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The importance of nomenclature, notation, and language as tools 
of thought has long been recognized. In chemistry and in botany, for 
example, the establishment of systems of nomenclature by Lavoisier 
and Linnaeus did much to stimulate and to channel later investigation. 
Concerning language, George Boole in his Laws of Thought [1, p. 24] 
asserted "That language is an instrument of human reason, and not 
merely a medium for the expression of thought, is a truth generally 
admitted." 

Mathematical notation provides perhaps the best-known and best- 
developed example of language used consciously as a tool of thought. 
Recognition of the important role of notation in mathematics is clear 
from the quotations from mathematicians given in Cajori's A History 
of Mathematical Notations [2, pp. 332, 331]. They are well worth reading 
in full, but the following excerpts suggest the tone: 

By relieving the brain of all unnecessary work, a good notation sets it free to 
concentrate on more advanced problems, and in effect increases the mental power 
of the race. 

A. N. Whitehead 

The quantity of meaning compressed into small space by algebraic signs, is another 
circumstance that facilitates the reasonings we are accustomed to carry on by their 
aid. ~. 

Charles Babbage 

Nevertheless, mathematical notation has serious deficiencies. In 
particular, it lacks universality, and must be interpreted differently 
according to the topic, according to the author, and even according to 
the immediate context. Programming languages, because they were 
designed for the purpose of directing computers, offer important 
advantages as tools of thought. Not only are they universal (general- 
purpose), but they are also executable and unambiguous. Executability 
makes it possible to use computers to perform extensive experiments 
on ideas expressed in a programming language, and the lack of 
ambiguity makes possible precise thought experiments. In other 
respects, however, most programming languages are decidedly inferior 
to mathematical notation and are little used as tools of thought in ways 
that would be considered significant by, say, an applied mathematician. 

The thesis of the present paper is that the advantages of executability 
and universality found in programming languages can be effectively 
combined, in a single coherent language, with the advantages offered 
by mathematical notation. It is developed in four stages: 

(a) Section 1 identifies salient characteristics of mathematical notation 
ana ffses simple problems to illustrate how these characteristics may 
be provided in an executable notation. 

(b) Sections 2 and 3 continue this illustration by deeper treatment of 
a set of topics chosen for their general interest and utility. Section 
2 concerns polynomials, and Section 3 concerns transformations 
between representations of functions relevant to a number of topics, 
including permutations and directed graphs. Although these topics 
might be characterized as mathematical, they are directly relevant 
to computer programming, and their relevance will increase as 
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programming continues to develop into a legitimate mathematical 
discipline. 

(c) Section 4 provides examples of identities and formal proofs. Many 
of these formal proofs concern identities established informally and 
used in preceding sections. 

(d) The concluding section provides some general comparisons with 
mathematical notation, references to treatments of other topics, and 
discussion of the problem of introducing notation in context. 

The executable language to be used is APL, a general-purpose 
language which originated in an attempt to provide clear and precise 
expression in writing and teaching, and which was implemented as a 
programming language only after several years of use and development 
[31. 

Although many readers will be unfamiliar with APL, I have chosen 
not to provide a separate introduction to it, but rather to introduce it 
in context as needed. Mathematical notation is always introduced in 
this way rather than being taught, as programming languages commonly 
are, in a separate course. Notation suited as a tool of thought in any 
topic should permit easy introduction in the context of that topic; one 
advantage of introducing APL in context here is that the reader may 
assess the relative difficulty of such introduction. 

However, introduction in context is incompatible with complete 
discussion of all nuances of each bit of notation, and the reader must 
be prepared to either extend the definitions in obvious and systematic 
ways as required in later uses, or to consult a reference work. All of 
the notation used here is summarized in Appendix A, and is covered 
fully in pages 24-60 of APL Language [4]. 

Readers having access to some machine embodiment of APL may 
wish to translate the function definitions given here in direct definition 
form [5, p. 10] (using a and ~ to represent the left and right argu- 
ments} to the canonical form required for execution. A function for 
performing this translation automatically is given in Appendix B. 

I 9 7 9 
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1 
Important  Characterist ics  

of  Notat ion  
In addition to the executability and universality emphasized in the 

introduction, a good notation should embody characteristics familiar 
to any user of mathematical notation: 

• Ease of expressing constructs arising in problems. 
• Suggestivity. 
• Ability to subordinate detail. 
• Economy. 
• Amenability to formal proofs. 

Notation as a Tool of Thought  341 



The foregoing is not intended as an exhaustive list, but will be used 
to shape the siabsequent discussion. 

Unambiguous executability of the notation introduced remains 
important, and will be emphasized by displaying below an expression 
the explicit result produced by it. To maintain the distinction between 
expressions and results, the expressions will be indented as they 
automatically are on APL computers. For example, the integer function 
denoted by ~ produces a vector of the first /V integers when applied 
to the argument N, and the sum reduction denoted by + / produces the 
sum of the elements of its vector argument, and will be shown as 
follows: 

15  
1 2 3 4 5 

+/~5  
15 

We will use one nonexecutable bit of notation: the symbol ÷÷ appearing 
between two expressions asserts their equivalence. 

1.1 
Ease of Expressing Constructs 

Arising in Problems 
If it is to be effective as a tool of thought, a notation must allow 

convenient expression not only of notions arising directly from a 
problem but also of those arising in subsequent analysis, generaliza- 
tion, and specialization. 

Consider, for example, the crystal structure illustrated by Figure 1, 
in which successive layers of atoms lie not directly on top of one 
another, but lie "close-packed" between those below them. The 
numbers of atoms in successive rows from the top in Figure 1 are 
therefore given by ~ 5, and the total number is given by +/1 5. 

o 

o o  

o o o  

o o o o  

o o o o o  

FIGURE 1 

The three-dimensional structure of such a crystal is also close- 
packed; the atoms in the plane lying above Figure 1 would lie between 
the atoms in the place below it, and would have a base row of four 
atoms. The complete three-dimensional structure corresponding to 
Figure 1 is therefore a tetrahedron whose planes have bases of 
lengths 1, 2, 3, 4, and 5. The numbers in successive planes are 
therefore the partial sums of the vector l 5, that is, the sum of the first 
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element, the sum of the first two elements, etc. Such partial sums of 
a vector V are denoted by + \ V, the function + \ being called s u m  s c a n .  

Thus: 

I 9 7 9 

' l U l i n g  

/%ward 
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+ \ t 5  
1 3 6 10 15 

+ / + \ t 5  
35 

The final expression gives the total number  of atoms in the tetrahedron. 
The sum + / l 5 can be represented graphically in other ways, such 

as shown on the left of Figure 2. Combined with the inverted pattern 
on the right, this representation suggests that the sum may be simply 
related to the number  of units in a rectangle, that is, to a product.  

O OOOO0 
O0 O00O 
OOO OOO 
OOO0 OO 
OOOOO O 

FIGURE 2 

The lengths of the rows of the figure formed by pushing together 
the two parts of Figure 2 are given by adding the vector t 5 to the same 
vector reversed. Thus: 

t5  
1 2 3 4 5 

¢ t 5  
5 4 3 2 1 

( t 5 ) + ( ¢ t 5 )  
6 6 6 6 6  

This pattern of 5 repetitions of 6 may be expressed as 5 p 6, and we 
have: 

506 
6 6 6 6 6 

+ / 5 p 6  
3O 

3O 
6x5 

The fact that + / 5 p 6 +÷ 6 x 5 follows from the definition of multiplica- 
tion as repeated addition. 

The foregoing suggests that + / t 5 * *  ( 6 x 5 ) ÷ 2 and, more gener- 
ally, that: 

+~iN ÷÷ ((N+i)xN)÷2 A.1 
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1 .2  
Suggestivity 

A notat ion will be said to be suggestive if the forms of the expres- 
sions arising in one set of p rob lems  suggest related expressions which  
find applicat ion in other problems.  We will now consider related uses 
of the funct ions in t roduced thus far, namely:  

The example:  

~ P + /  + \  

5p2 
2 2 2 2 2 

x / S p 2  
32 

suggests that × / M p N +-* N * M, where  * represents  the power  function. 
The similarity be tween  the definit ions of p o w e r  in t e rms  of t imes, and 
of t imes in t e rms  of plus m a y  therefore  be exhibited as follows: 

x / M p N  ÷-~" N * M  
+ / M p N  ÷÷ NxM 

Similar expressions for part ial  sums  and partial  products  m a y  be 
developed as follows: 

x k 5 0 2  
2 4 8 16 32 

2 " 1 5  
2 4 8 16 32 

x \ M o N  ÷ ÷  N * I M  
+ \ M o N  ÷-~ N x I M  

Because they can be represen ted  by  a triangle as in Figure 1, the 
sums  + \ ~ 5 are called triangular numbers .  They  are a special case of 
the figurate num ber s  obta ined by  repeated  applicat ions of sum scan, 
beginning either with + \ ~ N, or with + \No 1. Thus: 

501 + \ + \ 5 p l  
1 1 1 1 1 1 3 6 10 15 

+\5pi + \ + \ + \ 5 0 1  
i 2 3 4 5 I 4 i 0  2o 35 

Replacing sums over  the successive integers by  products  yields the 
factorials as follows: 

15 

1 2 3 4 5 

×/15 x\15 

120 1 2 6 24 120 

:5 :15 

120 1 2 6 24 120 
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Part of the suggestive power  of a language resides in the ability to 
represent  identities in brief, general, and easily remembered  forms. We 
will illustrate this by expressing dualities between functions in a form 
which embraces DeMorgan's  laws, multiplication by the use of 
logarithms, and other  less familiar identities. 

If V is a vector of positive numbers,  then the product  x / V may be 
obtained by taking the natural logarithms of each element of V (denoted 
by ® V ), summing them ( + / ® V ), and applying the exponential  func- 
tion ( * + / ® V ). Thus: 

1 0 7 9 

'I i , r | i ig  
Awa rd  
l,cl'lui'c 

xlV ÷÷ * + / e V  

Since the exponential  function * is the inverse of the natural logarithm 
®, the general form suggested by the right side of the identi ty is: 

IG FIG V 

where  IG is the function inverse to G. 

Using ^ and v to denote  the functions and and or, and ~ to de- 
note the self-inverse function of logical negation, we may express 
DeMorgan's laws for an arbi t rary number  of elements by: 

^IB ÷ ÷  ~v l~B 
v / B  ÷÷ ~ ^ I ~ B  

The elements  of B are, of course, restricted to the boolean values 0 and 
1. Using the relation symbols to denote functions (for example, 
X < Y yields 1 if X is less than y and 0 otherwise) we can express further 
dualities, such as: 

* I B  ÷÷ ~ = / ~ B  
=IB ÷+ ~ * I ~ B  

Finally using I and L to denote  the maximum and minimum func- 
tions, we can express dualities which involve ari thmetic negation: 

[ I V  +÷ - L I - V  

L /V  ÷÷ - [ l - g  

It may also be noted that scan ( F \)  may replace reduction (F / ) in any 
of the foregoing dualities. 
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1 . 3  

S u b o r d i n a t i o n  

o f  D e t a i l  

As Babbage r emarked  in the passage cited by  Cajori, brevi ty  
facilitates reasoning. Brevity is achieved by  subordinat ing detail, and 
we will here  consider three  impor tant  ways  of doing this: the use of 
arrays,  the ass ignment  of names  to funct ions and variables,  and the 
use of operators .  

We have  already seen examples  of the brevi ty  provided  by  one- 
d imensional  arrays  (vectors) in the t r ea tment  of duality, and fur ther  
subordinat ion is provided by  matr ices  and other  arrays  of higher rank, 
since functions defined on vectors  are extended systematically to arrays 
of higher rank.  

In particular,  one m a y  specify the axis to which  a funct ion applies.  
For example,  ¢ [ 1 ] M acts along the first axis of a matrix M to reverse 
each of the columns,  and q~ [ 2 ]M reverses  each row; M, [ 1 ] N caten- 
a tes  c o l u m n s  (p lac ing  M a b o v e  N ), and  M, [ 2 IN ca tena tes  rows;  
and  + / [ 1 ] M  sums  co lumns  and + / [ 2 ] M  sums  rows.  If no axis is 
specified, the funct ion applies along the last axis. Thus  +/M sums  
rows.  Finally, reduct ion and  scan along the first axis m a y  be denoted 
by  the symbols  t and \ .  

Two uses of names  m a y  be distinguished: constant names  which  
have  fixed referents  are used for entities of very  general  utility, and 
ad hoc names  are assigned (by means  of the symbol  ÷ ) to quanti t ies 
of in teres t  in a n a r r o w e r  context .  For example ,  the cons tan t  (name)  
1 4 4 has a fixed referent ,  but  the names  CRATE,  LAYER,  and ROW 
assigned by  the expressions 

CRATE ÷ 144 

LAYER ÷ CRATE÷8 

ROW ÷ LAYER÷3 

are ad hoc, or variable names .  Cons tan t  n a m e s  for vec to rs  are also 
provided,  as in 2 3 5 7 11 for a numer i c  vec tor  of five e lements ,  
and in ' A BCDE ' for a character  vector  of five e lements .  

Analogous distinctions are made  in the names  of functions.  Con- 
stant  n a m e s  such as +, x, and  *, are ass igned to so-called primitive 
funct ions of general  utility. The detailed definitions, such as +/Mo N 
for N × M and x / M 0 N, for N * M, are subordinated by  the constant  names  
x a n d , .  

Less familiar  examples  of constant  funct ion names  are provided  
by  the c o m m a  which  catenates its a rguments  as i l lustrated by: 

/ 

(15),(qb5) +÷ 1 2 3 4 5 5 4 3 2 1 
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and by the base-representation function T, which produces  a represent-  
ation of its right a rgument  in the radix specified by its left a rgument .  
For example: 

I ~J 7 9 

'I u r h ~ g  
AWaHI  
I , u t l u ,  c 

2 2 2 T  

2 2 2 

B N ÷ 2  
BN 

0 0 0 0 1 1 1 
0 0 1 1 0 0 1 
0 1 0 1 0 1 0 

3 ÷ ÷ 0 1 1  

T 4 ÷ ÷ 1 0 0  

2 2 T 0 1 2 3  

1 
1 

1 

4 5 6 7  

BN,¢BN 

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 

0 0 1 1 0 0 I 1 1 1 0 0 1 1 0 0 

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 

The matr ix  BN is an impor tan t  one, since it can be v iewed in sev- 
eral  ways.  In addi t ion  to r ep re sen t ing  the b ina ry  n u m b e r s ,  the col- 
u m n s  represent  all subsets of a set of three elements,  as well  as the 
entries in a t ruth  table for three boolean arguments .  The general  ex- 
pression for N e lements  is easily seen to be(  No 2 ) T ( t 2 *N ) - 1, and 
we may  wish to assign an ad hoc name  to this function. Using the 
direct definition for [Appendix B), the name T is assigned to this func- 
tion as follows: 

_ T : ( ~ p 2 ) T (  1 2 * t o ) - I  A.2 

The symbol  ~o represen ts  the a rgument  of the function; in the case of 
two arguments  the left is represented by a.  Following such a definition 
of the func t ion  £, the express ion _? 3 yields the boolean  mat r ix  B/V 
shown above. 

