
Folded Logic Decomposition

Dennis Wu, Jianwen Zhu
Electrical and Computer Engineering

University of Toronto, Ontario M5S 3G4, Canada
{wudenni, jzhu}@eecg.toronto.edu

ABSTRACT
The past decade of logic synthesis research has been characterized
by a constant quest for smaller circuit area and faster circuit speed.
While enjoying enormous success, the runtime of classic logic syn-
thesis algorithms cannot keep up with the exponential growth of
circuit complexity predicted by Moore’s law. In this paper, we pro-
pose a new technique where the regularity of the logic circuits, be
it the apparent regularity in arithmetic-intensive circuits, or the hid-
den regularity in random logic, is automatically discovered and ex-
ploited to improve synthesis speed. We show that with this tech-
nique, the task of functional decomposition, the core engine of
logic synthesis, can be made orders of magnitude faster than usual
for arithmetic circuits, and on average eight times faster than usual
for arbitrary random circuits.

1. INTRODUCTION
Circuit complexity increases exponentially as dictated by Moore’s

law. However, the classic logic synthesis algorithms are of poly-
nomial complexity with circuit size at best. This imposes serious
problems in terms of synthesis speed for modern circuits. The con-
ventional wisdom of divide-and-conquer, where the partitions spec-
ified by designers are used as boundaries for separate synthesis, is
often found to compromise optimization quality at an intolerable
level. Finding new logic synthesis algorithms that scale well with
circuit size, has emerged as a new priority, in addition to the tra-
ditional metric of synthesis quality, in terms of circuit area and
speed. The need for fast logic synthesis algorithms is even more
pronounced when combating deep sub-micron issues, where early
design planning is needed.

To address the scalability problem, we propose a logic synthesis
approach that exploits the regularities inherent in circuits. Regu-
larities in array-based circuits such as arithmetic units are apparent
since many logic blocks are replicated. For example, one imple-
mentation of the N-bit ripple carry adder uses N instances of the
full adder logic block. Regularities in random logic often exist as
well. With the crude, yetquantitativemeasure of regularity in Def-
inition 1, we typically found the regularity of datapath circuits to
be on the order of several hundreds. It is interesting to note that it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWLS 2003,June, 2003, Laguna Beach, California, USA.
Copyright 2003 ACM 0-89791-88-6/97/05 ...$5.00.

is usually the datapath circuit that blows up circuit complexity.

DEFINITION 1. The regularity of a logic network is defined to
be the number of logic components divided by the number of logic
component types in the network.

The key to exploiting regularities is to determine if two logic
components in a logic network implement the same logic function.
This poses a problem for traditional logic synthesis systems where
each function block maintains a separate copy of the Boolean func-
tion it implements. We propose a new strategy, called logic folding,
where logic components with the same logic functions are easily
identified.

DEFINITION 2. Logic folding is a representation of a logic net-
work that groups logic components that implement the same logic
function together by explicitly sharing the same logic function rep-
resentation.

Algorithms to extract the structural regularity in a logic network
have been attempted in the past [8][7]. While regularity has been
preserved to improve layout efficiency, the synthesis runtime im-
provement has been modest (around 30%). Logic folding is a dif-
ferent strategy, as we shall later demonstrate, where the regular-
ity of logic network can be implicitly maintained by exploiting the
canonical property of Bryant’s BDD data structure [2].

In this paper, we focus on how logic folding can be applied
to logic decomposition. Noting that many circuits exhibit a fair
amount of regularity; And noting that functional decomposition is
performed with respect to a Boolean function; we propose to use
logic folding to identify regularities and to apply the decomposition
step on all logically equivalent components at once.

In the text that follows, a description of the traditional circuit
representation and decomposition process is given and later con-
trasted with our folded approach. Logic folding and its application
to functional decomposition is then described in detail. Finally, the
runtime performance of the folded logic approach is tested against
the MCNC benchmark and a set of arithmetic circuits.

2. BACKGROUND

2.1 Circuit Representation
In this paper, we only deal with completely specified, single out-

put Boolean functions. ABoolean functionis a mapping between
the values of itsn input signals to the value of its output signal
{0,1}n → {1,0}.

A Boolean function can also be represented as an interconnection
of simpler Boolean functions in a graph called aBoolean Network.
A Boolean network is a directed acyclic graphG= 〈V,E〉 where the

vertices represent function blocks and the edges represent signals
that are produced and consumed by the function blocks.

