques-
tion using other programming languages and conventional mathematical
notation. If these treatments addressed a common set of topics, such
as those addressed here, some objective comparisons of languages could
be made. Treatments of some of the topics covered here are already
available for comparison. For example, Kerner [7] expresses the
algorithm C.3 in both ALGOL and conventional mathematical notation.

This concluding section is more general, concerning comparisons
with mathematical notation, the problems of introducing notation,
extensions to APL which would further enhance its utility, and discus-
sion of the mode of presentation of the earlier sections.

5.1
Comparison with

Conventional Mathematical Notation
Any deficiency remarked in mathematical notation can probably be

countered by an example of its rectification in some particular branch
of mathematics or in some particular publication; comparisons made
here are meant to refer to the more general and commonplace use of
mathematical notation.

APL is similar to conventional mathematical notation in many im-
portant respects: in the use of functions with explicit arguments and
explicit results, in the concomitant use of composite expressions which
apply functions to the results of other functions, in the provision of
graphic symbols for the more commonly used functions, in the use of
vectors, matrices, and higher-rank arrays, and in the use of operators
which, like the derivative and the convolution operators of
mathematics, apply to functions to produce functions.

In the treatment of functions APL differs in providing a precise
formal mechanism for the definition of new functions. The direct defini-
tion form used in this paper is perhaps most appropriate for purposes
of exposition and analysis, but the canonical form referred to in the
introduction, and defined in [4, p. 81], is often more convenient for
other purposes.

In the interpretation of composite expressions APL agrees in the use
of parentheses, but differs in eschewing hierarchy so as to treat all
functions (user-defined as well as primitive) alike, and in adopting a

378 KENNETH E. IVERSON

single rule for the application of both monadic and dyadic functions:
the right argument of a funct ion is the value of the entire expression
to its right. An important consequence of this rule is that any portion
of an expression which is free of parentheses may be read analytically
f rom left to right (since the leading function at any stage is the "outer"
or overall function to be applied to the result on its rightl, and construc-
tively from right to left [since the rule is easily seen to be equivalent
to the rule that execution is carried out f rom right to left I.

Although Cajori does not even ment ion rules for the order of
execution in his two-volume history of mathematical notations, it seems
reasonable to assume that the motivation for the familiar hierarchy
(power before × and x before + o r -) arose from a desire to make
polynomials expressible wi thout parentheses. The convenient use of
vectors in expressing polynomials, as in + /C× X , E , does much to
remove this motivation. Moreover, the rule adopted in APL also makes
Horner ' s efficient expression for a polynomial expressible without
parentheses:

+ / 3 4 2 5 x X * O I 2 3 ÷ ÷ 3 + X x 4 + X x 2 + X x 5

In providing graphic symbols for commonly used functions APL goes
much farther, and provides symbols for functions (such as the power
function) which are implicitly denied symbols in mathematics. This
becomes important when operators are introduced; in the preceding
sections the inner product × • * (which must employ a symbol for
power) played an equal role with the ordinary inner product + • i . Pro-
hibition of elision of function symbols (such as ×) makes possible the
unambiguous use of mult icharacter names for variables and functions.

In the use of arrays APL is similar to mathematical notation, but
more systematic. For example, V + W has the same meaning in both, and
in APL the definitions for other functions are extended in the same
elemefft-by-element manner. In mathematics, however, expressions
such as V x W and V* W are defined differently or not at all.

For example, V × W commonly denotes the vector product [14, p. 308].
It can be expressed in various ways in APL. The definition

VP: ((lqba) x - 1 ¢ ~) - (- l qba) x lqb~

provides a convenient basis for an obvious proof that V P is "anticom-
mutative" {that is, V VP W ÷ * -W VP V) , and {using the fact
that - 1 CX ÷÷ 2 CX for 3-element vectors) for a simple proof that in
3-space V and W are both orthogonal to their vector product, that is,
^ / o = g + . x V VP Wand ^/o=W+.xV VP W.