Three expressions, separated by colons, are also used to define a 
funct ion as follows: the middle  expression is executed first; if its value 
is zero the first expression is executed, if not, the last expression is 
executed. This fo rm is convenient  for recursive definitions, in which  
the function is used in its own definition. For example, a function which 
produces  binomial  coefficients of an order specified by  its a rgument  
may  be defined recursively as follows: 

B C : ( X , O ) + ( O , X ÷ B C  ~-i):~=0:i A.3 

Thus BC 0 ÷-~ 1 a n d B C  1 ÷÷  1 1 and BC 4 ÷ ~  1 4 6 4 1. 

The t e rm operator, used in the strict sense defined in mathemat ics  
rather  than loosely as a s ynonym  for function, refers to an enti ty which 
applies to functions to produce  functions; an example  is the derivat ive 
operator.  
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We have already met  two operators, reduction, and scan, denoted 
by / and \ ,  and seen how they  cont r ibute  to brevi ty  by applying to 
different functions to produce  families of related functions such as 
÷ / and × / and ^ / .  We will now illustrate the notion further by intro- 

ducing the inner product operator  denoted by a period. A function 
(such as + / ) produced by an operator will be called a derived function. 

If P and Q are two vectors,  then  the inner  product  ÷.  × is defined 
by: 

p+ .xQ  ÷÷ +IPxQ 

and analogous definitions hold for funct ion pairs other  than + and ×. 
For example: 

P÷2 3 5 
Q÷2 1 2 
p+.  xQ 

17 

300 
p x . . Q  

PL .+Q 
q 

Each of the foregoing expressions has at least one useful interpre- 
tation: P+.  x Q is the total cost of order quantities Q for items whose 
prices are given by P ; because P is a vector of primes, P x . ,  Q is the 
n u m b e r  w h o s e  p r ime  d e c o m p o s i t i o n  is g iven by the exponen t s  Q; 
and if P gives distances f rom a source to t ranshipment  points and Q 
gives distances f rom the t ranshipment  points to the destination, then 
P [ .  + Q gives the min imum distance possible. 

The function +.  × is equivalent to the inner product  or dot product  
of mathematics,  and is extended to matrices as in mathematics.  Other  
cases such as ×.  * are extended analogously. For example, if _T is the 
funct ion defined by A.2, then: 

~ 3  
0 0 0 0 1 1  
0 0 1 1 0 0  
0 1 0 1 0 1  

p + . x T  
0 5 3 8 2 7  

1 1 

1 1 

0 1 

3 P× • *T_ 3 

5 10 1 5 3 15 2 10 6 30 

These examples bring out an important  point: if B is boolean, then 
P + .  ×B p roduces  sums over  subsets  of P specif ied by I ' s  i n B ,  and 
P ×.  * B produces  products  over subsets. 

The  phase  o . × is a spec ia l  use  of the i n n e r  p r o d u c t  o p e r a t o r  to 
produce a derived function which yields products  of each element  of 
its left argument  with each e lement  of its right. For example: 

2 3 5o . x 1 5  
2 4 6 8 10 

3 6 9 12 15 

5 10 15 20 25 
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The function o .  × is called ou te r  p r o d u c t ,  as it is in tensor  analysis 
and functions such as o • + and ° • * and o • < are def ined analogous- 
ly, producing "function tables" for the particular functions. For example: 

I 9 7 9 
r l u r l n g  

I,e( ' l lHe 

D÷0 1 2 3 
D o . F D  D o . a D  D o . ! D  

0 1 2 3  1 0 0 0  1 1 1 1  
1 1 2 3  1 1 0 0  0 1 2 3  
2 2 2 3 1 1 1 0 0 0 1 3 

3 3 3 3 1 1 1 1 0 0 0 1 

The symbol  : denotes the binomial  coefficient function, and the table 
D o .  : D is seen  to con ta in  Pasca l ' s  t r iangle  wi th  its apex  at the left; 
if ex tended  to negat ive a rguments  (as wi th  D ÷ -  3 2 1 0 1 2 3  ) 
it will be seen to contain the tr iangular and higher-order  figurate 
number s  as well. This extension to negative a rguments  is interesting 
for other  funct ions  as well. For example,  the table D o .  × D consists of 
four quadrants  separated by a row and a co lumn of zeros, the quad- 
rants  showing clearly the rule of signs for multiplication. 

Patterns in these funct ion tables exhibit other proper t ies  of the func- 
tions, allowing brief  s ta tements  of proofs by exhaustion. For example,  
commutat ivi ty  appears as a symmet ry  about the diagonal. More precisely, 
if the result  of the t ranspose funct ion ~ (which reverses the order  of the 
axes of its argument} applied to a table 2+  D o .  fD agrees with 2, then the 
funct ion f is commuta t ive  on the domain.  For example,  T = ~ T ÷ D  o . F D 

produces  a table of l ' s  because  F is commuta t ive .  
Cor r e spond ing  tests  of assoc ia t iv i ty  requi re  r ank  3 tables  of the 

fo rm D ° .  f( D o .  fD ) and ( D o . fD ) o .  fD.  For example:  

D÷O 1 
Do.^(Do.^D) (Do.^D)o.^D Do.~(Do.~D) (Do.~D)o.~D 

O 0  O 0  1 1  0 1  
O 0  O 0  1 1  0 1  

0 0 0 0 1 1 1 1 
0 1 0 1 0 1 0 1 

1 . 4  

E c o n o m y  

The utility of a language as a tool of thought  increases with the range 
of topics it can treat, but  decreases  wi th  the amoun t  of vocabula ry  and 
the complexity of grammatical  rules which the user must  keep in mind. 
Economy of notat ion is therefore  important .  

Economy requires  that  a large n u m b e r  of ideas be expres- 
sible in te rms  of a relatively small  vocabulary.  A fundamenta l  scheme 
for achieving this is the introduct ion of grammat ica l  rules by which  
meaningful  phrases  and sentences  can be constructed by combining 
e lements  of the vocabulary.  
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This scheme may be illustrated by the first example t r ea t ed - - the  
re la t ively  s imple and wide ly  useful  not ion of the sum of the first/V 
integers was not introduced as a primitive, but  as a phrase constructed 
f rom two more  general ly  useful  notions, the funct ion ~ for  the pro- 
duction of a vector of integers, and the function + / for the summation 
of the elements of a vector. Moreover, the derived function + / is itself 
a phrase, summation being a derived funct ion constructed from the 
more general notion of the reduct ion operator  applied to a particular 
function. 

Economy is also achieved by generality in the functions introduced. 
For example,  the defini t ion of the factorial  funct ion denoted  by ! is 
not restricted to integers, and the gamma function of X may therefore 
be wri t ten  as : X- 1. Similarly, the relations defined on all real argu- 
ments  provide several important  logical functions when  applied to 
boolean arguments:  exclusive-or ( - ), material  implication ( ~ ), and 
equivalence ( = ). 

The economy achieved for the matters  treated thus far can be 
assessed by recalling the vocabulary introduced: 

I p do T , 

/ \ 

+ - x ÷ * ® ; I - L ~  
VA~<<=>>~ 

The five functions and three operators listed in the first two rows are 
of pr imary  interest, the remaining familiar functions having been 
int roduced to illustrate the versatili ty of the operators.  

A significant economy of symbols, as opposed to economy of func- 
tions, is attained by allowing any symbol to represent  both a monadic 
function (i.e., a function of one argument) and a dyadic function, in 
the same manner  that the minus sign is commonly  used for both 
subtraction and negation. Because the two functions represented may, 
as in the case of the minus sign, be related, the burden of remember-  
ing symbols is eased. 

For example, X * Y and * Y represent  power  and exponential,  X® Y 
and ® Y represent  base X logarithm and natural  logarithm, X ÷ Y and 
÷Y represent  division and reciprocal, and X : Y and I Y represent  
the b inomial  coeff ic ient  func t ion  and the factorial  (that is, 
X ' Y * + (  : Y ) ÷ (  I X ) x ( : Y - X ) ) .  The symbol  p used for the dyadic 
function of replication also represents a monadic function which gives 
the shape of the argument {that is, X÷+p Xp i' ), the symbol do used for 
the monadic  reversal function also represents  the dyadic rotate func- 
tion exemplified by 2 dO l 5 ÷÷ 3 44 5 1 2, and by - 2 do l 5 ÷÷ ~ 5 1 
2 3, and finally, the comma represents  not only catenation, but also 
the monadic ravel, which produces  a vector  of the elements  of its argu- 
ment  in " row-major"  order.  For example: 

T 2 ,T  2 

0 0 1 1 0 0 1 1 0 1 0 1 
0 1 0 1 
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Simplicity of the grammatical  rules of a notation is also important.  
Because the rules used thus far have been those familiar in 
mathematical  notation, they have not been made explicit, but two 
simplifications in the order  of execution should be remarked:  

(1) All functions are treated alike, and there are no rules of precedence 
such as x being executed before + . 

(2) The rule that the right argument  of a monadic  funct ion is the 
value of the entire expression to its right, implicit in the order  of 
execut ion of an expression such as S I N  LOG : IV, is extended 
to dyadic functions. 

The second rule has certain useful consequences  in reduct ion and 
scan. Since F / V is equivalent  to placing the funct ion F be tween  the 
elements of V the expression - / v gives the alternating sum of the ele- 
ments of V, and ÷ / V gives the alternating product. Moreover, if B is a 
boolean vector, then < \ B "isolates" the first I in B, since all elements 
following it become 0. For example: 

<\0 0 1 1 0 1 1 ÷÷ 0 0 1 0 0 0 0 

Syntactic rules are fur ther  simplified by adopting a single form for 
all dyadic functions, which appear be tween their arguments,  and for 
all monadic  functions, which appear  before their arguments.  This 
contrasts with the variety of rules in mathematics.  For example, the 
symbols for the monadic functions of negation, factorial, and magnitude 
precede, follow, and surround their  arguments,  respectively. Dyadic 
functions show even more variety. 

1 .5  

A m e n a b i l i t y  

t o  F o r m a l  P r o o f s  

The importance of formal proofs and derivations is clear f rom their 
rolb in mathematics.  Section 4 is largely devoted to formal  proofs, and 
we will limit the discussion here  to the introduction of the forms used. 

Proof by exhaustion consists of exhaustively examining all of a finite 
number  of special cases. Such exhaustion can often be simply expressed 
by applying some outer  product  to arguments  which include all ele- 
men t s  of the re levant  domain .  For example,  if D÷O 1, t hen  V o .  ^19 
gives all cases of application of the and function. Moreover, DeMorgan's 
law can be proved exhaustively by comparing each element  of the 
matrix D o .  ^ V with each element  of ~ ( ~D ) o .  v ( ~D ) as follows: 

'1 H r i l l g  

A i ~ H  (I 

I . ( ' (  h l l  (" 

0 0 0 0 
0 1 0 1 

(Do. AD)= (~(~D) o. v(~D) ) 
1 1 
1 1 

-(-D)o .v(~D) 

^ / , ( Do . ^D )=(  ~ ( ~ D  )o . v ( ~ D ) )  
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Questions of associativity can be addressed similarly, the following 
expressions showing the associativity of and and the nonassociativity 
of not-and: 

^/  ,( (Do.^D )o.^D )=( Do.A( Do .AD ) ) 

^ I , (  (Do .mD)o • ~D)= (Do .~(Do .~D) ) 

A proof by a sequence of identities is presented by listing a sequence 
of expressions, annotating each expression with the supporting evidence 
for its equivalence with its predecessor.  For example, a formal proof 
of the identi ty A.1 suggested by the first example t reated would be 
presented as follows: 

+~iN 
+ / d~ l N + is associative and commutative 
( ( + / ~ N ) + ( + ~ @ i N )  )*2 (X+X)÷2+÷X 
( + / ( ( I N ) + ( d p l N ) ) ) ÷ 2  + is associative and commutative 
( +/((N+I)0N) )÷2 Lemma 
( ( N + i ) x N ) ÷ 2  Definition of x 

The fourth annotat ion above concerns an identity which, after ob- 
servat ion of the pa t te rn  in the special case ( l 5 ) + ( @ l 5 ), might  be 
considered obvious or might be considered wor thy  of formal proof in 
a separate lemma. 

Inductive proofs proceed in two steps: (1) some identi ty (called the 
induction hypothesis} is assumed true for a fixed integer value of some 
p a r a m e t e r  N a n d  this a s sumpt ion  is used to p rove  that  the iden t i ty  
also holds for the value N + 1 and (2) the identi ty is shown to hold for 
some integer value K. The conclusion is that the identi ty holds for all 
integer values of N which equal or exceed K. 

Recursive definitions often provide convenient  bases for inductive 
proofs. As an example we will use the recursive definition of the 
binomial  coefficient  funct ion BC given by  A.3 in an induct ive  proof  
showing that the sum of the binomial  coefficients of order  N is 2 * N.  

As the induction hypothesis  we assume the identity: 

+/BC N ÷÷ 2*N 

and proceed as follows: 

+IBCC N+I 
+ / ( X , O ) + ( O , X ÷ B C  N) 
( + /X ,O  )+( + / O , X )  
( + / X ) + ( + / X )  
2 x + / X  
2 x + / B C  N 
2 x 2 * N  
2*N+I 

+ is 
A.3 

associative and commutative 
0 + Y÷÷Y 

Y+Y÷÷2xY 
Definition of X 

Induction hypothesis 
Property of Power (* )  
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It remains to show that the induction hypotheses  is true for some 
integer value of N. From the recursive definition A.3, the value of 
B_C 0 is the value of the rightmost expression, namely 1. Consequently, 
.¢-/BC 0 is 1, and therefore equals 2 , 0 .  

We will conclude with a proof that DeMorgan's law for scalar 
arguments,  represented by: 

1 9 7 9 

' l u r ing  
Aw;Hd 
I, l 'dllrt ' 

A^B ÷ +  ~(~A)v(~B) A.4 

and proved by exhaustion, can indeed be extended to vectors of arbitrary 
length as indicated earlier by the putative identity: 

^ I V  * *  ~ v l ~ Y  A.5 

As the induction hypothesis  we will assume that A.5 is true for vectors 
of length ( p V ) - 1. 

We will first give formal recursive definitions of the derived func- 
tions and-reduction and or-reduction ( ^ / and v / ), using two new 
primitives, indexing, and drop. Indexing is denoted by an expression 
of the form X [ I ],  where  I is a single index or array of indices of 
the v e c t o r X .  For example, if X+2 3 5 7, t h e n X [ 2 ]  i s 3 ,  and 
X[ 2  1 ] i s 3  2.  Drop is denoted b y g ~ , X a n d i s  defined to drop IK 
(i.e., the magnitude of//} elements  from X, f rom the head if / /> 0 and 
from the tail if / /< 0. For example, 2 + X is 5 7 and - 2 + X is 2 3. The 
take function (to be used later) is denoted by 4 and is defined anal- 
ogously. For example, 3 + X i s 2  3 5 a n d - 3 4 X i s  3 5 7. 