A function blockis characterized by two independent informa-
tion, its Boolean function and its support set. A support set is
the set of signals consumed by a function block. It is defined as
supp(v) = {〈v,w〉 ∈ E}. The function block generates one or no
output signals. The consumers of this signal is defined asout(v) =
{〈u,v〉 ∈ E}. v is called a primary input if|supp(v)| = �. v is
called a primary output if|out(v)| = �.

Efficient representation of the Boolean function has been the
subject of much attention. Modern logic synthesis systems have
benefited from representing Boolean functions as a Reduced Or-
dered Binary Decision Diagram (ROBDD or just BDD for short)
data structure introduced by Bryant [2]. The BDD has several at-
tractive properties. It is canonical: function blocks that implement
the same Boolean function and share the same support set have
the same BDD representation. As a result, equivalent nodes in the
BDD can be identified and collapsed easily to make the BDD com-
pact. The BDD has also been shown to have several fast decompo-
sition algorithms including XOR and Boolean decompositions that
previous to the BDD, were difficult to perform [12].

2.2 Decomposition
Often, the circuit generated by an HDL will contain gates that

are too large for practical implementation. These gates must be
recursively broken down in to smaller gates of lesser complexity
in a process calledDecomposition. A number of papers have been
published on the subject of BDD based decomposition [6][12][1].

3. FOLDED LOGIC DECOMPOSITION
In traditional logic synthesis systems, functional decomposition

is performed one function block at a time [12] [11]. This may be
desirable if decomposition decisions are affected by considerations
such as differences in fan-in or fan-out; this is the case in timing-
driven and placement-driven decomposition. However, a wide va-
riety of situations occur when such distinctions are not necessary,
for example, in area-driven decomposition or ultra-fast algorithms
used in early design planning when quality can be compromised.
For these decomposition algorithms, function blocks that imple-
ment the same Boolean function will be decomposed in the same
way. We can reduce the number of decompositions performed by
sharing a decomposition result among function blocks with the
same Boolean function. In this section we discuss an efficient
method of testing Boolean functions for equivalence, called logic
folding, and describe how it can be used to perform decompositions
in parallel.

3.1 Logic Folding
To perform folded decomposition, we must identify which func-

tion blocks implement the same Boolean function. This requires
every new function block to have its Boolean function compared to
existing Boolean functions to determine if there is a match. In the
traditional setup, where function blocks store their own local copy
of the Boolean function, testing Boolean functions for equivalence
requiresO(n) time BDD traversals. The overhead of comparing
BDDs this way outweighs the benefits of performing the decompo-
sitions in parallel.

The folded logic structure we propose stores Boolean functions
in a common repository where they can be checked for equivalence
in constant time. Instead of storing a separate copy of a Boolean
function with each function block, the Boolean functions are stored
as BDDs in a global BDD Manager. The variables of this Manager
are generic; they do not represent a specific node in the Boolean

ALGORITHM 1. Folded Decomposition

forall (BddClassesintheBooleannetwork) 1
Push(heap, BddClass, BddClass.numVariables); 2

while(f = Pop(heap)) { 3
〈g,h,op〉 = decompose(f); 4
if (!bddExists(g)) 5

create BddClass for g; 6
if (!bddExists(h)) 7

create BddClass for h; 8
update instances(f, g, h, op); 9
if (g hasmore than two nodes) 10

Push(heap, g, g.numVariables); 11
if (h hasmore than two nodes) 12

Push(heap, h, h.numVariables); 13
} 14

network. The N variables of the BDD are simply mapped to the bot-
tom N variables of the BDD Manager. Because BDDs are canoni-
cal, two logic functions are equivalent if their BDD pointers are the
same.

Once two Function blocks are computed to have the same Boolean
function, they are grouped together into an equivalent class, called
a BddClass. The BddClass represents a BDD in the Global BDD
Manager. It stores a pointer to the BDD it represents and main-
tains a list of BddInstances that use it. ABddInstancerepresents
a function block. It contains a pointer to it’s BddClass and a sup-
port set, which is an ordered list of pointers to other BddInstances.
BddClasses are the unit by which folded operations are performed.

3.2 Folded Decomposition
The folded decomposition algorithm is shown in Algorithm 1.

Each decomposition is performed one BddClass at a time (and po-
tentially more than one BddInstance at a time). The BDD for the
BddClass is decomposed into two or more smaller BDDs. If these
BDDs are not found in the Global BDD Manager, new BddClasses
are created for them. Otherwise, the existing BddClasses are used.
The BddInstances are updated to reflect the changes. If the new
BddClasses can be decomposed further, they are added to the heap.
The heap is used to decompose the BddClasses in order of non-
increasing size of their support set. Decomposing BDD’s in this
order ensures that no decompositions are repeated.