APL is also more systematic in the use of operators to produce
functions on arrays: reduction provides the equivalent of the sigma and
pi notation (i n + / a n d x / I and a host of similar useful cases; outer
product extends the outer product of tensor analysis to functions other
than × , and inner product extends ordinary matrix product (+ . ×)
to many cases, such as v . ^ and [• +, for which ad hoc definitions are
often made.

I ~ 7 .~

' l u r i n g

A ~ ' a r d
I,L'¢'I tu'L"

Notation as a Tool of Thought 379

1"2"3 + 2"3"4 +

• j .2-J
j=l

• . n t e rms ,~-.-~ ! n (n + 1) (n + 2) (n + 3)
4

1"2"3"4 + 2"3"4"5 + . . . n t e r m s ~ - - ~ ~ n (n + 1) (n + 2) (n + 3) (n + 4)
5

[~] - q

F (- q) j=o F (j + 1)

FIGURE 3

The similarities be tween APL and convent ional notation become
more apparent when one learns a few rather mechanical substitutions,
and the translation of mathematical expressions is instructive. For
example, in an expression such as the first shown in Figure 3, one
simply substitutes l N for each occurrence of j and replaces the sigma
by + / . Thus:

+ / (I N) x 2 * - ~ N , or + / J x 2 * - J ÷ l N

Collections such as Jolley's Summation of Series [15] provide in-
teresting expressions for such an exercise, part icularly if a computer
is available for execution of the results. For example, on pages 8 and
9 we have the identities shown in the second and third examples of
Figure 3. These would be wri t ten as:

+Ixl(-l+iN)o.+13 ÷÷ (xlN+O,13)÷4

+ / x / (- l + l N) o . + 1 4 *÷ (x / N + 0 , 1 4) ÷ 5

Together these suggest the following identity:

+Ixl(-l+IN)o.+IK ÷÷ (xlN+O,IK)÷K+i

The reader might a t tempt to restate this general identi ty (or even the
special case where K = 0) in Jolley's notation.

The last expression of Figure 3 is taken from a t rea tment of the
fractional calculus [16, p. 30], and represents an approximation to the
qth order derivative of a funct ion f. It would be wri t ten as:

(S , - Q) × + / (J ! J - I + Q) x F X - (J ÷ - I + I N) x S ÷ (X - A) ÷ N

The translation to APL is a simple use of ~ N as suggested above,
combined with a straightforward identi ty which collapses the several
occurrences of the gamma funct ion into a single use of the binomial
coefficient funct ion : , whose domain is, of course, not restricted to
integers.

380 KENNETH E. IVERSON

In the foregoing, the parameter Q specifies the order of the derivative
if positive, and the order of the integral (from A to X) if negative. Frac-
tional values give fractional derivatives and integrals, and the follow-
ing function can, by first defining a function FF and assigning suitable
values to/11 and A, be used to experiment numerically with the
derivatives discussed in [16]:

OS : (S * - a)x + / (J l J - l +a) x F ~ - (J ÷ - I + i N) x S ÷ (~ - A)÷N

Although much use is made of "formal" manipulation in
mathematical notation, truly formal manipulation by explicit
algorithms is very difficult. APL is much more tractable in this
respect. In Section 2 we saw, for example, that the derivative of
the polynomial expression (0 j o . * - l + 1 0 a) + . x a is given by
(~ 0 o . * - l . l o a) + . × l C a x - l + 1 0 a , and a set of functions for the
formal differentiation of APL expressions given by Orth in his treat-
ment of the calculus [13] occupies less than a page. Other examples
of functions for formal manipulation occur in [17, p. 347] in the model-
ing operators for the vector calculus.

Further discussion of the relationship with mathematical notation
may be found in [3] and in the paper "Algebra as a Language" [6, p. 325].

A final comment on printing, which has always been a serious
problem in conventional notation. Although APL does employ certain
symbols not yet generally available to publishers, it employs only 88
basic characters, plus some composite characters formed by super-
position of pairs of basic characters. Moreover, it makes no demands
such as the inferior and superior lines and smaller type fonts used in
subscripts and superscripts.