The following functions provide formal definitions of and-reduction 

and or-reduction: 

ANDRED:~[I]^ANDRED l+~:O=pw:l 
ORRED :m[l]v ORRED l+~:O=pm:O 

A.6 
A.7 

The inductive proof  of A.5 proceeds as follows: 

^IV 
( V[l] )^(AII~,V) 
~( ~V[ 1 ] )v(~^II+V) 
~(~V[1] ) v ( ~ ~ v / ~ l + V )  
~ ( ~ V [ 1 ] ) v ( v l ~ l + V )  
~ v / ( ~ v [ 1 ]  ) , ( ~ l + v )  
~ v / ~ (  V [ 1 ]  , l + V )  
~ v l ~ V  

A.6 
A.4 
A.5 

~ ~ X ÷ * X  
A.7 

v distributes over , 
Definition of , (catenation) 
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2 
Polynomials 

If C is a vector  of coefficients and X is a scalar, then the polynomial  
in X with  coefficients C m a y  be wri t ten s imply  as + / C × X * - 1 + ~ o C, 
o r + / ( X * - l + l o C ) × C , o r  ( X * - l + t o C ) + . × C .  However ,  to ap- 
ply to a non scalar a r ray  of a rguments  X, the power  f u n c t i o n .  
should be replaced by  the power  table o .  * as shown  in the following 
definition of the polynomia l  function: 

if: (t0o . . - 1 +  t 0 a  ) + .  xa  B.1 

Forexample ,  1 3 3 1 if 0 1 2 3 4 ++ I 8 27 64 •25 .  If O a 
is replaced by  1 ÷ 0 a ,  then  the funct ion applies also to matr ices  and 
higher d imensional  arrays  of sets of coefficients represent ing (along the 
leading axis of a ) collections of coefficients of different polynomials .  

This definit ion shows clearly that the po lynomia l  is a l inear func- 
tion of the coefficient vector .  Moreover ,  if a and to are vectors  of 
the same shape, then  the pre-mult ip l ier  ~0 o .  * - 1 + t 0 a is the Vander-  
monde  matr ix  of ~, and is therefore  invert ible if the e lements  of ~0 
are distinct. Hence  if C and X are vectors  of the same shape, and if 
Y÷C if X, then  the inverse (curve-fitting) p rob lem is clearly solved 
by  applying the matr ix  inverse  funct ion ~ to the V a n d e r m o n d e  matr ix  
and using the identity: 

C ÷÷ (~Xo.*-I+toX)+.xY 

2.1 

P r o d u c t s  o f  P o l y n o m i a l s  
The "produc t  of two polynomials  B and C"  is c o m m o n l y  taken to 

mean  the coefficient vector  D such that: 

D if X +÷ (B if X)x(C _P X) 

It is well known that D can be computed by taking products over all 
pairs of elements from B and C and summing over subsets of these 
products associated with the same exponent in the result. These prod- 
ucts occur in the function table B o x C, and it is easy to show infor- 
mally that the powers of X associated with the elements of B o. x C 
are given by the addition table E÷(-l+tpB)o.+(-l+tpC). For 
example:  

X÷2 
B ÷ 3  I 2 3 
C÷2 0 3 
E÷( -I+ t pB) o .+( -I+ toe) 
Bo .xC E X*E 

6 o 9 o 1 2 1 2 4 
2 0 3 1 2 3 2 4 8 
4 0 6 2 3 4 4 8 16 

6 0 9 3 4 5 8 16 32 

+/ , (Bo  . x C ) x X * E  
518 

518 
(B if X)x(C if X) 
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The foregoing suggests the following identity, which  will be estab- 
lished formal ly  in Section 4: 

1 9 7 9  

"I u , ' i n g  
A ~ i l r d  
h-~ h , r c  

(B _P X ) x ( C  P X ) ÷ ÷ + i , ( B o . x C ) x X , ( - I + t p B ) o . + ( - I + l p C )  B.2 

Moreover ,  the pa t t e rn  of the exponent  table  E shows that  e l ements  
of B o .  × C lying on d iagona ls  are a s soc ia t ed  w i th  the  s ame  power ,  
and that  the coefficient vector  of the product  po lynomia l  is therefore  
given by sums over  these diagonals. The table B o .  × C therefore  pro- 
vides an excellent organization for the manua l  computa t ion  of 
products  of polynomials .  In the present  example  these sums give 
the  v e c t o r  V÷6 2 13 9 6 9, a n d  D _P X m a y  be  s e e n  to e q u a l  
(B_pX)x(CP_X) 

Sums over  the r equ i red  diagonals  of B o x C can also be  ob t a ined  
by border ing it by zeros, skewing the result  by rotating successive 
rows by successive integers, and then s umming  the columns.  We thus 
obtain a definition for the polynomia l  product  funct ion as follows: 

PP: 4 / (  I- l pec)¢cto . x ~ ,  1,1.0xc¢ 

We will now develop an alternative me thod  based upon  the simple 
observa t ion  that  if B PP C produces  the product  of po lynomia ls  B 
and C, then PP is linear in both  of its arguments .  Consequently,  

PP: a+. x A + .  xm 

where  A is an array to be determined.  A mus t  be of rank 3, and must  
depend on the exponents of the left a rgument  ( - 1  + t p a ), of the 
result ( - 1 + t p 1 * a ,  ~ ) and of the right argument.  The "deficiencies" 
of the right exponen t  are given by the d i f ference  table ( ~ p 1 * ~ ,  ~0 ) 
o .  - l p ~ ,  and  c o m p a r i s o n  of these  va lues  wi th  the  left  e x p o n e n t s  
yields A. Thus 

A ÷ (  - 1 +  t p a  ) o .  =( ( tp14cc,oJ )o . - t p =  ) 
and 

p p : c ¢ + ,  x (  ( - 1 +  l p a ) o  . =( t p l ~ e c , ~ ) o . - t p ~ ) + ,  xo~ 

Since a + .  ×A is a matrix, this formulat ion suggests that  if D*B PP 
C, then C might  be obtained f rom 0 by premul t ip ly ing it by the in- 

verse matrix ( ~ B + .  × A ), thus providing division of polynomials.  Since 
B+.  ×A is not square (having more  rows than columns),  this 
will not work,  but by replacing M+B +. × A by either its leading square  
p a r t ( 2 p k / p M ) + M o r  by  its t ra i l ing  s q u a r e  p a r t ( - 2 O k / p M ) ÷ M ,  
one obtains two results, one corresponding to division with low-order re- 
mainder  terms, and the other to division with high-order remainder  terms. 

2 . 2  

D e r i v a t i v e  o f  a P o l y n o m i a l  

Since the derivative of X * N is N x X* N - 1, we may  use the rules for 
the derivat ive of a sum of functions and of a product  of a funct ion with 
a constant,  to show that  the derivative of the polynomia l  C _P X is the 
polynomia l  ( 1 * C × - 1 + l 0 C ) _P X. Using this result  it is clear that  
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the integral is the po lynomia l  ( A,  C ÷ ~ p C ) P X, where  A is an ar- 
b i t rary  scalar constant.  The expression 1 ¢ C × - 1 + ~ o C also yields 
the coefficients of the derivative,  but  as a vector  of the same shape 
as C and having a final zero element .  

2 . 3  

D e r i v a t i v e  o f  a P o l y n o m i a l  
w i t h  R e s p e c t  to  I t s  Root s  

If R is a vector  of three elements ,  then  the der ivat ives  of the 
po lynomia l  × / X - R  with  respect  to each of its three roots are 
- ( X - R E 2 ] ) x ( X - R E 3 J ) , a n d  - ( X - R E 1 ] ) x ( X - R [ 3 ] ) ,  and  
- ( X - R [ 1 ] ) x ( X - R [ 2 ] ) .  More  gene ra l ly ,  the  d e r i v a t i v e  of 
x / X - R  with  respect  t o R [ J ]  is s imply  - ( X - R ) x  * J * 1 0 R ,  and 
the vector  of derivat ives wi th  respect  to each of the roots is 
-(X-R)x. *Io.xI÷tpR . 

The expression × / X - R  for a po lynomia l  wi th  roots R applies 
only to a scalar X, the more  general  expression being × / X  o - R .  
Consequent ly ,  the general  expression for the matr ix  of der ivat ives  
[of the po lynomia l  evaluated at X [ I ] wi th  respect  to root R [ J ])  
is given by: 

- ( X o  . - R  )x . * I o  • ~ I ÷ l  o R  B . 3  

2 . 4  

E x p a n s i o n  o f  a P o l y n o m i a l  
Binomial expansion concerns  the deve lopmen t  of an identi ty in the 

fo rm of a po lynomia l  in X for the expression (X+ Y )* N. For the 
special case of Y--1 we have  the wel l -known expression in te rms  of 
the b inomial  coefficients of order  N : 

( x . 1 ) . N  ÷÷ ( (O,~N):N)12 x 

By extension we speak of the expansion of a po lynomia l  as a mat-  
ter of de termining coefficients D such that: 

C _P X+Y ÷÷ D _P X 

The coeff ic ients  D are, in general ,  func t ions  of Y. If Y : i they  again 
depend  only on binomial  coefficients, but  in this case on the several  
b inomial  coefficients of var ious  orders,  specifically on the matr ix  
Jo. !J÷ 1410C. 

For example,  if C÷3 1 2 4, and C _P X+I÷÷D P X, then  D 
depends  on the matrix: 

0 1 2 3 o . !  0 1 2 3 
1 1 1 1 
0 1 2 3 
0 0 1 3 
0 0 0 1 
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and  D mus t  c lear ly  be  a we i gh t ed  s u m  of the  co lumns ,  the  weights  
being the e lements  of C. Thus: 

D÷(do. :j÷ll+tpC)+.xC 

Jotting down the matr ix  of coefficients and per forming  the indicated 
matr ix  product  provides a quick and reliable way  to organize the other- 
wise messy  manua l  calculation of expansions. 

If B is the appropr ia te  matr ix  of b inomial  coefficients, then  
D ÷ B + .  ×C, and the expansion function is clearly linear in the coef- 
ficients C. Moreover, expansion for 1' = - 1 must  be given by the inverse 
matr ix  [BB, which  will be seen to contain the al ternating binomial  
coefficients. Finally, since: 

C E X + ( K + I )  ÷ +  C E ( X + K ) + I  ÷÷ ( B + . x C )  E ( X + K )  

it follows that  the expansion for positive integer values  of Y mus t  be 
given by products  of the form: 

B + . x B + . × B + . × B + . x C  

I !) 7 !1 

' lur ing 
Award 
I.ct lurt. 

where  the B occurs Y times. 
Because + .  x is associative, the foregoing can be wri t ten as M +.  × C, 

where  M is the product  of Y occurrences  of B. It is interesting to 
examine the successive powers  of B, computed  either manua l ly  or 
by machine  execution of the following inner  product  power  function: 

IPP:a+.xa IPP ~-l:~o=O:Jo.=J÷-l+11+pa 

Compar i son  orB I P P  Kwith  B for a few values of K shows an 
obvious pa t te rn  which  may  be expressed as: 

B IPP K ÷ ÷  BxK*O[-Jo.-J+-1+I1+pB 

The interesting thing is that  the right side of this identi ty is meaningful  
for noninteger  values of K, and, in fact, provides the desired expres- 
sion for the general  expansion C E X + Y : 

C P(X+Y) ÷÷ (((Jo.!J)xY*OF-Jo.-J÷-l+IpC)+.xC)P X B.4 

The right side of B.4 is of the fo rm ( M+. x C ) _P X, w h e r e  t4 itself 
is of the fo rm B x y .  E and can be displayed informal ly  {for the case 
4 = p C ) as ~ l lows:  

1 1 1 1  0 1 2 3  
0 1 2 3  0 0 1 2  
0 0 1 3  x y *  0 0 0 1  
0 0 0 1  0 0 0 0  

Since Y * K multiplies the single-diagonal matr ix  B x ( g = E ), the expres- 
sion for M can also be wri t ten  as the inner  product  (Y*  J ) + .  x T, 
where  T is a rank  3 array whose  Kth plane is the matr ix  B × ( K = E ). 
Such a rank three array can be fo rmed f rom an upper  tr iangular  matr ix  
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M by making a rank 3 array whose first plane is M (that is, 
( 1 = l 1 + p M ) o .  x M } and rotating it along the first axis by the matrix 
J o - g, whose Kth superdiagonal has the value -/¢. Thus: 

DS : ( I o  . - I  ) ¢ [ 1 ] (  l = I ÷ l  l ÷ p ~  )o . x w  B.5 

DS Ko. !K÷-I+~3 
1 0 0 
0 1 0 

0 0 1 

0 1 0 
0 0 2 
0 0 0 

0 0 1 
0 0 0 
0 0 0 

Substituting these results in B.4 and using the associativity of + • x ,  
we have the following identity for the expansion of a polynomial,  valid 
for noninteger  as well  as integer values of Y : 

C _P X+Y ÷÷ ( ( Y * J ) + . x ( D S  J o . ! J ÷ - l + t p C ) + . x C ) P  X B.6 

For example: 

1 3 
0 1 
0 0 

0 0 

96 79 

358 

Y÷3 

C÷3 1 4 2 
M÷(Y*J)+.xDS Jo.:J÷-I+IoC 
M 
9 27 
6 27 
1 9 
0 1 

M+.xC 
22 2 
( M + . x C )  _P X ÷ 2  

C _P X+Y 

358 

3 
Representations 

The subjects of mathematical  analysis and computat ion can be 
represented in a variety of ways, and each representat ion may  possess 
particular advantages. For example, a positive integer /V may  be 
represented simply by N check-marks; less simply, but more compactly, 
in Roman numerals;  even less simply, but  more  convenient ly  for the 
performance of addition and multiplication, in the decimal system; and 
less familiarly, but  more convenient ly  for the computat ion of the least 
common  multiple and the greatest co m m o n  divisor, in the pr ime 
decomposi t ion scheme to be discussed here.  
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I ~) 7 ~:~ 

'1 l i  r i l l g  

A ~ l r d  

| , e l ' l  l i i ~  , 

and all of the 
2 3 5 7 × . *  

6 and: 

Graphs,  which concern connections among a collection of elements, 
are an example of a more  complex entity which  possesses several useful 
representat ions.  For example,  a s imple directed graph of N e lements  
(usually called nodes) may be represented by an N by N boolean matrix 
B (usually called an adjacency matrix) such that  B E / ; g 3 = 1 if there is 
a connect ion from node I to node J .  Each connect ion represented  by 
a 1 in B is called an edge, and the graph can also be represented  by  
a ÷ / ,  B by  N matr ix  in which  each row shows the nodes connected 
by a part icular  edge. 