An illustration of the traditional decomposition process is shown
in Figure 1. Figure 1a shows a Boolean network before decompo-
sition. One function block is selected for decomposition. In Figure
1b, the function block is OR-decomposed. The changes are shown
in figure 1c, where the original function block has been replaced
with three new function blocks of lesser complexity. Notice that
the original Boolean network contains two function blocks with
the same BDD. The next decomposition step will basically repeat
the same BDD decomposition. We do away with this repetition in
folded decomposition.

The folded decomposition process is illustrated in Figure 2. The
Boolean network shown in Figure 2a is identical to the one used
earlier. However, the Boolean functions for the function blocks are
stored in a Global manager where two unique Boolean functions
have been identified (Figure 2b). The BDD with the largest support
set, celli1, is decomposed first. The decomposition result trans-
forms cell i1 into the XOR of a XNOR and NOT gate (Figure 2c).
cell i1’s BDD is then removed from the Global manager and re-
placed with XNOR, NOR and NOT BDDs (Figure 2e). The two
original cell i1 instances are replaced with NOR, XNOR and NOT
instances to reflect the changes in the Boolean network (Figure 2d).

2

PO_f

cell_f

0 1

cell_i1

0 1 2

cell_i1

0 1 2

PI_a PI_b PI_c PI_d PI_e

(a) Boolean network before decompo-
sition.

(b) Decomposition of celli1.

PO_f

cell_f

0 1

nor

0 1

cell_i1

0 1 2

not

0

xnor

0 1

PI_c

PI_d PI_e

PI_a PI_b

(c) Boolean network after
decomposition.

Figure 1: Decomposition using traditional approach.

PO_f

cell_f

0 1

cell_i1

0 1 2

cell_i1

0 1 2

PI_a PI_b PI_c PI_d PI_e

(a) Boolean network before decompo-
sition.

 2

 1

 0

 cell_f cell_i1

60d

60c

60b

1

412

(b) Global BDD man-
ager before decom-
position.

(c) Folded decomposition of celli1.

PO_f

cell_f

0 1

nor

0 1

nor

0 1

not

0

xnor

0 1

not

0

xnor

0 1

PI_cPI_a PI_b PI_e PI_d

(d) Boolean network after de-
composition.

 1

 0

 cell_f nor

60d

 not

60f

 xnor

412

60b

1

(e) Global BDD Manager after de-
composition.

Figure 2: Decomposition using folded approach.

3

3.3 Boolean Matching
Folded Logic is not without its problems and limitations. Two

Boolean functions can have more than one BDD representation
when the variables of the BDDs are mapped differently to the generic
variables of the Global BDD Manager. When this occurs, the match
is missed and the BDDs are mistaken as different Boolean func-
tions. As a result, the BDDs must be decomposed separately. Given
that for ann variable function, there are up toO(n!) different vari-
able orderings, it seems unlikely for two equivalent functions to
match.

The set of valid variable orders for a function can be dramat-
ically reduced by applying variable reordering. Since BDDs are
typically stored in reduced form to conserve memory, this comes at
no extra cost. However, variable ordering alone is not sufficient for
discovering most matches. To illustrate this point, the sifting vari-
able ordering algorithm [10] is applied to several logically equiv-
alent BDDs, whose starting variable orders are randomly chosen.
This procedure is applied to the largest gate in each of the MCNC
benchmarks. Table 1 (PMSIFT) shows the rate of matching ob-
tained. Ideally, matching should be 100% because the logic func-
tions compared are equivalent. However, on average, sifting can
only discover 17% of the matches.

The problem described above, called permutation-independent
Boolean Matching, has been investigated in the context of library
cell binding and logic verification. Ercolani and De Micheli [5]
propose a matching algorithm for EPGAs where BDDs are con-
structed for all possible input permutations of the uncommitted
EPGA module, and stored together in a global manager. While
practical for EPGA mapping, where logic functions are only com-
pared against the EPGA module, the memory requirements of this
approach are not practical when arbitrarily many gates are com-
pared with each other. Debnath and Sasao [4] devise a permutation-
independent, canonical form for the logic function where the rows
of the truth table are represented as bits in a bit vector. Each bit
indicates whether the row is part of the on-set of the function. The
size of the bit vector grows exponentially with the size of the sup-
port set, and is not practical for regularity detection, where large
gates exist. Ciric and Sechen [3] propose a canonical form where
the function is represented as the concatenation of minterms. Their
algorithm performs an exhaustive branch and bound search for the
unique identifier which can be obtained through minterm reorder-
ing and variable reordering. Their algorithm also cannot handle the
large gates that may exist in a logic network.