5 .2

T h e Introduction
o f Notat ion

At the outset, the ease of introducing notation in context was sug-
gested as a measure of suitability of the notation, and the reader was
asked to observe the process of introducing APL. The utility of this
measure may well be accepted as a truism, but it is one which requires
some clarification.

For one thing, an ad hoc notation which provided exactly the func-
tions needed for some particular topic would be easy to introduce in
context. It is necessary to ask further questions concerning the total
bulk of notation required, the degree of structure in the notation, and
the degree to which notation introduced for a specific purpose proves
more generally useful.

Secondly, it is important to distinguish the difficulty of describing
and of learning a piece of notation from the difficulty of mastering its
implications. For example, learning the rules for computing a matrix
product is easy, but a mastery of its implications (such as its associativity,

Notation as a Tool of Thought 381

its distributivity over addition, and its ability to represent linear func-
tions and geometric operations) is a different and much more difficult
matter.

Indeed, the very suggestiveness of a notation may make it seem
harder to learn because of the many propert ies it suggests for explora-
tion. For example, the notation +. × for matrix product cannot make the
rules for its computat ion more difficult to learn, since it at least serves
as a reminder that the process is an addition of products, but any discus-
sion of the propert ies of matr ix product in terms of this notation can-
not help but suggest a host of questions such as: Is v . ^ associative?
Over what does it distribute? Is B y . ^C ÷÷ ~ (~ C) v . ^~B valid
identity?

5.3
E x t e n s i o n s t o A P L

In order to ensure that the notat ion used in this paper is well-defined
and widely available on existing computer systems, it has been restricted
to current APL as defined in [4] and in the more formal standard published
by STAPL, the ACM SIGPLAN Technical Committee on APL [17, p. 409].
We will now comment briefly on potential extensions which would in-
crease its convenience for the topics t reated here, and enhance its
suitability for the t rea tment of other topics such as ordinary and vector
calculus.

One type of extension has already been suggested by showing the ex-
ecution of an example (roots of a polynomial) on an APL system based
on complex numbers . This implies no change in funct ion symbols,
al though the domain of certain functions will have to be extended. For
example , IX will give the magn i tude of complex as wel l as real
arguments, + X will give the conjugate of complex arguments as well as
the trivial result it now gives for real arguments, and the e lementary
functions will be appropriately extended, as suggested by the use of , in
the cited example. It also implies the possibility of meaningful inclusion
of primitive functions for zeros of polynomials and for eigenvalues and
eigenvectors of matrices.

A second type also suggested by the earlier sections includes functions
defined for particular purposes which show promise of general utility.
Examples include the nub function N_ , defined by D.3, and the sum-

marization funct ion S_, defined by D.4. These and other extensions are
discussed in [18]. McDonnel l [19, p. 240] has proposed generalizations
of and and or to non-booleans so that A v B is the GCD of A and B,
and A ̂ B is the LCM. The functions G CD and L CM defined in Section 3
could then be defined simply by GCD : v/0~ and LCM : ^ /o~.

A more general line of deve lopment concerns operators, illustrated
in the preceding sections by the reduction, inner-product, and outer-
product. Discussions of operators now in APL may be found in [20] and
in [17, p. 129], proposed new operators for the vector calculus are dis-
cussed in [17, p. 47], and others are discussed in [18] and in [17, p. 129].

382 KENNETH E. IVERSON

5 . 4

M o d e o f P r e s e n t a t i o n
The t reatment in the preceding sections concerned a set of brief

topics, with an emphasis on clarity rather than efficiency in the resulting
algorithms. Both of these points merit fur ther comment .

The t reatment of some more complete topic, of an extent sufficient
for, say, a one- or two-term course, provides a somewhat different, and
perhaps more realistic, test of a notation. In particular, it provides a
better measure of the amount of notation to be introduced in normal
c o u r s e w o r k .