Functions also admit  different useful  representat ions.  For example,  
a pe rmuta t ion  function, which  yields a reorder ing of the e lements  of 
its vector  a rgument  X, may  be represented  by  a permutation vector P 
such that  the pe rmuta t ion  funct ion is s imply  X [ P 3, by  a cycle rep- 
resentat ion which  presents  the s tructure of the funct ion more  directly, 
by the boolean matr ix  B * P o = l 0 P such that  the pe rmuta t ion  funct ion 
is B + .  × X, or by a radix representa t ion  R which employs  one of the 
columns of the matrix 1 + ( ¢ ~ N ) T - 1 + l : N÷O X, and has the proper ty  
that 2 [ + / R-  1 is the par i ty  of the pe rmuta t ion  represented.  

In order to use different representa t ions  conveniently,  it is impor  
tant to be able to express the t ransformat ions  be tween  representa t ions  
clearly and precisely. Convent ional  ma themat ica l  notat ion is often 
deficient in this respect,  and the present  section is devoted to develop- 
ing expressions for the t ransformat ions  be tween  representat ions useful 
in a var iety of topics: n u m b e r  systems, polynominals ,  permutat ions ,  
graphs, and boolean algebra. 

3.1 
Number Systems 

We will begin the discussion of representa t ions  wi th  a familiar 
example,  the use of different representa t ions  of positive integers and 
the t ransformat ions  be tween  them.  Ins tead of the positional or base- 
value representa t ions  c o m m o n l y  treated, we will use prime decomposi- 
tion, a representa t ion  whose  interesting proper t ies  make  it useful  in 
introducing the idea of logari thms as well  as that of n u m b e r  repre- 
sentat ion [6, Ch.16]. 

If P is a vector  of the first 0 P pr imes  and E is a vector  of non- 
negative integers, then E can be used to represent  the n u m b e r  P x . ,  E, 

integers ~ [ / P  can be so represented.  For example,  
0 0 0 0 i s  1 and  2 3 5 7 x . ,  1 1 0 0 is 

P 
2 3 5 7  

ME 

0 1 0 2 0 1 0 3 0 1  

0 0 • 0 0 1 0 0 2 0  
0 0 0 0 1 0 0 0 0 1  
0 0 0 0 0 0 1 0 0 0  

P x . * M E  
1 2 3 4 5 6 7 8 9 1 0  
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The similari ty to logari thms can be seen in the identity: 

x l P x . * M E  ÷÷ p x . * + / M E  

which m a y  be used to effect mult ipl icat ion by  addition. 
Moreover ,  if we  define GCO and L CM to give the greatest  c o m m o n  

divisor and least c o m m o n  mult iple  of e lements  of vector  arguments ,  
then: 

GCD p x . * M E  ÷÷ p x . * L / M E  
LCM p x . * M E  ÷÷ p x . * [ / M E  

ME V÷px . *ME 

2 1 0 V 

3 1 2 18900 7350 3087 

2 2 0 GCD V 

1 2 3 21 

px . * [/ME 

21 

LCM V 
9 2 6 1 0 0  

P x . * [ / M E  
9 2 6 1 0 0  

In defining the funct ion GCD, we will use the opera tor  / wi th  a 
boolean a rgumen t  B la s  in B / ). It p roduces  the compression funct ion 
which  selects e lements  f rom its right a rgument  according to the ones 
i n B .  For example,  1 0 1 0 1 / 1 5  is 1 3 5. Moreover ,  the func- 
tion B / applied to a matr ix  a rgument  compresses  rows {thus selecting 

certain columns),  and the funct ion B /  compresses  co lumns  to select 
rows.  Thus: 

GCD:GCD M,(M+k/R)IR:I~oR+(~O )/~:+/R 

LCM:(x/X)÷GCD X÷(i÷~o),LCM l*c0 :0 :p~ : l  

The transformation to the value of a number from its prime de- 
composition representation {VFR) and the inverse transformation to 
the representation from the value {RFV ) are given by: 

V F R : a x . * o J  
RFV:D+a RFV ~ ÷ a x . * D : A / ~ D ÷ O = o t [ o o : D  

For example:  

P VFR 2 i 3 
10500 

P RFV 10500 
2 1 3 I 

3.2 

P o l y n o m i a l s  

Section 2 in t roduced two representa t ions  of a po lynomia l  on a 
scalar a rgument  X, the first in t e rms  of a vector  of coefficients C 
(that is, + / C × X * - I +  l p C I ,  and the second in te rms  of its roots R 
[that is, x / X - R ). The coefficient representa t ion  is convenient  for add- 
ing polynomials  {0 + D) and for obtaining der ivat ives  (1 ,~ C × - 1 + l 0 C). 
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The root representa t ion  is convenient  for other  purposes,  including 
mult ipl icat ion which  is given by R 1, R 2. 

We will now develop a funct ion CFR {Coefficients f rom Roots) 
which  t ransforms a roots representa t ion  to an equivalent  coefficient 
representation,  and an inverse function RFC. The deve lopment  will be 
informal;  a formal  derivat ion of CFR appears  in Section 4. 

The expression for CFR will be based on Newton 's  symmet r ic  func- 
tions, which  yield the coefficients as sums over  certain of the products  
over  all subsets  of the ar i thmet ic  negation (that is,- g ) of the roots R. 
For example,  the coefficient of the constant  t e rm is given by  × / - R ,  
the product  over  the entire set, and the coefficient of the next t e rm is 
a sum of the products  over the e lements  of - H taken ( p R ) - I at a time. 

The funct ion defined by  A.2 can be used to give the products  over  
all subsets as follows: 

'1 l ,  r l i i g  

t~%% i I  i l l  

I , l ' l ' l  I I  I l '  

P÷( -R )x  . *M÷T. pR 

The elements  of P s u m m e d  to produce a given coefficient depend upon 
the n u m b e r  of e lements  of R excluded f rom the particular product,  that 
is, upon + /~ t4 ,  the sum of the co lumns  of the c o m p l e m e n t  of the 
boolean "subset"  matr ix  _ToR. 

T h e  s u m m a t i o n  o v e r  P m a y  t h e r e f o r e  be  e x p r e s s e d  as 
( ( 0 ,  l p R ) o .  = + / ~M ) + .  x p, and the complete  expression for the 
coefficients C becomes:  

C ÷ ( ( 0 , l p R ) o . = + t ~ M ) + . x ( - R ) x . * M ÷ T  pR 

For example,  if R÷2 3 5, then  

M 
0 0 0 0 1 1 1 1 
0 0 1 1 0 0 i 1 
0 1 0 1 0 1 0 1  

( - R ) x . * M  
-5  - 3 1 5  - 2 1 0  

( ( o  
30 31 1 

+/~M 
3 2 2 1 2 1 1 0  

(0 , ioR)o .=+/~M 
0 0 0 0 0 0 0 1  
0 0 0 1 0 • • 0  

6 - 3 0  0 1 1 0 1 0 0 0  
1 0 0 0 0 0 0 0  

, l p R ) o . = + / ~ M ) + . x ( - R ) x . * M ÷ T  pR 
O 1  

The funct ion CFR which  produces  the coefficients f rom the roots m a y  
therefore  be def ined and used as follows: 

CFR:( (O, lp~)o. :+ /~M)+.x( -~)x . *M÷_T p~ C.1 

CFR 2 3 5 
30 31 I0 1 

(CFR 2 3 5 )  P X+l  
8 0 0 2 0 1 2  4 0  90 

x / X o . - 2  3 5 
8 0 0 2 0 12 40 90 

2 3 4 5 6 7 8  
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The inverse t ransformat ion RFC is more  difficult, but  can be ex- 
pressed as a successive approximat ion  scheme as follows: 

RFC:(-i+ioi+~)G 
G:(~-Z)G ~:TOL~[/IZ÷a STEP ~:a-Z 
S T E P : ( ~ ( a o . - a ) x . * I o . ~ I ÷ l p a ) + . x ( a o . * - l + l p ~ ) + . x ~  

O÷C÷CFR 2 3 
210 - 2 4 7  101 - 1 7  1 

T O L ÷ I E - 8  
RFC C 

7 5 2 3  

5 7 

The order of the roots in the result is, of course, immater ia l .  The final 
e lement  of any  a rgumen t  of RFC must  be 1, since any  po lynomia l  
equivalent  to × / X - R mus t  necessari ly  have  a coefficient of 1 for the 
high-order term. 

The foregoing definit ion of RFC applies only  to coefficients of 
polynomials  whose  roots are all real. The left a rgument  of G in RFC 
provides  {usually satisfactory} initial approximat ions  to the roots, but  
in the general  case some at least mus t  be complex.  The following 
example,  using the roots of uni ty as the initial approximat ion,  was  
executed on an APL sys tem which  handles  complex  numbers :  

(*oOJ2x(-I+IN)÷N÷pl÷~)G~ C.2 

D÷C÷CFR 1J1 
10 -14 11 -4 1 

RFC C 
IJ-1 1J2 1J1 1J-2 

1J-1 1J2 1J-2 

The monadic  funct ion o used above mult ipl ies  its a rgument  by  pi. 
In New t on ' s  me thod  for the root of a scalar funct ion F, the next 

approximat ion  is given by  A + A - ( F  A ) ÷ D F  A, where  DF is the 
derivat ive of F. The funct ion S TE P is the general izat ion of N e w t o n ' s  
me thod  to the case whe re  F is a vector  funct ion of a vector.  It is of 
the form ( ~M ) + .  × B, where  B is the value of the polynomial  with coef- 
ficients ~0, the original a rgument  of RFC, evaluated at a ,  the current  
approximat ion  to the roots; analysis similar to that  used to derive B.3 
shows that M is the matr ix  of der ivat ives  of a po lynomia l  wi th  roots a ,  
the derivat ives being evaluated at a .  

Examinat ion of the expression for M shows that  its off-diagonal 
e lements  are all zero, and the expression ( ~M ) + .  × B m a y  therefore  be 
replaced by  B÷ D, where  D is the vector  of diagonal e lements  of M. 
Since ( I ,  J ) + N drops I rows  and J co lumns  f rom a matr ix  N, the 
vec to rD  m a y  be expressed as x / 0  l + ( - l + l p a ) d O a o . - a ;  the 
definition of the function S T E P may  therefore be replaced by the more  
efficient definition: 

S T E P : ( ( a o . * - l + t p ~ ) + . x o j ) ÷ x / O  l + ( - l + t p ~ ) d o e o . - a  C.3 
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I 9 7 9 

'1 , , r i n g  
A w a r d  
U,t'C I I I  I'L' 

This last is the elegant me thod  of Kerner  [7]. Using starting values 
given by the left a rgument  of G in C.2, it converges in seven steps {with 
a tolerance T O L + I  E - 8 )  for the sixth-order example given by  Kerner. 

3 . 3  

P e r m u t a t i o n s  
A vector P whose elements  are some permuta t ion  of its indices {that 

is, ^ / 1 = + / P o .  = l p P) will be called a permutat ion vector. If D is 
a pe rmuta t ion  vector  such that ( p X ) = 0 D, then  X [ D ] is a pe rmuta -  
tion of X, and D will be said to be the direct representa t ion  of this per- 
mutat ion.  

The pe rmuta t ion  X [ D ]  m a y  also be expressed as B+.  xXwhere  
B is the boolean matr ix  D o .  = l 0 D. The matr ix  B will be called the 
boolean representa t ion  of the permuta t ion .  The t ransformat ions  bet- 
ween  direct and boolean representa t ions  are: 

BFD : ~o . = I p~ DFB:  to+ • x l l + p ~  

Because permutat ion is associative, the composit ion of permutat ions  
satisfies the following relations: 

( X [ D I ] ) [ D 2 ]  ÷ ÷  X [ ( D I  [ D 2 ] ) ]  

B 2 + . x ( B I + . x X )  ÷÷ ( B 2 + . x B I ) + . x X  

The inverse of a boolean representa t ion  B is ~ B, and the inverse of a 
direct representa t ion is ei ther AD or D l l P D. (The grade funct ion 
grades its argument ,  giving a vector  of indices to its e lements  in 
ascending order, mainta ining existing order among  equal  elements.  
Thus A 3 7 1 4  is 3 1 4 2  and ~ 3 7 3 4  is 1 3 4 2 .  The 
index -of funct ion t de te rmines  the smallest  index in its left a rgument  
of each element of its right argument.  For example, ' A B CDE ' i ' BA BE ' 

i s2  1 2 5, a n d ' B A B E ' i ' A B C D E ' i s 2  1 5 5 4.1 
The cycle representa t ion also employs  a pe rmuta t ion  vector. Con- 

sider a pe rmuta t ion  vector  C and the segments  of C marked  off by 
the vector  C = L \ C .  For example,  if C + 7 3 6 5 2 1 4 ,  then  
C = L k C  i s 1 1 0 0 1 1 0 ,  and the blocks are: 

7 
3 6 5  
2 
1 4  

Each block de termines  a "cycle" in the associated pe rmuta t ion  in the 
sense that if R is the result of permut ing  X, then: 

R[7] is X[7] 
R[3] is X[6] R[6] is X[5] R[5] is X[3] 
R [ 2 ]  is X[2] 
R [ 1 ]  is X [ 4 ]  R [ 4 ]  is X [ 1 ]  
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If the leading element  of C is the smallest (that is, 1 }, then C 
consists of a single cycle, and the permuta t ion  of a vector  X which it 
represents  is given by X[ C]÷X[ 1¢C.  For example: 

X÷ ' ABCDEFG ' 
C÷176524 
x [ c ] + x [ l ¢ C ]  
x 

GDA CBEFF 

Since X[Q3+A is equivalent  to X*AEAQ3,  it follows that 
X [ C ] ÷X [ 1 ¢ C 3 is equivalent  to X÷X [ ( 1 ¢ C ) [ i C ] ] ,  and the direct 
representat ion vector  D equivalent  to C is therefore  given [for the 
special case of a single cycle} by O÷( 10C ) [ AC].  

In the more  general case, the rotation of the complete  vector  {that 
is, lOCI  must  be replaced by rotations of the individual subcycles 
marked  off by C-- L \ C, as shown in the following definition of the 
t ransformation to direct f rom cycle representat ion:  

DEC: (oJEiX++\X÷o~:L \~o2 ) [ i ~ ]  

If one wishes to catenate a collection of disjoint cycles to form a 
single vector  C such that C -- L \ C marks off the individual cycles, then 
each cycle CI must first be brought to standard form by the r o t a  
t i o n ( - l + C I ~ k / C I ) @ C I ,  and the result ing vectors  must  be 
catenated in descending order  on their leading elements.  