Mohnke, Molitor and Malik [9] propose a solution to the Boolean
matching problem that does not suffer from the runtime and mem-
ory limitations of the algorithms described earlier. Their technique
is based on computing signatures for the inputs of the logic func-
tions that are independent of the variable order. The inputs can be
sorted by their signatures to generate a variable order. Two BDDs
that represent the same Boolean functions will produce the same
input signatures. If each input signature is unique, then a unique
variable ordering can be created from the signatures, and the re-
sulting BDDs will be equivalent.

One example of a input signature is theCofactor satisfy count
signature[9]. For an input variablex, it’s input signature is defined
to be the number of input assignments for which the logic function
is true whenx is true. In BDD representation, this corresponds to
the number of paths to the one terminal and can be computed in
O(n) time, wheren is the number of nodes in the BDD. The lim-
itation of this approach is that, unlike the Boolean matching tech-
niques described earlier, it does not result in a canonical form. In-
put signatures may alias, resulting in non-unique variable orders.
In folded decomposition, where the goal is to decrease runtime,

performing decomposition on missed matches separately is prefer-
able to performing a costly search for perfect matches. Using the
Cofactor satisfy count signature to create an initial variable order
allows 78% of the matches to be found. The match rate for individ-
ual circuits in the MCNC benchmark is shown in Table 1 (PMSIG).
Mohnke et al report in [9] that for the set of signatures they imple-
ment, unique signatures are obtained in 92% of the circuits in the
LGSynth91 and ESPRESSO benchmarks.

In spite of the problems described above, the potential benefit of
logic folding is huge. If a match is found early on, there are savings
on the immediate decomposition, as well as on all downstream de-
compositions. Folding is essentially free. The cost of folding is to
copy BDDs to and from the global BDD manager, but this copying
is required anyways when isolating a BDD for variable reordering.

4. EXPERIMENTAL RESULTS

4.1 Implementation
The folded decomposition approach is not dependent on any spe-

cific BDD based decomposition algorithm. For the purposes of
implementing a complete decomposition system, the fast, disjunc-
tive AND-OR-XOR decompositions and MUX decomposition al-
gorithms presented in BDS[12] are used. BDS has shown to result
in 40% less literals, 23% lower gate count and use 84.4% less CPU
time then the popular SIS program for XOR intensive circuits. Ap-
plying folded logic synthesis to a different set of decomposition
algorithms should not dramatically affect the speedup obtained.

In an effort to improve the rate of matching, BDDs are put into
their semi-canonical, permutation independent form using the fast
signature based approach. A number of signatures have been pro-
posed in [9]. In our tests, we apply theCofactor satisfy count sig-
natureto produce a semi-unique initial variable order.

4.2 Procedure
The experiments were conducted on a SUN UltraSPARC 5 with

320 MB memory, running SunOS version 5.8. Two sets of bench-
marks were used in the test. The first set of circuits were taken from
the combinational multi-level examples of the MCNC91 bench-
mark. Only those circuits which were reported by [13] to have an
approximate gate count of 500 or more were selected for testing.
To demonstrate the performance of folded decomposition on regu-
lar circuits, a second benchmark consisting of arithmetic circuits is
used.

Our synthesis system does not perform all the functions described
in the typical synthesis flow. Sweep and Eliminate have not been
implemented. Although these stages are likely to collapse away
regularity, they are essential in reducing the gate count and run
time, and therefore must be included in the testing process. The
sweep and eliminate capabilities of SIS are leveraged. Circuits are
loaded into SIS where the “sweep;” and “eliminate -1;” commands
are applied. The result is saved and folded decomposition is per-
formed on the preprocessed circuits.

The statistics collected are defined below.Folded Decomposition
Count (FDC) is the number of decompositions performed when
decomposition results are shared among logically equivalent func-
tion blocks.Regular Decomposition Count(RDC) is the number of
decompositions performed when decomposition is performed one
function block at a time.Expected Speedup(ES) is equal to RDC
divided by FDC.