Such t reatments of a number of topics in APL are available, in-
cluding: high school algebra [6], e lementary analysis [5], calculus, [!3],
design of digital systems [21], resistive circuits [10], and crystallography
[22]. All of these provide indications of the ease of introducing the nota-
tion needed, and one provides comments on experience in its use. Pro-
fessor Blaauw, in discussing the design of digital systems [21], says that
"APL makes it possible to describe what really occurs in a complex
system," that "APL is particularly suited to this purpose, since it allows
expression at the high architectural level, at the lowest implementa-
tion level, and at all levels between," and that "...learning the language
pays of {sic} in- and outside the field of computer design."

Users of computers and programming languages are often concern-
ed primarily with the efficiency of execution of algorithms, and might,
therefore, summari ly dismiss many of the algorithms presented here.
Such dismissal would be short-sighted, since a clear s tatement of an
algorithm can usually be used as a basis f rom which one may easily
derive more efficient algorithms. For example, in the function STEP of
Section 3.2, one may signficantly increase efficiency by making sub-
stitutions of the form B~M for(~M) + . x B, and in expressions using
+ / C × 2 * - 1 + l 0 C one may substitute X ± O0 C or, adopting an opposite
convention for the order of the coefficients, the expression X± C.

More complex transformations may also be made. For example,
Kerner's method (C.3) results f rom a rather obvious, though not for-
mally stated, identity. Similarly, the use of the matrix a to represent
permutat ions in the recursive function R used in obtaining the depth
first spanning tree (C.4) can be replaced by the possibly more compact
use of a list of nodes, substituting indexing for inner products in a rather
obvious, though not completely formal, way. Moreover, such a recur-
sive def ini t ion can be t r ans fo rmed into more efficient non-
recursive forms.

Finally, any algorithm expressed clearly in terms of arrays can be
transformed by simple, though tedious, modifications into perhaps more
efficient algorithms employing iteration on scalar elements. For exam-
ple, the evaluation of + / X depends upon every element of X and does
not admit of much improvement , but evaluation of v / B could stop at
the first e lement equal to 1, and might therefore be improved by an
iterative algorithm expressed in terms of indexing.

I ~ 7 ~

' l , , r i , l g
Awonxl
]A.'¢;I II I't:

Notation as a Tool of Thought 383

The pract ice of first developing a clear and precise definit ion of a
process wi thout regard to efficiency, and then using it as a guide and
a test in exploring equivalent processes possessing other characteristics,
such as greater efficiency, is ve ry c o m m o n in mathemat ics . It is a very
fruitful practice which should not be blighted by p rema tu re emphas is
on efficiency in compu te r execution.

Measures of efficiency are often unrealist ic because they concern
counts of " subs tan t ive" funct ions such as mult ipl icat ion and addition,
and ignore the housekeeping (indexing and other selection processes}
which is often greatly increased by less s t ra ightforward algorithms.
Moreover , realistic measu res depend strongly on the current design
of compute r s and of language embod imen t s . For example , because
funct ions on booleans {such as ^ / B and v / B } are found to be heavi ly
used in APL, implemen te r s have provided efficient execut ion of them.
Finally, ove remphas i s of eff iciency leads to an unfor tunate circulari ty
in design: for reasons of eff iciency early p rog ramming languages
reflected the characteris t ics of the early computers , and each genera-
tion of compute r s reflects the needs of the p rog ramming languages of
the preceding generat ion.

A c k n o w l e d g m e n t s

I am indebted to m y colleague A. D. Falkoff for suggestions which
greatly improved the organization of the paper, and to Professor Donald
McIn ty re for suggestions arising f rom his reading of a draft.

A p p e n d i x A
Summary of Notation

Fto SCALAR FUNCTIONS aFto
to Conjugate + Plus

0 - to Negative Minus
(to > 0) - to < 0 Signum x Times

1÷to Reciprocal ÷ Divide
to[-to Magnitude [Residue to-axtoto÷a+a=O

Integer part Floor P Minimum (t o x t o < a) + a x t o 2 a
-to Cei l ing [Maximum - (- a) - - t o

2 . 7 1 8 2 8 . . . * t o Exponential * Power x / toOa
Inverse of * Natural log • Logarithm (e t o) , e a

x / l + t t o Factorial ! Binomial (! t o) ÷ (! a) x ! t o - a
3 . 1 4 1 5 9 xto Pi times o

Boolean: v ,~ ~ (and, or, not-and, not-or, not)
Relations: < <_ = _> > ~ (aRto is 1 if relation R holds).