The inverse t ransformation from direct to cycle representat ion is 
more complex, but can be approached by first producing the matrix 
of all powers  of D up to the p Dth, that is, the matrix whose successive 
columns are D and O [ D ] and ( O [ D ] ) [ D J , etc. This is obtained by 
applying the functionPOW to the one-column matrix D o .  + ,  0 formed 
from D, where  POW is defined and used as follows: 

POW:POW D,(D÷~[;1])[oJ]:~/p~o:~o 

O÷D÷DFC C÷7,3 6 5,2,1 4 
2 6 1 3 5 7  

POW Do.+,O 
4 1 4 1 4 1 4  

2 2 2 2 2 2 2  

6 5 3 6 5 3 6  
1 4 1 4 1 4 1  

3 6 5 3 6 5 3  
5 3 6 5 3 6 5  
7 7 7 7 7 7 7  

If M+POW Do. +, O, then the cycle representat ion of O may  be 
obtained by selecting from M only "s tandard"  rows which begin with 
their smallest elements ( SSR ), by arranging these remaining rows in 
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descending order on their leading elements  ( O 0 L ), and then catenating 
the cycles in these rows ( C I R  ). Thus: 

CFD:CIR DOD SSR POW ~oo.+,0 

'1 l l r i l l g  

/ ~ w ; I r ( I  

I,{'¢' I U I'17 

SSR:(^IM=I¢M÷L\m)/~ 
D O L : m [ ~ m [ ; 1 ] ; ]  
C I R : ( , 1 , ^ \ O  l + m * L k m ) / , m  

DFC C÷7,3 6 5,2,1 4 
4 2 6 1 3 5 7  

CFD DFC C 
7 3 6 5 2 1 4  

In the definit ion of DOL, indexing is applied to matrices.  The in- 
dices for successive coordinates  are separated by  semicolons,  and a 
blank entry for any axis indicates that all e lements  along it are selected. 
Thus  M[ ; 1 ] selects co lumn 1 of M. 

The cycle representa t ion  is convenient  for de termining the n u m b e r  
of cycles in the pe rmuta t ion  represented  ( N C : + / ~ = L \ ~ ), the cycle 
lengths ( C L ." .X - 0 ,  - 1 + X + ( 1 b ~0 = L \ ~0 ) / 1 0 ~0 ), and the power of the 
pe rmuta t ion  ( P P  : L CM CL ~ ).  On the other hand, it is awkward  for 
composi t ion and inversion. 

The : N co lumn vectors  of the matr ix  ( ¢ l N ) T -  1 + l : N are all 
distinct, and therefore  provide a potent ial  radix representa t ion  [8] for 
the i N permuta t ions  of order  N. We will use instead a re la ted  fo rm 
obtained by  increasing each e lement  by  1 : 

RR: I +( ~tm )T-I + I !aJ 

RR 4 
1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4  
1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3  
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

~ a n s ~ r m a t i o n s b e t w e e n t h i s r e p r e s e n t a t i o n a n d t h e d i r e c t f o r m a r e  
g i v e n b y :  

DFR:~[I],X+~[I]~X÷DFR l+~:O=p~:~ 
RFD:~[I],RFD X - ~ [ 1 ] ~ X ÷ l + m : O = p ~ : m  

Some of the characteris t ics  of this al ternate representa t ion  are 
pe rhaps  best d i s p l a ~ d  by m o d i ~ i n g  DFR to apply  to all co lumns  of 
a matrix argument,  and ~ p ~ i n g  the modified ~ n c t i o n  MF to the resuk 
of the funct ion RR . 

M F : ~ [ , 1 ; ] , [ 1 ] X + ~ [ ( 1  oX)pl;]~X÷MP 1 0 + ~ : 0 = 1 ÷ 0 ~ : ~  
ME RR 4 
1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4  
2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3  
3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2  
4 3 4 2 3 2 4 3 4 1 3 1 4 2 4 1 2 1 3 2 3 1 2 1  
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The direct pe rmuta t ions  in the columns of this result occur  in lexical 
order  (that is, in ascending order  on the first e lement  in which  two 
vectors  differ); this is true in general, and the al ternate representa t ion  
therefore provides  a convenient  w a y  for producing direct representa-  
tions in lexical order.  

The al ternate representa t ion  also has the useful p roper ty  that the 
par i ty  of the direct pe rmuta t ion  V is given by  2 [ + / - I + R F D  D ,  
where  M [ N represents  the residue of N modulo  ~.  The pari ty  of a 
direct representa t ion can also be de te rmined  by  the function: 

PAR: 2 [ + / ,  ( I *  . > I ÷ ~  poJ )^too . >o~ 

3 . 4  

D i r e c t e d  G r a p h s  

A simple directed graph is defined by  a set of K nodes and a set of 
directed connect ions  f rom one to another  of pairs of the nodes.  The 
directed connect ions  m a y  be convenient ly  represen ted  by  a K by  g 
boolean connection matr ix  C in which  C [ I ; J ] = 1 denotes  a connec- 
tion from the I th node to the J t h .  

For example,  if the four nodes of a graph are represen ted  by 
N ÷ '  Q R S T ' ,  and if there are connect ions  f rom node S to node Q, 
f rom R to T, and f rom T to Q, then  the corresponding connect ion 
matr ix  is given by: 

0 o 0 0 
0 0 0 I 

i 0 0 0 
1 0 0 0 

A connect ion f rom a node to itself (called a self-loop} is not permit ted,  
and the diagonal of a connect ion matr ix  mus t  therefore  be zero. 

If P is any  pe rmuta t ion  vector  of order  0 N, then t / l ÷ N  [ P ] is a 
reordering of the nodes, and the corresponding connect ion matr ix  is 
given by C [ P ; P ] .  We m a y  (and will) wi thout  loss of general i ty  use 
the numer ic  labels ~ pN for the nodes, because  if N is any  arbi t rary  
vector  of names  for the nodes and L is any  list of numer ic  labels, then  
the expression Q÷N [ L ] gives the corresponding list of names  and, 
conversely,  N ~ Q gives the list L of numer ic  labels. 

The connect ion matr ix  C is convenient  for expressing m a n y  useful  
functions on a graph. For example,  + / C gives the out-degrees of the 
nodes, + / C gives the in-degrees, + / , C gives the n u m b e r  of connec- 
tions or edges, ~C gives a related graph with the directions of edges 
reversed,  and C v ~ C  gives a related " s y m m e t r i c "  or "und i rec ted"  
graph. Moreover,  if we use the boolean vector B÷v  / ( ~ 1 0 C ) * .  = L to 
represent  the list of nodes L, then B v .  ^ C gives the boolean vector  
which  represents  the set of nodes directly reachable  f rom the set 
B. Consequent ly ,  C v .  ^ C gives the connect ions  for paths  of length 
two in the graph C ,  and Cv C v .  ^ C gives connect ions  for paths  of 
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length one or two. This leads to the following function for the transitive 
closure of a graph, which gives all connections through paths of any 
length: 

TC:TC Z:Al,~:Z÷~v~v.A~:Z 

I '~!, 7 ~ 

'1 n r h l g  
A w a r d  
I . t ' ¢ ' l  t |  r u  

Node o r is said to be reachable from n o d e l i f  (TO C ) [ I ; o r ] = I . A  
graph is strongly-connected if every node is reachable f rom every node, 
that is, ^ / , 2 C  C. 

If D÷TC C and D [ I ; I ] = 1 or some I ,  then node I is reachable 
from itself through a path of some length; the path is called a circuit, 
and node I is said to be contained in a circuit. 

A g r a p h / '  is called a tree if it has no circuits and its in-degrees do 
not exceed 1, that is, ^ / 1 ~ + / T. Any node of a tree with an in-degree 
of o is called a root, and if K÷+ / 0 = + / / '  , then /' is called a K-rooted 
tree. Since a tree is circuit-free, g must be at least 1. Unless otherwise 
stated, it is normally assumed that a tree is singly-rooted {that is, g = 1 }; 
multiply-rooted trees are sometimes called forests. 

A graph C covers a graph D if ^ / .  C ~ D. If a is a strongly-connected 
graph and T is a {singly-rooted} tree, then /' is said to be a spanning tree 
of a if G covers /' and if all nodes are reachable from the root o f / ' ,  
that is, 

(^I,G~T) ^ ^IRvRv. ATC T 

where R is the {boolean representation of the) root o f / ' .  
A depth-first spanning tree [9] of a graph a is a spanning tree pro- 

duced by proceeding from the root through immediate descendants in G, 
always choosing as the next node a descendant  of the latest in the list 
of nodes visited which still possesses a descendant  not in the list. This 
is a relatively complex process which can be used to illustrate the 
utility of the connection matrix representation: 

DFST:((,I)o.=K) R ~^Ko.v~K÷~=~l÷p~ C.4 

R : ( C . [ 1 ] a ) R ~ ^ p o . v ~ C ÷ < \ U ^ P v . ^ ~  
. ~ v / p ÷ ( < X a v . ^ ~ v . ^ U ÷ ~ v / a ) v . ^ a  

Using as an example the graph G from [9]: 

G IDFSTG 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 1 0 0 1 1 0 0 0 0 0 0 0 I 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 1 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 1 

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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The function OFST establishes the left argument  of the recursion 
R as the one-row matrix representing the root specified by the left 
argument  of D F S T ,  and the right argument  as the original graph with 
the connect ions into the root K deleted. The first line of the recur- 
sion R shows that it cont inues by appending on the top of the list of 
nodes thus far assembled in the left argument  the next child C, and 
by deleting from the right argument  all connections into the chosen 
child C except the one f rom its parent  P. The child C is chosen from 
among those reachable f rom the chosen parent  ~ p v .  ^~ ) ,  but  is 
limited to those as yet un touched  ( U n p v .  ^~0 ) , and is taken, arbi- 
trarily, as the first of these ( < \ U ^ P v .  ^~ ). 

The determinat ions of P and U are shown in the second line, P 
being chosen from among those nodes which  have children among 
the untouched  nodes (o~ v .  ^ U) .  These are permuted  to the order  
of the nodes in the left argument  ( ~ v . ^ ~0 v .  ^ U ), bringing them 
into an order so that the last visited appears first, and P is finally chosen 
as the first of these. 

The last line of R shows the final result  to be the resulting right 
argument  oJ, that is, the original graph with all connect ions into each 
node broken except for its parent  in the spanning tree. Since the final 
value of ~ is a square matrix giving the nodes of the tree in reverse 
order  as visited, substitution of ~ ,  ¢ [ 1 ] o~ (or, equivalently,  co, o ~t ) 
for ~o would yield a result of shape 1 2 x 0 G containing the spanning 
tree followed by its "preorder ing"  information.  

Another  representat ion of directed graphs often used, at least 
implicitly, is the list of all node pairs V, W such that there is a con- 
nection from V to W. The t ransformation to this list form from the 
connect ion matr ix may  be def ined and used as follows: 

LFC : ( ,~ ) / I +DT-i + I × /D÷o~ 
C LFC C 

0011 1 1 2 3 3 4  
0 0 1 0  3 4 3 2 4 1  
0 1 0 1  
1 0 0 0  

However ,  this representat ion is deficient since it does not alone deter- 
mine the number  of nodes in the graph, al though in the present  ex- 
ample this is given by r / , L F C  C because the highest numbered  
node happens  to have a connection.  A related boolean representat ion 
is provided by the expression ( LFC C ) o .  : l 1 ÷ o C, the first plane 
showing the out- and the second showing the in-connect ions.  

An incidence matrix representat ion often used in the t reatment  
of electric circuits [10] is given by the difference of these planes as 
follows: 

IFC:-f(LFC ~)o.=~I~0~ 
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For example: I !I 7 ') 

I,u('hul'C 
1 0 0  
1 0 0  
0 1  0 
0 0 1  
0 0 1  
0 0 0 

( LEC 
0 
0 
0 
0 
0 
1 

C)o . = 1 1 + p C  IFC C 
1 0 1 0 
1 0 0 1 
0 1 1 0 
0 1 1 0 
0 0 1 1 
1 0 0 1 

0 0 1 0  

0 0 0 1  
0 0 1 0  

0 1 0 0  
0 0 0 1  

I 0 0 0  

In dealing with nondirected graphs, one sometimes uses a representa- 
tion derived as the or over these planes (v  t ) .  This is equivalent 
to [ IFC C. 

The incidence matrix I has a number  of useful properties. For ex- 
ample, + / I is zero, + t I gives the difference between the in- and out- 
degrees of each node, 0 Ig ives  the number  of edges followed by the 
number  of nodes, and × / 0 1 gives their product.  However,  all of these 
are also easily expressed in terms of the connect ion matrix, and more 
significant properties of the incidence matrix are seen in its use in elec- 
tric circuits. For example, if the edges represent components  connected 
between the nodes, and if g is the vector  of node voltages, then the 
branch voltages are given by I + .  × V; if B I  is the vector of branch cur- 
rents, the vector of node currents  is given by B I + .  × I .  

The inverse t ransformation from incidence matrix to connect ion 
matrix is given by: 

CFI:Do(-I+tx/D)cD±(I -lo.:~)+.x-l+11+D+Lk~bp~ 

The set membership function E yields a boolean array, of the same shape 
as its left argument,  which shows which of its elements belong to the 
right argument.  

3.5 
Symbolic Logic 

A boolean function of N arguments may be represented by a boolean 
vector of 2*N elements  in a variety of ways, including what  are 
sometimes called the disjunctive, conjunctive, equivalence, and exclusive- 
disjunctive forms. The t ransformation be tween any pair of these forms 
may be represented concisely as some 2 *// by 2 * / / m a t r i x  formed by 
a related inner product, such as T v .  ^~T ,  where  T ÷ Z / /  is the "truth 
table" formed by the function Z defined by A.2. These matters are 
treated fully in [11, Ch.7]. 
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4 
Identi t ies  and Proofs 

In this section we will introduce some widely used identities and 
provide formal proofs for some of them, including Newton's  symmetric 
functions and the associativity of inner product,  which are seldom 
proved formally. 

4 . 1  

Dualities 
in Inner Products 

The dualities developed for reduction and scan extend to inner 
products  in an obvious way. If DF is the dual of F and DG is the dual 
of G with respect to a monadic  function M with inverse btI ,  and if 
,4 and B are matrices, then: 

A Y .  G B ÷ ÷  MI  

For example: 

(M A)  DF.DG (M B) 

A v . ^ B  ÷ ÷  ~(~A)^.v(~B) 
A ^ . = B  +÷  ~(~A)v.*(~B) 
A L . + B  + ÷  - ( - A ) F . + ( - B )  

The dualities for inner product,  reduction,  and scan can be used 
to eliminate many uses of boolean negation from expressions, particular- 
ly when  used in conjunct ion with identities of the following form: 

A^(~B) ++  A>B 

( ~ A ) ^ B  ÷ ÷  A<B 
(~A)^(~B) ÷ ÷  A~'B 

4 . 2  
Partitioning Identities 

Partitioning of an array leads to a n u m b er  of obvious and useful 
identities. For example: 

x13 1 4 2 6 ÷÷ (x13 I) x (x14 2 6) 

More generally, f o r a n y  assoc ia t ivefunc t ion  F: 

F/V ÷÷ (F/K÷V) F (F/K~V) 
F/V,W +÷ (F/V) F (F/W) 

If F is commutat ive  as well as associative, the partit ioning need 
not be limited to prefixes and suffixes, and the partitioning can be made 
by compression by a boolean vector  U : 

F/V ÷÷ (F/U/V) F (F/(~U)/V) 
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If E is an e m p t y  vector  ( 0 = p E ) ,  the reduct ion F / E yields the iden- 
tity e lement  of the funct ion F, and the identities therefore  hold in the 
limiting cases 0 = K and 0 = v / U. 

