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Abstract— The success of classical high level synthesis has been lim-
ited by the complexity of the applications it can handle, typically not large
enough to necessitate the departure from the industrial standard, register
transfer level design methodology. Recent advances in micro-architecture
model enabled the use of a stacked based controller, allowing complex al-
gorithms with multiple procedures to be implemented directly in hard-
ware. Nevertheless, design optimizations across procedure boundaries
have not been fully explored. In this paper, we address the problem of
interprocedural register allocation in the context of high level synthesis.
In contrast to a recently proposed interprocedural register allocation al-
gorithm, which processes an expensive, global, graph representation of
the conflict relation of all values to achieve near optimality, we introduce
a new method, calledcolor palette propagation(CPP). The key idea be-
hind our method, is to propagate the use of colors, whose number is sig-
nificantly smaller than the size of the conflict relation, across different
procedures. With a complexity comparable to intraprocedural register
allocation, we show that our method can scale to very large C programs.
For those benchmarks that can be handled by conventional global meth-
ods, our method produced nearly the same number of registers, while
providing an average speedup factor of 90.

I. I NTRODUCTION

High level synthesis (HLS) is the process of transforming a behav-
ioral description of an algorithm to an optimized register transfer level
(RTL) representation that implements the specified behavior [7, 13].
The HLS task is typically decomposed into subtasks of scheduling,
register allocation, functional unit binding, and interconnect binding.
The scheduling subtask determines the exact start control step for each
operation, subject to original data and control dependencies, and pos-
sibly by resource constraints. For a scheduled design, register alloca-
tion determines a minimum grouping of variables of disjoint lifetimes
to minimize register usage, and as a result, reduce target design area.

Research in HLS, however, has not been transformed into the in-
dustrial success envisioned by its pioneers. This is partly due to the
fact that the complexity of the applications the classic HLS techniques
can handle typically does not necessitate the departure from the in-
dustrial standard design methodology starting at the register transfer
level. Advances in HLS micro-architecture [2,3,16,20] have evolved
to the point [9] where, with a stacked-based controller and a shared
datapath, a complex behavior with multiple procedures can be directly
synthesized into hardware. This new capability also offers new op-
portunities in design optimizations across the procedure boundaries,
or interprocedural optimizations.

In this paper, we focus on the problem of interprocedural register
allocation. While numerous efforts have attempted for the register
allocation problem in the context of HLS, including [10, 15, 18, 22],
they only focus on register allocation within the basic block or proce-
dure boundary, orintraprocedural register allocation. With the tradi-
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  int top( int a, int b )
  {
    int l, r, p, q;
    if( a > b ) (1)
      l = left ( a, b ); (2)
    else
      r = right( a, a ); (3)
    p = a + 3; (4)
    q = p % a; (5)
    return q; (6)
  }

  int left( int m, int n )
  {
    int c;
    if( m > 7) (7)
      c = n; (8)
    else
      c = bottom( m, m ); (9)
    return c; (10)
  }

  int right( int x, int y )
  {
    x += bottom( x, y ); (11)
    return x; (12)
  }

  int bottom( int i, int k )
  {
    int f = i + k; (13)
    return ( f % 7 ); (14)
  }
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Fig. 1. Example of Interprocedural Register Allocation (a) Source
Code (b) Call and Conflict Graphs

tional micro-architectures that synthesize separate hardware modules
for different procedures [2, 3, 16, 20], intraprocedural register alloca-
tion can be directly employed. However, the implication here is that
variables in different procedures, even though not alive at the same
time, cannot be shared.

EXAMPLE 1. Consider the C program in Figure 1. Here proce-
duresleft and right can safely share registers for their internal
local variables. For example, when proceduretop calls right , only
variablea is live at the call site (indicated by the label of the corre-
sponding call graph edge). As a result, local variablesx and y of
right can share registers withb, p, andq. 2

With a modern micro-architecture [9], where the datapath is shared
between different procedures, intraprocedural register allocation can
still be used directly, provided that acalling conventionis used, such
that when control is transfered across different procedures, the neces-
sary register contents are saved, orspilled into memory. Such spilling
cost can be eliminated if an interprocedural register allocator is used.
In the context of HLS, Vemuri et al [21] proposed a solution that sig-
nificantly outperforms the naive solution based on procedure inlining.
However, their method cannotscale to large programs, since it re-
quires the construction of conflict relation among all variables in the
program, which could be prohibitively large.