384 KENNETH E. IVERSON

Integers
Shape
Catenation

Ravel
Indexing
Compress
Take,Drop
Reversal
Rotate
Translmse
Grade
Base value

&inverse
Membership
Inverse
Reduction
Scan
Inner prod
Outer prod
Axis

Sec. V+÷2 3 5 M+-,,1 2 3
Ref. 4 5 6

1 ~5+÷1 2 3 4 5
1 pV+÷3 pM÷÷2 3 2 3 p t 6 ÷ ~ M 2pq.÷÷4 4
1 V , V ÷ ÷ 2 3 5 2 3 5 M,M+- ' , I 2 3 1 2 3

4 5 6 4 5 6
1 , M + ÷ i 2 3 4 5 6
1 V [3 1]+÷5 2 M [2 ; 2 3 + ÷ 5 M [2 ; 3 + + 4 5 6
3 1 0 1 / V + + 2 5 0 1 / M + ÷ 4 5 6
1 2÷V÷÷2 3 - 2 " I ' V + + l ÷ V + ~ 3 5
1 ~ V + ÷ 5 3 2
1 2¢V+÷5 2 3 - 2 ¢ V ÷ ÷ 3 5 2

1,4 ~ reverses axes a ~ permutes axes
3 &3 2 6 2 + ÷ 2 4 1 3 ~'3 2 6" 2 + ÷ 3 1 2 4

1 1 0 1 V + ÷ 2 3 5 V.LV+÷50
1 10 10 10T235++2 3 5 VT50+÷2 3 5
3 VE3+÷O 1 0 Yc5 2++1 0 1

2 ,5 I ~ is matrix inverse a ~ o J + ÷ (~ 0 J) + . x a
1 + / V + ÷ 1 0 +/M+*6 15 +/M÷÷5 7 9
1 +\V+÷2 5 10 +\M+÷2 3pl 3 6 4 9 15
1 + . × is matrix product
1 0 3 o . + 1 2 3++M
1 F [I] applies F along axis I

A p p e n d i x B
Compiler from Direct

to Canonical Form

This compiler has been adapted from [22, p. 222]. It will not handle
definitions which include a or : or ~ in quotes. It consists of the func-
tions FIX and F9, and the character matrices C9 andA 9 :

FIX
OpDFX F9

D÷F9 E;F;I;K
F ÷ (, (E = ' ~ ') o . * 5 ÷ l) / , E , (¢ 4 , p E) p ' Y9 '
F÷(,(F='a')o.=5÷I)/,F,(~4,oF)o' X9 '
F÷I+pD÷(0,+/-6,I)+(-(3×I)++\I÷' : '=F)¢F,(¢6,oF)p' '
D÷3¢C9[I+(I+'a'EE),I,O;],~D[;I,(I÷2+iF),2]
K÷K+2xK<iCK÷I^KE(>II O¢'÷Q'o.=E)/K÷+\~I÷EEA9
F÷(O,I+oE)FpD÷D,(F,pE)+~O -2+K¢' ',E,[1.5]';'
D÷(F÷D),[i]F[2] 'A',E

C9 A9
Z9+ 012345678

Y9Z9÷ 9ABCDEFGH
Y9Z9÷X9 IJKLMNOPQ

)/3÷(0=1÷, RSTUVWXYZ
÷O,OpZ9÷ ABCDEFGHI

JKLMNOP~R

Notation as a Tool of Though t 385

Example :

FIX
FIB:Zt+/-2÷Z÷FIB~-I:~=I:I

FIB 15
1 1 2 3 5 8 13 21 34 55 89

Q C R ' F I B '
Z 9 ÷ F I B Y 9 ; Z
+ (0 = 1 4 , Y 9 = 1) / 3
÷ 0 , 0 p Z 9 ÷ l
Z9÷Z,+/-2÷Z÷FIB Y9-1

AFIB:Z,+/-2+Z÷FIB~-I:~=I:i

144 2 3 3 377 610

References
1. Boole, G. An Investigation of the Laws of Thought, Dover Publications,

N.Y., 1951. Originally published in 1954 by Walton and Maberly,
London and by MacMillan and Co., Cambridge. Also available in
Volume II of the Collected Logical Works of George Boole, Open Court
Publishing Co., La Salle, Illinois, 1916.

