
CSE 5317/4305 L7: Run-Time Storage Organization 1

Run-Time Storage Organization

Leonidas Fegaras

CSE 5317/4305 L7: Run-Time Storage Organization 2

Memory Layout

• Memory layout of an executable program:

CSE 5317/4305 L7: Run-Time Storage Organization 3

Run-Time Stack

• At run-time, function calls behave in a stack-like manner
– when you call, you push the return address onto the run-time stack
– when you return, you pop the return address from the stack
– reason: a function may be recursive

• When you call a function, inside the function body, you want to
be able to access
– formal parameters
– variables local to the function
– variables belonging to an enclosing function (for nested functions)

procedure P (c: integer)

x: integer;

procedure Q (a, b: integer)

i, j: integer;

begin

x := x+a+j;

end;

begin

Q(x,c);

end;

CSE 5317/4305 L7: Run-Time Storage Organization 4

Activation Records (Frames)

• When we call a function, we push an entire frame onto the stack
• The frame contains

– the return address from the function
– the values of the local variables
– temporary workspace
– ...

• The size of a frame is not fixed
– need to chain together frames into a list

(via dynamic link)
– need to be able to access the variables of

the enclosing functions efficiently

A

B

C

top

CSE 5317/4305 L7: Run-Time Storage Organization 5

A Typical Frame Organization

CSE 5317/4305 L7: Run-Time Storage Organization 6

Static Links

• The static link of a function f points to the latest frame in the
stack of the function that statically contains f
– If f is not lexically contained in any other function, its static link is null

procedure P (c: integer)

x: integer;

procedure Q (a, b: integer)

i, j: integer;

begin

x := x+a+j;

end;

begin

Q(x,c);

end;

• If P called Q then the static link of Q will point to the latest frame
of P in the stack

• Note that
– we may have multiple frames of P in the stack; Q will point to the latest
– there is no way to call Q if there is no P frame in the stack, since Q is

hidden outside P in the program

CSE 5317/4305 L7: Run-Time Storage Organization 7

The Code for Function Calls

• When a function (the caller) calls another function (the callee), it
executes the following code:
– pre-call: do before the function call

• allocate the callee frame on top of the stack
• evaluate and store function parameters in registers or in the stack
• store the return address to the caller in a register or in the stack

– post-call: do after the function call
• copy the return value
• deallocate (pop-out) the callee frame
• restore parameters if they passed by reference

CSE 5317/4305 L7: Run-Time Storage Organization 8

The Code for Function Calls (cont.)

• In addition, each function has the following code:
– prologue: to do at the beginning of the function body

• store frame pointer in the stack or in a display
• set the frame pointer to be the top of the stack
• store static link in the stack or in the display
• initialize local variables

– epilogue: to do at the end of the function body
• store the return value in the stack
• restore frame pointer
• return to the caller

CSE 5317/4305 L7: Run-Time Storage Organization 9

Storage Allocation

We can classify the variables in a program into four categories:
1) statically allocated data that reside in the static data part of the

program
– these are the global variables.

2) dynamically allocated data that reside in the heap
– these are the data created by malloc in C

3) register allocated variables that reside in the CPU registers
– these can be function arguments, function return values, or local variables

4) frame-resident variables that reside in the run-time stack
– these can be function arguments, function return values, or local variables

CSE 5317/4305 L7: Run-Time Storage Organization 10

Frame-Resident Variables

• Every frame-resident variable (ie. a local variable) can be viewed
as a pair of (level,offset)
– the variable level indicates the lexical level in which this variable is

defined
– the offset is the location of the variable value in the run-time stack relative

to the frame pointer
procedure P (c: integer)
x: integer;
procedure Q (a, b: integer)
i, j: integer;
begin
x := x+a+j;

end;
begin
Q(x,c);

end;

level offset
a 2 8
b 2 4
i 2 -12
j 2 -16
c 1 4
x 1 -12

level 2

level 1

CSE 5317/4305 L7: Run-Time Storage Organization 11

Variable Offsets

procedure P (c: integer)

x: integer;

procedure Q (a, b: integer)

i, j: integer;

begin

x := x+a+j;

end;

begin

Q(x,c);

end;

CSE 5317/4305 L7: Run-Time Storage Organization 12

Accessing a Variable

• Let $fp be the frame pointer
• You are generating code for the body of a function at the level L1
• For a variable with (level,offset)=(L2,O) you generate code:

1) you traverse the static link (at offset -8) L1-L2 times to get the containing
frame

2) you accesss the location at the offset O in the containing frame

• eg, for L1=5, L2=2, and O=-16, we have
– Mem[Mem[Mem[Mem[$fp-8]-8]-8]-16]

• eg:
a: Mem[$fp+8]
b: Mem[$fp+4]
i: Mem[$fp-12]
j: Mem[$fp-16]
c: Mem[Mem[$fp-8]+4]
x: Mem[Mem[$fp-8]-12]

level offset
a 2 8
b 2 4
i 2 -12
j 2 -16
c 1 4
x 1 -12

CSE 5317/4305 L7: Run-Time Storage Organization 13

The Code for the Call Q(x,c)

Mem[$sp] = Mem[$fp-12] ; push x
$sp = $sp-4
Mem[$sp] = Mem[$fp+4] ; push c
$sp = $sp-4
static_link = $fp
call Q
$sp = $sp+8 ; pop arguments

CSE 5317/4305 L7: Run-Time Storage Organization 14

The Code for a Function Body

• Prologue:
Mem[$sp] = $fp ; store $fp
$fp = $sp ; new beginning of frame
$sp = $sp+frame_size ; create frame
save return_address
save static_link

• Epilogue:
restore return_address
$sp = $fp ; pop frame
$fp = Mem[$fp] ; follow dynamic link
return using the return_address

CSE 5317/4305 L7: Run-Time Storage Organization 15

Finding Static Link

• The caller set the static_link of the callee before the call
– this is because the caller knows both the caller and callee
– the callee doesn't know the caller

• Suppose that L1 and L2 are the nesting levels of the caller and the
callee procedures
– When the callee is lexically inside the caller's body, that is, when

L2=L1+1, we have:
static_link = $fp

– Otherwise, we follow the static link of the caller L1-L2+1 times

• For L1=L2, that is, when both caller and callee are at the same
level, we have

static_link = Mem[$fp-8]

• For L1=L2+2 we have
static_link = Mem[Mem[Mem[$fp-8]-8]-8]

CSE 5317/4305 L7: Run-Time Storage Organization 16

Finding Static Link (cont.)

	Run-Time Storage Organization
	Memory Layout
	Run-Time Stack
	Activation Records (Frames)
	A Typical Frame Organization
	Static Links
	The Code for Function Calls
	The Code for Function Calls (cont.)
	Storage Allocation
	Frame-Resident Variables
	Variable Offsets
	Accessing a Variable
	The Code for the Call Q(x,c)
	The Code for a Function Body
	Finding Static Link
	Finding Static Link (cont.)