Partitioning identities extend to matr ices  in an obvious way. For 
example,  if V, tq, and A are arrays of ranks  1, 2, and 3,  respectively, 
then: 

Y+.xM +÷ ( ( K ÷ V ) + . x ( K , 1 4 o M ) + M ) + ( K + V ) + . x ( K , O ) ~ , M  D.1 
( I , J ) , I , A + . x V  ÷÷ ( ( I , J , O ) + A ) + . x V  D.2 

I 9 7 9 

' l u r i n g  

A w a r d  

I , { ' f l  i I  i t "  

4 . 3  

S u m m a r i z a t i o n  a n d  D i s t r i b u t i o n  
Consider  the definit ion and and use of the following functions: 

N_: ( v / < \ ~ o  . =to )/to D.3 
~: (N-oJ)o . =~ D . 4  

A÷3 3 1 4 1 

C÷I0 20 30 40 50 

N- A S_ A (~ A)+.xC 
3 1 4 1 1 0 0 0 30 80 40 

o o 1 o 1 
o o o I o 

The function N- selects f rom a vector  a rgument  its nub, that is, the 
set of distinct e lements  it contains. The expression ~ A gives a 
boolean "summar iza t ion  matr ix"  which  relates the e lements  of A to 
the e lements  of its nub. If A is a vector  of account  number s  and C is 
an associa ted  vector  of costs, then the expression ( S A ) ÷ .  x C evalu- 
ated above sums or " summar izes"  the charges to the several  account  
number s  occurring in A. 

Used as postmultiplier,  in expressions of the form W÷. x~  A, the 
summar iza t ion  matr ix  can be used to distribute results. For example,  
if F is a function which  is costly to evaluate and its a rgument  V has 
repeated elements,  it may  be more  efficient to apply F only to the nub 
of V and distribute the results in the m a n n e r  suggested by the follow- 
ing identity: 

F V + ÷  ( Y  N- V ) + . x ~  V D . 5  

The order  of the e lements  of N- g is the same as their  order in V, 
and it is somet imes  more  convenient  to use an ordered nub and cor- 
responding ordered summar iza t ion  given by: 

ON : NoJ [ $~ ] D.6 
0~ .  : ( O N-~ ) o . = ~ D . 7  

The identi ty corresponding to D.5 is: 

F V ÷ ÷  ( F  ON_ V)+.x0_S_ V D.8 

The summar iza t ion  funct ion produces  an interesting result  w h e n  
applied to the function _T defined by A.2: 

+ / S + I T  N ÷+ (O,~N).'N 
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In words,  the sums  of the rows  of the summar iza t ion  matr ix  of the 
co lumn sums  of the subset  matr ix  of order  N is the vector  of b inomial  
coefficients of order  N. 

4 . 4  

D i s t r i b u t i v i t y  

The distributivity of one function over  another  is an important  notion 
in mathemat ics ,  and we will now raise the quest ion of represent ing 
this in a general  way.  Since mult ipl icat ion distributes to the right over  
addit ion we have  a x ( b ÷ q ) ÷ ÷ a b 4 a q ,  and since it distr ibutes to the left 
we  have  ( a 4 p ) x b ÷ * a b 4 p b .  These lead to the more  general  cases: 

(a+p)x(b+q) ÷÷  ab+aq+pb+pq 
(a+p) x (b+q) × (c+r) ÷÷  abc+abr+aqc+aqr +pbc+pbr+pqc+pqr 
(a+p)×(b+q)×. . .x(c+r)  ÷ ÷ a b . . . c +  . . . .  + p q . . . r  

Using the notion that V÷A, B and W÷P, ¢~ or V÷A, B, C a n d W ÷ P ,  
Q, R,  etc., the left side can be wri t ten s imply  in t e rms  of reduct ion 
as ×/V+W. For this case of three elements ,  the right side can be 
wri t ten as the sum of the produc t  over  the co lumns  of the following 
matrix: 

v [ o ]  v [ o ]  v [ o ]  v [ o ]  w [ o ]  w [ o ]  w [ o ]  w [ o ]  
v [ 1 ]  v [ 1 ]  w [ 1 ]  w [ 1 ]  v [ 1 ]  v [ 1 ]  W [ 1 ]  W [ 1 ]  
V[2] W[2] V[2] W[2] V[2] W[2] V[2] W[2] 

The pat tern  of V's and W's above is precisely the pa t te rn  of zeros 
and ones in the matr ix  T+_T0 V, and so the products  down}he  columns 
are given by ( V×. * ~ T )  × ( W×. * T ) .  Consequent ly:  

x/V+W ÷÷ +/(Vx.*~T)xWx.*T÷_T oF D.9 

We will now present  a formal  induct ive proof  of D.9, assuming as 
the induction hypothesis that D.9 is true for all V and W of shape N {that 
is, ^ / N = ( 0 V ). 0 W) and proving  that  it holds for shape N+ 1, that is, 
for X, V and Y, W, where  X and Y are arbi t rary  scalars. 

For use in the induct ive proof  we  will first give a recurs ive  defini- 
tion of the funct ion 2 ,  equivalent  to A.2 and based on the following 
notion: if M÷_T 2 is the result  of order  2, then: 

M 
0 0 1 1 
0 1 0 1 

O , [ 1 ] M  1 , [ 1 ] M  
0 0 0 0 1 1 1 1 
0 0 1 1 0 0 1 1 
0 1 0 1 0 1 0 1 

( o , [ 1 ] M ) , (  1 , (  i )M)  
0 o o o 1 1 1 1  
0 0 1 1 0 0 1 1  
0 1 0 1 0 1 0 1  
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Thus: I 9 7 9 

'1 . r i , i g  
/• %%rli r ( |  

I , v t ' l l l  r t '  
~:(O,[I]T),(1,[i]T÷Tw-I):O=~:O IpO 

+/( ( C÷X, V)x . *~Q)xDx. *Q+_Tp(D+Y,W) 
+/(Cx.*~Z,U)xDx.*(Z÷O,[I] T),U+I,[I] T÷~pW 
*/( (Cx. *~Z),Cx. *~U)x(Dx. *Z),Dx. *U 
+/( (Cx. *~Z),Cx. *~U)x( (y*O )xWx. *T),(Y*l )xWx. *T 
+/( ( Cx .*~Z ) ,Cx. *~U)x( Wx. *T) ,yxWx. *T 
+ / (  ( X x V x .  * ~ T ) , V x .  * ~ T ) x ( W x .  * T ) , Y x W x .  *T 
+ / ( X x (  Vx.  *~T )xWx .  * T ) ,  ( yx (  Vx.  *~T )xWx .  * T )  

D.10 

D.10 
NoR 1 
NoR 2 

Y*0 l * * l , Y  
NoW 2 
No~ 3 

+ / ( X x x / V+ W ) ,  ( Y x x / V+ W ) Induction hypothesis 
+ l ( X , Y ) x x l V + W  ( X x S ) , ( y x S ) ÷ ÷ ( X , Y ) x S  
x / ( X + y ) , ( V + W )  Definition of x /  
x / ( X , V ) + ( Y , W )  + distributes over , 

Note h M+. xN oP ++ ( M+ . xN ) ,M+ . x p  (partitioning identity on matrices) 

Note2: V+.xM +÷ ( ( I ÷ V ) ÷ . x ( 1 , 1 ÷ p M ) ÷ M ) + ( 1 . I . V ) + . x l  O~bl 
(,partitioning identity on matrices and the definition of C, D, Z, and U) 

Note 3: ( V , W ) x P , Q ÷ ÷  ( V x P ) , W x Q  

To complete the inductive proof we must  show that the putative 
identity D.9 holds for some value of N. If N= 0, the vectors A and 
Bareempty ,  a n d t h e r e f o r e X , A  +÷ ,X a n d Y , B  ÷÷ , Y. H e n c e t h e  
left side becomes x /X+Y,  or simply X+7. The right side becomes 
+ / ( X ×.  * ~ Q ) × y × . ,  Q, where  ~ Q is the one-rowed matrix 1 0 and 
Q is 0 1. The right side is therefore equivalent to + / ( X, 1 ) × ( 1 ,  Y ) ,  
or X + Y. Similar examination of the case N = 1 may be found instructive. 

4.5 
Newton% Symmetr ic  Functions 

If x is a scalar and R is any vector, then × / X -  R is a polynomial  
in X having the roots R. It is therefore equivalent to some poly- 
nomial C E X, and assumption of this equivalence implies that C is 
a function of R. We will now use D.8 and D.9 to derive this function, 
which is commonly  based on Newton's  symmetr ic  functions: 

xlX-R 
x/X+(-R) 
+I(Xx.*~T)x(-R)x.*T÷_T pR D9 
(Xx.*~T)+.xp÷(-R)x.*T Def of +.x 

(X,S÷+I~T)+.xp Note 1 

( ( X * O N  S ) + . x 0 _ S  S ) + . x P  D 8  
( X * Q ~  S ) + . x ( ( Q S  S ) + . x P )  + . x  is associative 

( X * O , t o R ) + . x ( ( Q S _  S ) + . × P )  Note  2 
( ( O  S_ S ) + . × P ) E  X B.1 (polynomial)  
( ( O S  + / ~ T ) + . x ( ( - R ) x . * T ÷ T  o R ) ) E  X Defs of S 

and P 
Note  1: If X is a s c a l a r  and B is a boolean vector,  then  

X x . * B  ÷ ÷  X*+/B. 

N o t e  2: Since T is boolean and has  pR  rows, the  sums  of its co lumns  

range f rom 0 to p R, and t h e i r  o rde red  nub  is t he r e fo re  0 ,  l p R. 
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4 . 6  
D y a d i c  T r a n s p o s e  

The dyadic transpose, denoted by ~, is a generalization of monadic 
transpose which permutes axes of the right argument, and [or I forms 
"sectors" of the right argument by coalescing certain axes, all as deter- 
mined by the left argument. We introduce it here as a convenient tool 
for treating properties of the inner product. 

The dyadic transpose will be defined formally in terms of the selec- 
tion function 

S F : (  , t o ) [ l + ( p t ~ ) ± a - l ]  

which selects from its right argument the element whose indices are 
given by its vector left argument, the shape of which must clearly equal 
the rank of the right argument. The rank of the result of K~A is [ / K ,  
and if I is any suitable left argument of the selection I SF  K~A then: 

I SF K~A ÷ ÷ (  I [ K ]  ) SF A D.11 

For example, if M is a matrix, then 2 1 ~M ÷÷ ~Mand 1 1 ~M 
is the diagonal o fM; i f  T is a rank three array, then 1 2 2 ~ T i s a  
matrix "diagonal section" of T produced by running together the last 
two axes, and the vector 1 1 1 ~ T is the principal body diagonal of T. 

The following identity will be used in the sequel: 

J~K~A ÷÷ (J[K])~A D.12 

Proof: 

I SF J~K~A 
( I [ J ] )  SF K~A Definition of ~ (D.11) 
( ( I [ J ] ) [ K ] )  SF A Definition of 
( I [  ( J [ K ]  ) ] ) SF A Indexing is associative 
I S F ( J [ K ]  )~A Definition of 

4 . 7  

I n n e r  P r o d u c t s  

The following proofs are stated only for matrix arguments and for 
the particular inner product +.  ×. They are easily extended to arrays 
of higher rank and to other inner products F .  G, where F and g need 
possess only the properties assumed in the proofs for * and ×. 

The following identity (familiar in mathematics as a sum over the 
matrices formed by (outer) products of columns of the first argument 
with corresponding rows of the second argumentl will be used in 
establishing the associativity and distributivity of the inner product: 

M + . x N  ÷ ÷  + / 1  3 3 2 ~ M o . x N  D.13 

Proof: ( I . J ) S F  M + . x N  is defined as the sum over V, where 
VEK] +÷ M E I ; K ] x N E K ; J ] .  Similarly, 

( I , J ) S F  +/1  3 3 2 ~ Mo.xN 
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is the s u m  over  the vec tor  W such  that  

W[K] ÷÷ (I,J,K)SF I 3 3 2 

Thus :  

W[K] 
(I,J,K)SF 1 3 3 2 ~Mo.xN 
(I,J,K)[1 3 3 2]SF Mo.xN 
(I,K,K,J)SF Mo.xN 
M[I;K]×N[K;J] 
VEK] 

Def 

Mo.xN 

D.12 
Def of indexing 

of Outer product 

Mat r ix  p roduc t  d i s t r ibu tes  over  add i t ion  as follows: 

M+.x(N+P) ÷÷ (M+.xN)+(M+.xp) 

Proof: 

D.14 

M + .  x ( N + P  ) 
+ / ( J ÷  1 3 3 2 ) ~ M o . x N + p  D.13 
+ / J ~ ( M o . × N ) + ( M * . x p ) .  x distributes over + 
+ / ( J ~ M o . x N ) + ( J ~ M o . x P )  ~ distributes over + 
( + / J ~ M o . x N ) + ( + / J t ~ M o . x p )  + is assoc and comm 
(M+.  xN ) + ( M + .  x p )  D.13 

Matr ix  p roduc t  is associat ive  as follows: 

M + . x ( N + . x p )  ++ ( M + . x N ) + . x P  D.15 

Proof: We first r educe  each  of the sides to s u m s  over  sec t ions  of an  
ou te r  p roduct ,  and  t h e n  compare  the sums.  A n n o t a t i o n  of the second  

r educ t i on  is left to the reader :  

M + . x ( N + . x P )  
M + . x + / 1  3 3 2 ~ N o . x P  D.12 
+ / 1  3 3 2 ~ M o . x + / 1  3 3 2 ~ N o . x p  D.12 
+ / 1  3 3 2 ~ + / M o . x l  3 3 2 ~ N o . x p  x distributes over + 
+ / 1  3 3 2 ~ + / 1  2 3 5 5 4 ~ M o . × N o . x p  Note 1 
+ / + / 1  3 3 2 4 ~1 2 3 5 5 4 ~ M o . x N o . x p  Note 2 
+/+/1 3 3 4 4 2 ~ M o . x N o . x p  D.12 
+ / + / 1  3 3 4 4 2 ~ ( M o . x N ) o . x p  x is associative 
+ / + / 1  4 4 3 3 2 ~ ( M o . x N ) o . x p  + is associative and 

commutative 
(M+.×N)+.xP 
(+11 3 3 2~Mo.xN)+.xp 
+/I 3 3 2~(+/I 3 3 2~Mo.xN)o.xp 
+/1 3 3 2~+/1 5 5 2 3 4~(Mo.xN)o.xp 
+/+/I 3 3 2 4~1 5 5 2 3 4~(Mo.×N)o.xp 
+/+/1 4 4 3 3 2~(Mo.xN)o.xP 

N o t e l :  + / M o . x J ~ A  * ÷  + / (  ( l p p M ) o J + p p M ) ~ M o  . x A  

Note 2: J ~ + / A  ÷ ÷  + / ( J , l + r  l J ) ~ A  
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4 . 8  
Product of Polynomials 

The identity B.2 used for the multiplication of polynomials will now 
be developed formally: 

(B _P X)x(C _P X) 
( +/BxX*E÷-I+ I pB ) x( +/CxX*F÷- 1 + t PC) B.1 
+/+/(BxX*E)o.x(CxX*F) Note 1 
+ / + / ( B o . x C ) x ( ( X * E ) o . x ( X * F ) )  N o t e  2 

+/+/ (Bo.xC)x(X*(Eo.+F))  Note 3 

Note 1: (+/V)x(+/W)÷÷+/+/Vo.xX because x distributes over 
+and + is associative and commutative, or see [ 12,P21 ] for a proof. 