In this paper, we propose a set of scalable, single-pass, interpro-
cedural register allocation algorithms, based on a technique called
color palette propagation(CPP). Our proposed algorithm achieves
a significant, theoretic complexity reduction. The complexity of the
algorithm in [21] isO(|V |2), whereV is the set of all values to be al-
located. Due to the large value of|V |, this complexity is significantly
larger than intraprocedural register allocation algorithm. In contrast,
the complexity of our algorithm is comparable to intraprocedural reg-
ister allocation, with only a modest overhead ofO(|CG|χ), where
|CG| is the number of call graph edges, andχ is the chromatic num-
ber, or the total number of register used. In practice, our algorithm
can achieve hundred time speedup for the benchmarks for which [21]
can complete.

The rest of the paper is organized as follows. Section II discusses
related works in the compiler and CAD communities. Section III pro-
vides a formal definition and representation of the interprocedural op-
timization problem. Section IV provides a detailed description of the
proposed allocation solution. Section V presents experimental results,
followed by a conclusion in Section VI.

II. BACKGROUND

The traditional register allocation problem in the compiler com-
munity is usually viewed as a graph coloring problem [14]. Equiva-
lently, register allocation problem can be viewed as graph partition-
ing problem ofcompatibility graphs, where edges, instead, connect
nodes whose objects’ lifetimes do not overlap. Compatibility graphs
are partitioned into cliques, each of which represent a single physical
register. In HLS, a similar approach is used for register allocation,
typically following the scheduling phase as part of the overall pro-
cess of resource sharing and binding [13]. The main difference is the
availability, in theory, of unlimited allocation resources, rather than
K registers, with the primary optimization goal of reducing the area
of the target design. An excellent review of past efforts can be found
in [21].

Most techniques reported limit their optimization scope to a sin-
gle procedure, or areintraprocedural. To adapt to multiprocedural
programs in software compilers, the simplest approach relies on the
spilling of registers that might be used by both a caller and a callee.
An alternative approach, referred to asinterproceduralregister alloca-
tion, would consider the requirements of each procedure and relations
among procedures of a target application, to minimize spilling and, as
a result, execution cost. Static interprocedural optimizations, such
as the allocators developed by Chow [5] and by Steenkiste and Hen-
nessy [19], usually rely on a bottom-up traversal of the call graph,
utilizing unused registers in callees when processing callers, shar-
ing registers between procedures that cannot be active at the same
time. Chow’s allocator spills variables based on a priority model,
while Steenkiste’s uses spilling when running out of registers in the
bottom up traversal, where spilling would hopefully occur for less fre-
quent calls at higher levels in the call graph. Apart from the need to
satisfy different requirements for software compiler, these bottom-up
approaches can be considered as special cases of our solution. With
the generalized application of our proposed CPP technique, the pro-
cedures can be colored in an arbitrary order determined by program
profiling, thereby achieving the spilling cost reduction not possible by
the bottom-up method [1].

In HLS synthesis, interprocedural register allocation could be even
more crucial. As no complex applications would avoid the use of pro-
cedure calls, the inability to efficiently share registers among specifi-
cation procedures would result in excessive waste of circuit resources.
A carrier-based interprocedural solution was recently proposed by Ve-
muri et al [21]. The proposed solution traverses the call graph in a
bottom-up fashion, using intraprocedural compatibility graph to build

a global compatibility graph, whose partitioning would return an op-
timized feasible allocation solution.

A main shortcoming of most interprocedural solutions in most com-
piler is accuracy [19]. At any call site within a procedure, all local
variables are assumed to be live, disallowing the possibility of sharing
between a caller and a callee, which could easily result in far-from-
optimal solution. Although [21] overcomes this weakness, the fact
that a global, probably dense, compatibility graph needs to be built
and partitioned poses a limiting factor for the scalability of the pro-
posed solution (an average speedup of only 7.0 was reported when
compared to a method based on inline expansion).

III. PROBLEM DEFINITION

The input of our problem is a sequential program consisting of a set
of procedures, each represented in the scheduled, static single assign-
ment form (SSA) [6]. In SSA, all register allocation targets, including
local and temporal variables, are assigned, ordefinedexactly once.
Therefore, operations (or instructions) in the program have a one-to-
one mapping to the set of values they define. In the text following, we
use the term value exclusively.