Expected Speedup gives a ratio of the number of decompositions
saved using folded decomposition over regular decomposition. Ex-
pected Speedup is roughly representative of the speed improve-
ment that can be expected during decomposition. We also report

4

the Actual Speedup experienced by timing the folded and regular
decompositions.Folded Decomposition Time(FDT) is the time re-
quired to perform folded decomposition.Regular Decomposition
Time(RDT) is the time required to perform regular decomposition.
Actual Speedup(AS) is equal to RDT divided by FDT.

4.3 Results

4.3.1 MCNC Benchmark
The results for the MCNC benchmark are shown in Table 1. Cir-

cuit C6288.blif is an extreme case of logic folding and will be dis-
cussed later. Excluding circuit C6288.blif, the average expected
and actual speedups are 4.22 and 8.33 respectively. The smallest
speedup achieved is 1.01 while the greatest speedup achieved is
41.50. The runtime benefit of logic folding is quite apparent in
these results.

When circuit C6288.blif is included in the results, the average
expected and actual speedups become 15.07 and 8.26 respectively.
Circuit C6288.blif has an expected speedup of 232 but an actual
speedup of only 7. Because of the high amount of regularity in
the circuit, factors other than decomposition, such as creating new
gate instances, become significant. This puts a lower bound on the
speed improvements that folded decomposition can achieve. In the
case of regular decomposition, C6288.blif performs 464 decom-
positions and creates 464 new gates. In the folded case, only 2
decompositions are performed but 464 new gates are still created.
The decompositions performed were also of the fast algebraic va-
riety. This illustrates that if the expected speedup is high and the
types of decompositions performed are fast, then other factors will
become significant, reducing the actual speedup.

4.3.2 Array Circuit Benchmark
The speedups for arithmetic circuits are even more encourag-

ing. An average actual speed up of 81.58 is reported. The smallest
speedup of 4 is achieved for the 8-bit ripple carry adder, while the
largest speedup of 299.85 is achieved for the 64-bit Wallace tree
multiplier. For the circuits that have their FDT values marked by
an asterisk, the decomposition times were too fast to be captured. A
conservative estimate of 10ms is assigned to these circuits for the
purpose of computing an “actual speedup” value. The AS values
for these circuits, in turn, are also conservative.

Although our decomposition system shares some similarities with
BDS, a direct comparison of the two systems may not be fair. Our
system implements only a subset of BDS’s decomposition algo-
rithms, albeit the fast ones, and does not perform sharing extrac-
tion. As a result, our decomposition system runs approximately ten
times faster than BDS even with logic folding disabled and pro-
duces slightly higher gate counts. Our contribution does not run
in opposition to the approaches taken by other decomposition sys-
tems. Logic folding can be applied to gain additional speedups in
decomposition systems where decomposition decisions are made
independently of fan-in and fan-out, as is done in BDS.

5. CONCLUSION
In this paper, a fast method for identifying logically equivalent

function blocks is presented. These ideas are applied to logic de-
composition to allow sharing of decomposition results among log-
ically equivalent function blocks.

Implementing these ideas against MCNC benchmarks and arith-
metic circuits, we have achieved very significant speedups in de-
composition time, making the folded decomposition approach at-
tractive for large, regular designs.

For future work, we anticipate that logic folding can also find
applications in other stages of logic synthesis, such as sweep and
eliminate. We are also investigating ways to increase the rate of
logic matching by using matching driven decomposition and vari-
able reordering techniques.

We expect that the theme of logic folding, to perform synthesis
operations in parallel, will find many more applications and will
help to meet the demands of increasing circuit sizes.

6. REFERENCES
[1] V. Bertacco and M. Damiani. The disjunctive decomposition

of logic functions. In1997 IEEE/ACM International
Conference on Computer-Aided Design, 1997.

[2] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. InIEEE Transactions on Computers, Vol.
C-35, No. 8, pages 677–691, 1986.

[3] J. Ciric and C. Sechen. Efficient canonical form for boolean
matching of complex functions in large libraries. In2001
IEEE/ACM International Conference on Computer Aided
Design, 2001.

[4] D. Debnath and T. Sasao. Fast boolean matching under
permutation using representative. InAsia and South Pacific
Design Automation Conference, ASP-DAC’992001
IEEE/ACM, pages 359–362, 1999.

[5] S. Ercolani and G. D. Micheli. Technology mapping for
electrically programmable gate arrays. In28th ACM/IEEE
Design Automation Conference, 1991.

[6] K. Karplus. Using if-then-else dags for multi-level logic
minimization. In
http://www.cse.ucsc.edu/ karplus/research.html, 1988.

[7] T. Kutzschebauch. Efficient logic optimization using
regularity extraction synthesis. InProceedings of the
International Conference on Computer Design, Austin, 2000.