Note 2: The equivalence of ( P x V ) o . x ( Q x W )  and ( p o . x Q ) x ( V o  
x W ) can be established by examining a typical element of each expression. 

N o t e  3: (X*I)x(X*J)÷÷X*(I+J) 

The foregoing is the proof presented, in abbreviated form, by Orth 

[13, p. 52], who also defines functions for the composition of poly- 

nomials. 

4 . 9  
Derivative 

of a Polynomial 
Because of their ability to approximate a host of useful functions, 

and because they are closed under addition, multiplication, composi- 
tion, differentiation, and integration, polynomial functions are very at- 
tractive for use in introducing the study of calculus. Their treatment 
in elementary calculus is, however, normally delayed because the 
derivative of a polynomial is approached indirectly, as indicated in 
Section 2, through a sequence of more general results. 

The following presents a derivation of the derivative of a polynomial 
directly from the expression for the slope of the secant line through 
the points X, F X and ( X + Y ) , F ( X + y ) :  

((C ~ X+Y)-(C P_ X))÷Y 
((C Zf X+Y)-(C P Z+O))÷Y 
((C P X+Y)-((O*J)+.×(A÷DS Jo..'J÷-l+tpC)+.xC) _P X)÷Y B.6 
((((Y*J)+.xM) _P X)-((O*J)+.×M÷A+.xC) P X)÷Y B.6 
((((Y*J)+.xM)-(O*J)..xM) P X)÷Y _P dist over - 
((((Y*J)-O*J)+.xM) _P X)÷Y +.x  dist over - 
(((0,Y*l÷J)+.xM) ~ X)÷Y Note 1 
(((Y*l+J)+.x 1 0 +M) ~ X)÷Y D.I 
(((Y*l÷J)+.x(l 0 0 +A)+.xC) _p X)÷Y D.2 
((Y*l+J-l)+.x(l 0 0 +A)+.xC) P X (Y*A)÷Y÷÷Y*A-I 
((Y*-l+t-l+oC)+.x(l 0 0 ÷A)+.xC) _P X Def of J 
( ( ( Y * - l + t - l + p C ) + . x  1 0 0 +A)+ .xC)  _P X D.15 

Note I: 0,0÷+1÷÷/*0 and ^/0=0*l+J 
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The derivative is the limiting value of the secant slope for Y at zero, 
and the last expression above can be evaluated for this case because 
if E * -  1 + l - 1 + P C is the vector of exponents of Y, then all elements 
of E are nonnegative. Moreover, 0 * E reduces to a I followed by zeros, 
and the inner product  with I 0 0 ¢A therefore reduces to the first 
plane of 1 0 0 ~ A, or equivalently, the second plane of A. 

If B ÷ J  o .  ! g ÷ -  1+ ~ P C is the matrix of binomial coefficients, 
then A is ms B and, from the definition of D S  in B.5, the second plane 
of A is B x 1 = - g o .  - J ,  that is, the matrix B with all but the first super- 
diagonal replaced by zeros. The final expression for the coefficients of 
the polynomial  which is the derivative of the polynomial  C _P ~ is 
therefore: 

( ( J o . :J )xl =-J o . -J+-l + I pC )+ . xC 

For example: 
C * 5 7 11 13 

(Jo. :J)xl=-Jo.-J+-l+tpC 

0 1 0 0  
0 0 2 0' 
0 0 0 3 
0 0 0 0 

((do. :J)×l=-Jo-J÷-l+IpC)+.xC 

7 22 39 0 

Since the superdiagonal of the binomial coefficient matrix 
( ~ N )  o .  : ~N is ( - 1 +  i N -  1 ) : ~N- 1or  simply i N -  1, the final result 
is 1 ¢ C x - 1 + ~ p C in agreement with the earlier derivation. 

In concluding the discussion of proofs, we will re-emphasize the fact 
that all of the statements in the foregoing proofs are executable, and 
that a computer  can therefore be used to identify errors. For example, 
using the canonical function definition node [4, p. 81], one could define 
a function F whose statements are the first four statements of the 
preceding proof as follows: 

VF 
[1]  ( ( c  P X-~Y)-(C R x ) ) ÷ Y  
[23 ((C P X+Y)-(C P X+O))÷y 
[3] ((C P X+Y)-((O*J)+.x(A÷DS Jo.:J÷-l+IpC)+.xC) p X)÷Y 
[4] ((((Y*J)+.xM) _P X)-((O*J)+.xM÷A+.xC) p X)÷Y 

V 

The statements of the proof may then be executed by assigning values 

to the variables and executing F as follows: 

2 3 1 C+5 

Y+5 

X÷3 X÷tl0 
F F 

132 66 96 132 174 222 276 336 402 474 552 
132 66 96 132 174 222 276 336 402 474 552 

132 66 96 132 174 222 276 336 402 474 552 

132 66 96 132 174 222 276 336 402 474 552 

The annotations may also be added as comments  between the lines 
without  affecting the execution. 
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5 
Conclus ion 

The preceding sections have attempted to develop the thesis that 
the properties of executability and universality associated with program- 
ming languages can be combined, in a single language, with the well- 
known properties of mathematical notation which make it such an 
effective tool of thought. This is an important question which should 
receive further attention, regardless of the success or failure of this 
attempt to develop it in terms of APL. 

In particular, I would hope that others would treat the same ques- 
tion using other programming languages and conventional mathematical 
notation. If these treatments addressed a common set of topics, such 
as those addressed here, some objective comparisons of languages could 
be made. Treatments of some of the topics covered here are already 
available for comparison. For example, Kerner [7] expresses the 
algorithm C.3 in both ALGOL and conventional mathematical notation. 

This concluding section is more general, concerning comparisons 
with mathematical notation, the problems of introducing notation, 
extensions to APL which would further enhance its utility, and discus- 
sion of the mode of presentation of the earlier sections. 

5.1 
Comparison with 

Conventional Mathematical  Notation 
Any deficiency remarked in mathematical notation can probably be 

countered by an example of its rectification in some particular branch 
of mathematics or in some particular publication; comparisons made 
here are meant to refer to the more general and commonplace use of 
mathematical notation. 

APL is similar to conventional mathematical notation in many im- 
portant respects: in the use of functions with explicit arguments and 
explicit results, in the concomitant use of composite expressions which 
apply functions to the results of other functions, in the provision of 
graphic symbols for the more commonly used functions, in the use of 
vectors, matrices, and higher-rank arrays, and in the use of operators 
which, like the derivative and the convolution operators of 
mathematics, apply to functions to produce functions. 

In the treatment of functions APL differs in providing a precise 
formal mechanism for the definition of new functions. The direct defini- 
tion form used in this paper is perhaps most appropriate for purposes 
of exposition and analysis, but the canonical form referred to in the 
introduction, and defined in [4, p. 81], is often more convenient for 
other purposes. 

In the interpretation of composite expressions APL agrees in the use 
of parentheses, but differs in eschewing hierarchy so as to treat all 
functions (user-defined as well as primitive) alike, and in adopting a 
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single rule for the application of both monadic  and dyadic functions: 
the right argument  of a funct ion is the value of the entire expression 
to its right. An important  consequence of this rule is that any portion 
of an expression which is free of parentheses  may  be read analytically 
f rom left to right (since the leading function at any stage is the "outer" 
or overall function to be applied to the result on its rightl, and construc- 
tively from right to left [since the rule is easily seen to be equivalent 
to the rule that execution is carried out f rom right to left I. 

Although Cajori does not even ment ion rules for the order  of 
execution in his two-volume history of mathematical  notations, it seems 
reasonable to assume that the motivation for the familiar hierarchy 
(power before × and x before + o r -  ) arose from a desire to make 
polynomials expressible wi thout  parentheses.  The convenient  use of 
vectors in expressing polynomials, as in + /C×  X , E ,  does much  to 
remove this motivation. Moreover, the rule adopted in APL also makes 
Horner ' s  efficient expression for a polynomial  expressible without  
parentheses:  

+ / 3  4 2 5 x X * O  I 2 3 ÷ ÷  3 + X x 4 + X x 2 + X x 5  

In providing graphic symbols for commonly used functions APL goes 
much  farther, and provides symbols for functions (such as the power  
function) which are implicitly denied symbols in mathematics.  This 
becomes important  when  operators are introduced; in the preceding 
sections the inner product  × • * (which must  employ a symbol for 
power) played an equal role with the ordinary inner product  + • i .  Pro- 
hibition of elision of function symbols (such as × ) makes possible the 
unambiguous use of mult icharacter  names for variables and functions. 

In the use of arrays APL is similar to mathematical  notation, but 
more systematic. For example, V + W has the same meaning in both, and 
in APL the definitions for other  functions are extended in the same 
elemefft-by-element manner.  In mathematics,  however, expressions 
such as V x W and V* W are defined differently or not at all. 

For example, V × W commonly denotes the vector product [14, p. 308]. 
It can be expressed in various ways in APL. The definition 

VP: ( ( lqba ) x - 1 ¢ ~  ) - (  - l qba  ) x lqb~ 

provides a convenient  basis for an obvious proof  that V P is "anticom- 
mutative" {that is, V VP W ÷ *  -W VP V) ,  and {using the fact 
that - 1 CX ÷÷ 2 CX for 3-element  vectors) for a simple proof  that in 
3-space V and W are both orthogonal to their  vector product,  that is, 
^ / o = g + . x V  VP Wand ^/o=W+.xV VP W. 

APL is also more systematic in the use of operators to produce 
functions on arrays: reduction provides the equivalent of the sigma and 
pi notation ( i n + / a n d  x / I  and a host of similar useful cases; outer  
product  extends the outer product  of tensor analysis to functions other  
than × , and inner product  extends ordinary matrix product  ( + .  × ) 
to many cases, such as v .  ^ and [ • +, for which ad hoc definitions are 
often made. 

I ~ 7 .~ 

' l u r i n g  

A ~ ' a r d  
I,L'¢'I tu'L" 
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1"2"3 + 2"3"4 + 

• j .2-J 
j=l 

• . n t e rms  ,~-.-~ ! n ( n  + 1) (n + 2) (n + 3) 
4 

1"2"3"4 + 2"3"4"5 + . . .  n t e r m s  ~ - - ~  ~ n ( n  + 1) (n + 2) (n + 3) (n + 4) 
5 

[ ~ ] - q  

F ( - q )  j=o F ( j +  1) 

FIGURE 3 

The similarities be tween  APL and convent ional  notation become 
more apparent  when  one learns a few rather mechanical  substitutions, 
and the translation of mathematical  expressions is instructive. For 
example, in an expression such as the first shown in Figure 3, one 
simply substitutes l N for each occurrence  of j and replaces the sigma 
by + / .  Thus: 

+ / (  I N ) x 2 * - ~ N ,  or + / J x 2 * - J ÷ l N  

Collections such as Jolley's Summation of Series [15] provide in- 
teresting expressions for such an exercise, part icularly if a computer  
is available for execution of the results. For example, on pages 8 and 
9 we have the identities shown in the second and third examples of 
Figure 3. These would be wri t ten as: 

+Ixl(-l+iN)o.+13 ÷÷ (xlN+O,13)÷4 

+ / x / ( - l + l N ) o . + 1 4  *÷  ( x / N + 0 , 1 4 ) ÷ 5  

Together  these suggest the following identity: 

+Ixl(-l+IN)o.+IK ÷÷ (xlN+O,IK)÷K+i 

The reader  might a t tempt  to restate this general identi ty (or even the 
special case where  K = 0 ) in Jolley's notation. 

The last expression of Figure 3 is taken from a t rea tment  of the 
fractional calculus [16, p. 30], and represents  an approximation to the 
qth order  derivative of a funct ion f. It would  be wri t ten as: 

( S , - Q ) × + / ( J ! J - I + Q ) x F  X - ( J ÷ - I + I N ) x S ÷ ( X - A ) ÷ N  

The translation to APL is a simple use of ~ N as suggested above, 
combined with a straightforward identi ty which  collapses the several 
occurrences  of the gamma funct ion into a single use of the binomial 
coefficient funct ion : , whose domain is, of course, not restricted to 
integers. 
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In the foregoing, the parameter Q specifies the order of the derivative 
if positive, and the order of the integral (from A to X ) if negative. Frac- 
tional values give fractional derivatives and integrals, and the follow- 
ing function can, by first defining a function FF and assigning suitable 
values to/11 and A, be used to experiment numerically with the 
derivatives discussed in [16]: 

OS : ( S * - a  )x  + / ( J l J -  l +a ) x F ~ - (  J ÷ - I  + i N  ) x S ÷ (  ~ - A  )÷N 

Although much use is made of "formal" manipulation in 
mathematical notation, truly formal manipulation by explicit 
algorithms is very difficult. APL is much more tractable in this 
respect. In Section 2 we saw, for example, that the derivative of 
the polynomial expression ( 0 j o . * - l + 1 0 a ) + . x a  is given by 
( ~ 0 o . * - l . l o a ) + . × l C a x - l + 1 0 a ,  and a set of functions for the 
formal differentiation of APL expressions given by Orth in his treat- 
ment of the calculus [13] occupies less than a page. Other examples 
of functions for formal manipulation occur in [17, p. 347] in the model- 
ing operators for the vector calculus. 

Further discussion of the relationship with mathematical notation 
may be found in [3] and in the paper "Algebra as a Language" [6, p. 325]. 

A final comment on printing, which has always been a serious 
problem in conventional notation. Although APL does employ certain 
symbols not yet generally available to publishers, it employs only 88 
basic characters, plus some composite characters formed by super- 
position of pairs of basic characters. Moreover, it makes no demands 
such as the inferior and superior lines and smaller type fonts used in 
subscripts and superscripts. 

5 .2  

T h e  Introduction 
o f  Notat ion 

At the outset, the ease of introducing notation in context was sug- 
gested as a measure of suitability of the notation, and the reader was 
asked to observe the process of introducing APL. The utility of this 
measure may well be accepted as a truism, but it is one which requires 
some clarification. 

For one thing, an ad hoc notation which provided exactly the func- 
tions needed for some particular topic would be easy to introduce in 
context. It is necessary to ask further questions concerning the total 
bulk of notation required, the degree of structure in the notation, and 
the degree to which notation introduced for a specific purpose proves 
more generally useful. 

Secondly, it is important to distinguish the difficulty of describing 
and of learning a piece of notation from the difficulty of mastering its 
implications. For example, learning the rules for computing a matrix 
product is easy, but a mastery of its implications (such as its associativity, 
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its distributivity over addition, and its ability to represent  linear func- 
tions and geometric operations) is a different and much  more difficult 
matter.  