2. Cajori, F. A History of Mathematical Notations, Volume II, Open Court
Publishing Co., La Salle, Illinois, 1929.

3. Falkoff, A. D., and Iverson, K. E. The Evolution of APL, Proceedings
of a Conference on the History of Programming Languages, ACM
SIGPLAN, 19778.

4. APL Language, Form No. GC26-3847-4, IBM Corporation.
5. Iverson, K. E. Elementary Analysis, APL Press, Pleasantville, N. Y., 1976.
6. Iverson, K. E. Algebra: An Algorithmic Treatment, APL Press, Pleasant-

ville, N. Y., 1972.
7. Kerner, I. O. Ein Gesamtschrittverfahren zur Berechnung der

Nullstellen von Polynomen, Numerische Mathematik, Vol. 8, 1966, pp.
290-294.

8. Beckenbach, E. F., ed. Applied Combinatorial Mathematics, John Wiley
and Sons, New York, N. Y., 1964.

9. Tarjan, R. E. Testing Flow Graph Reducibility,Journal of Computer and
Systems Sciences,Vol. 9, No. 3, Dec. 1974.

10. Spence, R. Resistive Circuit Theory, APL Press, Pleasantville, N. Y., 1972.
11. Iverson, K. E. A Programming Language, John Wiley and Sons, New

York, N. Y., 1962.
12. Iverson, K. E. An Introduction to APL for Scientists and Engineers, APL

Press, Pleasantville, N. Y.
13. Orth, D. L. Calculus in a New Key, APL Press, Pleasantville, N. Y., 1976.
14. Apostol, T. M. Mathematical Analysis, Addison Wesley Publishing Co.,

Reading, Mass., 1957.
15. Jolley, L. B. W. Summation of Series, Dover Publications, N. Y.
16. Oldham, K. B., and Spanier, J. The Fractional Calculus, Academic Press,

N. Y., 1974.
17. APL Quote Quad, Vol. 9, No.4, June 1979, ACM STAPL.

386 KENNETH E. IVERSON

18. Iverson, K. E., Operators and Functions, IBM Research Report RC 7091,
1978.

19. McDonnell, E. E., A Notation for the GCD and LCM Functions, APL
75, Proceedings of an APL Conference, ACM, 1975.

20. Iverson, K. E., Operators, ACM Transactions on Programming Languages
and Systems, October 1979.

21. Blaauw, G. A., Digital System Implementation, Prentice-Hall, Englewood
Cliffs, N. J., 1976.

22. McIntyre, D. B., The Architectural Elegance of Crystals Made Clear
by APL, An APL Users Meeting, I.E Sharp Associates, Toronto, Canada,
1978.

I I.I 7 ~l

' l i i i - i l l i , ~

A w a r d

I . l ' l ' I i i I ' t '

Categories and Subject Descriptors:
E2.1 [Theory of Computation]: Numerical Algorithms and Problems--
computations on matrices; computations on polynomials; G.l.m [Mathe-
matics of Computing]: Miscellaneous; G.2.1 [Discrete Mathematics]:
Combinatorics--permutations and combinations; G.2.2 [Discrete Mathe-
matics]: Graph Theory--trees; 1.1.1 [Computing Methodologies]:
Expressions and Their Representations--representations {general and
polynomial)

General Terms:
Algorithms, Design, Languages

Additional Key Words and Phrases:
APL, executability, mathematical notation, universality

Notation as a Tool of Thought 387

Postscript
Nota t ion as a Tool of Thought: 1986

KENNETH E. IVERSON

The thesis of the present paper is that the advantages of executability and univer-
sality found in programming languages can be effectively combined, in a single
coherent language, with the advantages offered by mathematical notation.