[8] T. Kutzschebauch and L. Stok. Regularity driven logic
synthesis. InProceedings of the International Conference on
Computer-Aided Design, pages 439–446, San Jose, 2000.

[9] J. Mohnke, P. Molitor, and S. Malik. Application of bdds in
boolean matching techniques for formal logic combinational
verification. InInternational Journal on Software Tools for
Technology Transfer, pages 48–53, 2001.

[10] R. Rudell. Dynamic variable ordering for ordered binary
decision diagrams. InProceedings of the International
Conference on Computer-Aided Design, pages 42–47, 1993.

[11] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanaha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. Sangiovanni-Vincentelli. Sis: A system for
sequential circuits synthesis. Technical Report UCB/ERL
M92/41, Department of Electrical Engineering and
Computer Science, University of California, Berkeley, CA
94720, 1992.

[12] C. Yang, M. Ciesielski, and V. Singhal. BDS: A BDD-based
logic optimization system. InProceeding of the 37th Design
Automation Conference, pages 92–97, 2000.

[13] S. Yang. Logic synthesis and optimization benchmarks user
guide version 3.0. Technical report, Microelectronics Center
of North Carolina, P. O. Box 12889, Research Triangle Park,
NC 27709, 1991.

5

Decomp. Count Decomp. Time Speedup Matching
Circuit Time (ms) Gate Count FDC RDC FDT (ms) RDT (ms) ES AS PMSIFT (%) PMSIG (%)
C1355.blif 180 174 6 12 20 30 2.00 1.50 10.42 100.00
C1908.blif 260 446 44 172 40 120 3.91 3.00 1.14 100.00
C2670.blif 470 653 81 275 160 430 3.40 2.68 1.00 100.00
C3540.blif 700 972 145 386 170 610 2.66 3.58 22.68 76.16
C5315.blif 520 962 106 515 20 830 4.86 41.50 2.38 100.00
C6288.blif 750 2353 2 464 10 70 232.00 7.00 50.72 100.00
C7552.blif 860 1335 85 555 60 940 6.53 15.66 1.00 100.00
alu4.blif 27480 7947 1674 4850 14840 16110 2.90 1.08 - -
dalu.blif 920 1655 216 975 390 2210 4.51 5.66 1.06 37.56
des.blif 2130 2645 299 1442 300 2790 4.82 9.30 1.54 26.78
frg2.blif 1480 2112 321 1239 820 1970 3.86 2.40 1.00 25.94
i10.blif 1940 2062 447 994 560 1480 2.22 2.64 1.00 25.98
i8.blif 510 1480 91 1028 120 1860 11.30 15.50 1.04 100.00
i9.blif 280 551 42 295 30 130 7.02 4.33 11.04 100.00
k2.blif 3810 1823 172 976 100 360 5.67 3.60 32.74 100.00
pair.blif 8010 1076 155 477 150 5970 3.08 39.80 79.58 76.36
rot.blif 1100 706 271 389 530 540 1.44 1.01 1.00 100.00
t481.blif 2960 1949 461 989 900 1460 2.15 1.62 1.02 100.00
too large.blif 64970 10906 2798 6782 15920 24310 2.42 1.52 - -
vda.blif 1040 1007 81 536 20 120 6.62 6.00 100.00 100.00
x3.blif 740 885 196 590 260 1110 3.01 4.26 1.02 17.52
AVERAGE 5767 2081 366 1140 1687 3021 15.07 8.26 16.91 78.23

Table 1: Experimental results on MCNC benchmark.

Decomp. Count Decomp. Time Speedup
Circuit Time(ms) Gate Count FDC RDC FDT (ms) RDT (ms) ES AS
adder8.blif 80 40 1 8 *10 40 8.00 4.00
adder16.blif 100 80 1 16 *10 80 16.00 8.00
adder32.blif 100 160 1 32 *10 170 32.00 17.00
adder64.blif 150 320 1 64 10 360 64.00 36.00
adder128.blif 270 640 1 128 10 610 128.00 61.00
mul8.blif 110 320 1 48 *10 300 48.00 30.00
mul16.blif 340 1408 1 224 10 1140 224.00 114.00
mul32.blif 6120 5888 1 960 30 4930 960.00 164.33
mul64.blif 262930 24064 1 3968 70 20990 3968.00 299.85
AVERAGE 30022 3658 1 605 19 3180 605.33 81.57

Table 2: Experimental results on arithmetic circuits.

6