Indeed, the very  suggestiveness of a notation may make it seem 
harder  to learn because of the many  propert ies  it suggests for explora- 
tion. For example, the notation +.  × for matrix product  cannot make the 
rules for its computat ion more  difficult to learn, since it at least serves 
as a reminder  that the process is an addition of products,  but  any discus- 
sion of the propert ies of matr ix product  in terms of this notation can- 
not help but  suggest a host of questions such as: Is v .  ^ associative? 
Over  what  does it distribute? Is B y .  ^C ÷÷ ~ ( ~ C )  v .  ^~B valid 
identity? 

5.3  
E x t e n s i o n s  t o  A P L  

In order  to ensure that the notat ion used in this paper  is well-defined 
and widely available on existing computer  systems, it has been restricted 
to current APL as defined in [4] and in the more formal standard published 
by STAPL, the ACM SIGPLAN Technical Committee on APL [17, p. 409]. 
We will now comment  briefly on potential  extensions which would in- 
crease its convenience for the topics t reated here, and enhance  its 
suitability for the t rea tment  of other  topics such as ordinary and vector  
calculus. 

One type of extension has already been suggested by showing the ex- 
ecution of an example (roots of a polynomial) on an APL system based 
on complex numbers .  This implies no change in funct ion symbols, 
al though the domain of certain functions will have to be extended.  For 
example ,  IX will  give the magn i tude  of complex  as wel l  as real  
arguments,  + X will give the conjugate of complex arguments  as well as 
the trivial result it now gives for real arguments,  and the e lementary  
functions will be appropriately extended, as suggested by the use of , in 
the cited example. It also implies the possibility of meaningful  inclusion 
of primitive functions for zeros of polynomials  and for eigenvalues and 
eigenvectors of matrices. 

A second type also suggested by the earlier sections includes functions 
defined for particular purposes  which show promise of general utility. 
Examples include the nub function N_ , defined by D.3, and the sum- 

marization funct ion S_, defined by D.4. These and other  extensions are 
discussed in [18]. McDonnel l  [19, p. 240] has proposed generalizations 
of and and or to non-booleans so that A v B is the GCD of A and B,  
and A ̂  B is the LCM. The functions G CD and L CM defined in Section 3 
could then be defined simply by GCD : v/0~ and LCM : ^ /o~.  

A more general line of deve lopment  concerns  operators,  illustrated 
in the preceding sections by the reduction,  inner-product,  and outer- 
product.  Discussions of operators now in APL may  be found in [20] and 
in [17, p. 129], proposed new operators for the vector  calculus are dis- 
cussed in [17, p. 47], and others are discussed in [18] and in [17, p. 129]. 
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5 . 4  

M o d e  o f  P r e s e n t a t i o n  
The t reatment  in the preceding sections concerned a set of brief 

topics, with an emphasis on clarity rather than efficiency in the resulting 
algorithms. Both of these points merit  fur ther  comment .  

The t reatment  of some more complete topic, of an extent sufficient 
for, say, a one- or two-term course, provides a somewhat  different, and 
perhaps more realistic, test of a notation. In particular, it provides a 
better  measure of the amount  of notation to be introduced in normal  
c o u r s e  w o r k .  

Such t reatments  of a number  of topics in APL are available, in- 
cluding: high school algebra [6], e lementary  analysis [5], calculus, [!3], 
design of digital systems [21], resistive circuits [10], and crystallography 
[22]. All of these provide indications of the ease of introducing the nota- 
tion needed, and one provides comments  on experience in its use. Pro- 
fessor Blaauw, in discussing the design of digital systems [21], says that 
"APL makes it possible to describe what  really occurs in a complex 
system," that "APL is particularly suited to this purpose, since it allows 
expression at the high architectural  level, at the lowest implementa- 
tion level, and at all levels between," and that "...learning the language 
pays of {sic} in- and outside the field of computer  design." 

Users of computers  and programming languages are often concern- 
ed primarily with the efficiency of execution of algorithms, and might, 
therefore, summari ly  dismiss many  of the algorithms presented here. 
Such dismissal would be short-sighted, since a clear s tatement  of an 
algorithm can usually be used as a basis f rom which one may easily 
derive more efficient algorithms. For example, in the function STEP of 
Section 3.2, one may signficantly increase efficiency by making sub- 
stitutions of the form B~M for( ~M ) + .  x B, and in expressions using 
+ / C × 2 * - 1 + l 0 C one may substitute X ± O0 C or, adopting an opposite 
convention for the order  of the coefficients, the expression X± C. 

More complex transformations may also be made. For example, 
Kerner's method  (C.3) results f rom a rather  obvious, though not for- 
mally stated, identity. Similarly, the use of the matrix a to represent  
permutat ions  in the recursive function R used in obtaining the depth 
first spanning tree (C.4) can be replaced by the possibly more compact  
use of a list of nodes, substituting indexing for inner products in a rather 
obvious, though not completely formal, way. Moreover, such a recur- 
sive def ini t ion can be t r ans fo rmed  into more  efficient  non- 
recursive forms. 

Finally, any algorithm expressed clearly in terms of arrays can be 
transformed by simple, though tedious, modifications into perhaps more 
efficient algorithms employing iteration on scalar elements. For exam- 
ple, the evaluation of + / X depends upon every element  of X and does 
not admit of much  improvement ,  but evaluation of v / B could stop at 
the first e lement  equal to 1, and might therefore be improved by an 
iterative algorithm expressed in terms of indexing. 

I ~ 7 ~ 

' l , , r i , l g  
Awonxl 
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The pract ice of first developing a clear and precise definit ion of a 
process wi thout  regard to efficiency, and then  using it as a guide and 
a test in exploring equivalent processes possessing other characteristics, 
such as greater  efficiency, is ve ry  c o m m o n  in mathemat ics .  It is a very  
fruitful practice which  should not be blighted by p rema tu re  emphas is  
on efficiency in compu te r  execution. 

Measures  of efficiency are often unrealist ic because  they  concern  
counts of " subs tan t ive"  funct ions such as mult ipl icat ion and addition, 
and ignore the housekeeping  (indexing and other  selection processes} 
which  is often greatly increased by less s t ra ightforward algorithms. 
Moreover ,  realistic measu res  depend  strongly on the current  design 
of compute r s  and of language embod imen t s .  For example ,  because  
funct ions on booleans  {such as ^ / B and v / B } are found to be heavi ly 
used in APL, implemen te r s  have  provided efficient execut ion of them.  
Finally, ove remphas i s  of eff iciency leads to an unfor tunate  circulari ty 
in design: for reasons of eff iciency early p rog ramming  languages 
reflected the characteris t ics  of the early computers ,  and each genera- 
tion of compute r s  reflects the needs  of the p rog ramming  languages of 
the preceding generat ion.  

A c k n o w l e d g m e n t s  

I am indebted to m y  colleague A. D. Falkoff for suggestions which  
greatly improved  the organization of the paper,  and to Professor Donald 
McIn ty re  for suggestions arising f rom his reading of a draft. 

A p p e n d i x  A 
Summary of Notation 

Fto SCALAR FUNCTIONS aFto 
to Conjugate + Plus 

0 - to Negative Minus 
( to > 0 ) - to < 0 Signum x Times 

1÷to Reciprocal ÷ Divide  
to[ -to Magnitude [ Residue to-axtoto÷a+a=O 

Integer part Floor P Minimum ( t o x t o < a ) + a x t o 2 a  
-to Cei l ing [ Maximum - ( - a ) - - t o  

2 . 7 1 8 2 8 . . . * t o  Exponential * Power x / toOa 
Inverse of * Natural log • Logarithm ( e t o ) , e a  

x / l + t t o  Factorial ! Binomial ( ! t o ) ÷ (  ! a ) x ! t o - a  
3 . 1 4 1 5 9  . . . .  xto Pi times o 

Boolean: v ,~ ~ (and, or, not-and, not-or, not)  
Relations: < <_ = _> > ~ (aRto is 1 if relation R holds). 
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Integers 
Shape 
Catenation 

Ravel 
Indexing 
Compress 
Take,Drop 
Reversal 
Rotate 
Translmse 
Grade 
Base value 

&inverse 
Membership 
Inverse 
Reduction 
Scan 
Inner prod 
Outer prod 
Axis 

Sec. V+÷2 3 5 M+-,,1 2 3 
Ref. 4 5 6  

1 ~5+÷1  2 3 4 5 
1 pV+÷3 pM÷÷2 3 2 3 p t 6 ÷ ~ M  2pq.÷÷4 4 
1 V , V ÷ ÷ 2  3 5 2 3 5 M,M+- ' , I  2 3 1 2 3 

4 5 6 4 5 6  
1 , M + ÷ i  2 3 4 5 6 
1 V [ 3  1]+÷5 2 M [ 2 ; 2 3 + ÷ 5  M [ 2 ; 3 + + 4  5 6 
3 1 0 1 / V + + 2  5 0 1 / M + ÷ 4  5 6 
1 2÷V÷÷2  3 - 2 " I ' V + + l ÷ V + ~ 3  5 
1 ~ V + ÷ 5  3 2 
1 2¢V+÷5 2 3 - 2 ¢ V ÷ ÷ 3  5 2 

1,4  ~ reverses axes a ~  permutes axes 
3 &3 2 6 2 + ÷ 2  4 1 3 ~'3 2 6" 2 + ÷ 3  1 2 4 

1 1 0 1 V + ÷ 2 3 5  V.LV+÷50 
1 10 10 10T235++2  3 5 VT50+÷2 3 5 
3 VE3+÷O 1 0 Yc5 2++1 0 1 

2 ,5  I ~  is matrix inverse a ~ o J + ÷ ( ~ 0 J ) + . x a  
1 + / V + ÷ 1 0  +/M+*6 15 +/M÷÷5 7 9 
1 +\V+÷2 5 10 +\M+÷2 3pl 3 6 4 9 15 
1 + .  × is matrix product 
1 0 3 o . + 1  2 3++M 
1 F [ I ]  applies F along axis I 

A p p e n d i x  B 
Compiler from Direct 

to Canonical Form 

This compiler has been adapted from [22, p. 222]. It will not handle 
definitions which include a or : or ~ in quotes. It consists of the func- 
tions FIX and F9, and the character matrices C9 andA 9 : 

FIX 
OpDFX F9 

D÷F9 E;F;I;K 
F ÷ (  , ( E = ' ~ '  ) o . * 5 ÷ l ) / , E , ( ¢ 4 , p E ) p '  Y9 ' 
F÷( ,(F='a' )o.=5÷I)/,F,(~4,oF)o' X9 ' 
F÷I+pD÷(0,+/-6,I)+(-(3×I)++\I÷' : '=F)¢F,(¢6,oF)p' ' 
D÷3¢C9[I+(I+'a'EE),I,O;],~D[;I,(I÷2+iF),2] 
K÷K+2xK<iCK÷I^KE(>II O¢'÷Q'o.=E)/K÷+\~I÷EEA9 
F÷(O,I+oE)FpD÷D,(F,pE)+~O -2+K¢' ',E,[1.5]';' 
D÷(F÷D),[i]F[2] 'A',E 

C9 A9 
Z9+ 012345678 

Y9Z9÷ 9ABCDEFGH 
Y9Z9÷X9 IJKLMNOPQ 

)/3÷(0=1÷, RSTUVWXYZ 
÷O,OpZ9÷ ABCDEFGHI 

JKLMNOP~R 
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Example :  

FIX 
FIB:Zt+/-2÷Z÷FIB~-I:~=I:I 

FIB 15 
1 1 2 3 5 8 13 21 34 55 89 

Q C R ' F I B '  
Z 9 ÷ F I B  Y 9 ; Z  
+ ( 0 = 1 4 , Y 9 = 1 ) / 3  
÷ 0 , 0 p Z 9 ÷ l  
Z9÷Z,+/-2÷Z÷FIB Y9-1 

AFIB:Z,+/-2+Z÷FIB~-I:~=I:i 

144 2 3 3  377 610 
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E2.1 [Theory of Computation]: Numerical Algorithms and Problems-- 
computations on matrices; computations on polynomials; G.l.m [Mathe- 
matics of Computing]: Miscellaneous; G.2.1 [Discrete Mathematics]: 
Combinatorics--permutations and combinations; G.2.2 [Discrete Mathe- 
matics]: Graph Theory--trees; 1.1.1 [Computing Methodologies]: 
Expressions and Their Representations--representations {general and 
polynomial) 

General Terms: 
Algorithms, Design, Languages 
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Postscript 
Nota t ion  as a Tool of  Thought:  1986 

KENNETH E. IVERSON 

The thesis of the present paper is that the advantages of executability and univer- 
sality found in programming languages can be effectively combined, in a single 
coherent language, with the advantages offered by mathematical notation. 

The executable language to be used is APL, a general-purpose language which 
originated in an attempt to provide clear and precise expression in writing and 
teaching, and which was implemented as a programming language only after several 
years of use and development. 

The first of the foregoing passages from my 1980 paper  states the case to 
be made for the use of an executable analytic notation, and the second states 
the part icular vehicle to be used in developing it. The most obvious and im- 
portant  use of executable analytic notation is in teaching. The following 
comments  summarize recent progress in this area. 

Materials and Courses 
A common theme in the materials  ment ioned here is the casual introduc- 

tion of the necessary notation in context, in the manner  familiar from the 
teaching of mathematics.  A good example at a high-school level is the treat- 
ment of probabili ty by Alvord [1]. In their t reatment of circuit analysis, Spence 
and Burgess [2] make heavier  use of APL as a means of implementing their 
system, and Hazony [3] makes combined use of graphic input and APL expres- 
sions to specify designs in an expert support  system. 

The direction of my own recent work is described in an ACM Forum letter 
[4], and drafts of two texts used in courses are currently available [5]. The Pesch 
and Berry paper  on style and li teracy [6] should be read by anyone interested 
in these matters. 

Development of the Notation 
A version of APL has recently been developed [7] which, while remaining 

within the bounds adopted in the ISO standard for the language, has both 
simplified its structure and increased its expressive power. It provides a 
significantly better basis for teaching than the notation used in my 1980 paper. 

Availability of Implementat ions  
Although APL has long been provided by central universi ty computing 

services, it has been impracticable to use in teaching because of charging rates 
and lack of suitable terminals. The present  availability of APL systems on 
microcomputers  has changed this situation drastically. 

The system provided for students here at the T. H. Twente is the one I find 
most satisfactory [8]; it does not yet incorporate such new functions as hub, 
raze, and all {a generalization of Cartesian product), but does provide the 
fundamental  notions of function rank, the box function {for the general 
handling of representat ion or "structures"), and the under operator for the 
important  mathematical  notion of duality. 

Moreover, the system handles complex numbers  {with all of the 
mathematical  functions suitably extended); provides the determinant  ( -  . x ), 
the permanent  ( + .  x ), the test for a Latin square ( v .  ^ ), and related func- 
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tions produced by the dot operator; generalizes the or  and and functions to 
provide the greatest common divisor and least common multiple; and exploits 
the characteristics of the microcomputer  and its screen display to provide a 
"union" keyboard in which most characters {such as the parentheses and the 
upper- and lower-case letters used in names) are in their normal  typewri ter  
positons. 

' lu r ing 
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