The executable language to be used is APL, a general-purpose language which
originated in an attempt to provide clear and precise expression in writing and
teaching, and which was implemented as a programming language only after several
years of use and development.

The first of the foregoing passages from my 1980 paper states the case to
be made for the use of an executable analytic notation, and the second states
the part icular vehicle to be used in developing it. The most obvious and im-
portant use of executable analytic notation is in teaching. The following
comments summarize recent progress in this area.

Materials and Courses
A common theme in the materials ment ioned here is the casual introduc-

tion of the necessary notation in context, in the manner familiar from the
teaching of mathematics. A good example at a high-school level is the treat-
ment of probabili ty by Alvord [1]. In their t reatment of circuit analysis, Spence
and Burgess [2] make heavier use of APL as a means of implementing their
system, and Hazony [3] makes combined use of graphic input and APL expres-
sions to specify designs in an expert support system.

The direction of my own recent work is described in an ACM Forum letter
[4], and drafts of two texts used in courses are currently available [5]. The Pesch
and Berry paper on style and li teracy [6] should be read by anyone interested
in these matters.

Development of the Notation
A version of APL has recently been developed [7] which, while remaining

within the bounds adopted in the ISO standard for the language, has both
simplified its structure and increased its expressive power. It provides a
significantly better basis for teaching than the notation used in my 1980 paper.

Availability of Implementat ions
Although APL has long been provided by central universi ty computing

services, it has been impracticable to use in teaching because of charging rates
and lack of suitable terminals. The present availability of APL systems on
microcomputers has changed this situation drastically.

The system provided for students here at the T. H. Twente is the one I find
most satisfactory [8]; it does not yet incorporate such new functions as hub,
raze, and all {a generalization of Cartesian product), but does provide the
fundamental notions of function rank, the box function {for the general
handling of representat ion or "structures"), and the under operator for the
important mathematical notion of duality.

Moreover, the system handles complex numbers {with all of the
mathematical functions suitably extended); provides the determinant (- . x),
the permanent (+ . x), the test for a Latin square (v . ^), and related func-

388

tions produced by the dot operator; generalizes the or and and functions to
provide the greatest common divisor and least common multiple; and exploits
the characteristics of the microcomputer and its screen display to provide a
"union" keyboard in which most characters {such as the parentheses and the
upper- and lower-case letters used in names) are in their normal typewri ter
positons.

' lu r ing
A~vard
I t ' (' | I I I ' t"

R e f e r e n c e s
1. Alvord, L. Probability in APL. APL Press, STSC Corp., Bethesda, Md.
2. Spence, R., and Burgess, J. Circuit Analysis. Prentice-Hall, Englewood

Cliffs, N.J., 1986.
3. Hazony, Y. A brief report of his work at Boston University appears in

a summary of a Minnowbrook Conference reported in APL Quote-Quad
16, 3 (19861.

4. Blaauw, G. A., et al. A curriculum proposal for computer science. Corn-
mun. ACM, Forum (Sept. 1985).

5. Iverson, K. E. Mathematics and Programming and Applied Mathematics
for Programmers. (Drafts of both are available from I. P. Sharp Associates,
Toronto, Ont., Canada.)

6. Pesch, R., and Berry, M. J. A. Style and literacy in APL. In Proceedings
ofAPL86. ACM, New York, 1986.

7. Iverson, K. E. A Dictionary of the APL Language. Draft available from
I. P. Sharp Associates, Toronto, Ont., Canada.

8. Sharp APL/PCX. Computer system for use on IBM AT/370 and XT/370
computers. Available from I. P. Sharp Associates, Toronto, Ont., Canada.
The system also runs on a normal IBM PC or AT, much more slowly,
but adequately for teaching purposes.

Notation as a Tool of Thought: 1986 389