Starting with a scheduled SSA, liveness analysis can be performed
to identify live ranges for each SSA value. Liveness analysis is a tradi-
tional lattice-based data-flow analysis that identifies for each variable
the set of program points at which the current value of a variable may
be used before redefinition [14]. The application of liveness analysis
on SSA intermediate representation associates a separate live range
with each value, as opposed to traditional intermediate representation
where different values of a variable may be associated with the same
live range. Note the use scheduled control steps as the basic compo-
nents of live ranges, while traditional compilers use program points
instead.

Definition 1 gives a formal model of the problem input.

DEFINITION 1. The input to an interprocedural register alloca-
tion problem is a tuple〈P, V, CG, LR, O〉, where:

• P is the set of procedures;

• V is the set of values in P;

• CG : P × V × P is the call graph, or the set of call sites
{〈p, v, q〉}, wherep is the caller,v is the return value, andq is
the callee;

• LR : V 7→ 2N defines the live range of each value as the set of
control steps during which that value is alive;

• O : V 7→ P maps each value to the owner procedure where it
is defined.2

Within our framework, we can derive two types of conflicts;local
or intraprocedural conflicts, andglobal or interprocedural conflicts.
The traditional intraprocedural conflicts are defined in Definition 2.

DEFINITION 2. The set of local conflictsLC : V × V identifies
a relation such that〈u, v〉 ∈ LC ⇔ (O(u) = O(v)) ∧ (LR(u) ∩
LR(v) 6= �). 2

In other words, two variables of a single procedure conflict if their
live ranges, defined by the schedule, overlap. As mentioned before,
such conflicts are usually captured by conflict graphs, which become
the focus of intraprocedural register allocation, where allocation is
simply the solution of a graph coloring problem [4, 8, 10, 12, 18, 21].
Different coloring algorithms define differentelimination orders, the
order in which nodes are colored. The complexity of an algorithm
and the quality of a returned elimination order depends heavily on



interconnection properties of the conflict graph as well as the accuracy
of the coloring solution.

Interprocedural conflicts are defined in two steps;immediate global
conflicts (IGC), andglobal conflicts(GC), formally defined as fol-
lows.

DEFINITION 3. The set of immediate global conflictsIGC : V ×
V identifies a relation such that〈u, v〉 ∈ IGC ⇔ ∃〈p,w, q〉 ∈ CG :
p = O(u) ∧ p = O(v) ∧ 〈u, w〉 ∈ LC. 2

DEFINITION 4. The set of global conflictsGC : V × V identifies
a relation such that〈u, v〉 ∈ GC ⇔ (〈u, v〉 ∈ IGC) ∨ (∃w ∈ V :
〈u, w〉 ∈ IGC ∧ 〈w, v〉 ∈ GC). 2

IGCs exist between a caller value and callee values if the caller
value is live at a call site to the callee. On the other hand, GCs cover
the transitive property of interprocedural conflicts such that a caller
value live at a call site conflicts with all transitive callee values. Note
that this transitive property is not applicable to local conflicts. This in-
terprocedural conflict information is partially built during the process
of liveness analysis of each procedure. As liveness analysis proceeds,
a record is kept of the set of values live at the current control step.
If the current control step contains a procedure call instruction, the
current set of live values are saved for further processing.

Now, we can formally define a legal interprocedural register allo-
cation as follows:

DEFINITION 5. Interprocedural register allocation is a function
RA : V 7→ N such that∀u, v ∈ V : 〈u, v〉 ∈ LC ∨ 〈u, v〉 ∈
GC =⇒ RA(u) 6= RA(v). 2

a
b

wv

n

l

m

CLS( f1, x, f2 )

f1( )

f2( )

f3( )

a = ...

... = a

b = ...

... = b

f1( ) f2( ) f3( )

v = ...

... = v

w = ...

... = w

(a)

l = ...
... = l

m = ...
... = m

n = ...
... = n

(b)

CLS( f2, z, f3 )

x = f2()

y = f2()

z = f3()
CLS( f1, y, f2 )

Fig. 2. An Example of Interprocedural Conflict Graphs (a) a simple
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Definitions listed above are best illustrated through an example.

EXAMPLE 2. Consider the representation of the simple program
shown in Figure 2 (a). Live ranges of valuesv andwwithin f2 clearly
overlap, therefore〈v, w〉 ∈ LC. On the other hand, valuea of f1 ,
which is live at a call site off2 , conflicts with every value inf2 in-
cludingv andw, therefore〈a, v〉, 〈a, w〉 ∈ IGC ⊆ GC. Similarly,
〈v, l〉, 〈v, m〉, 〈v, n〉 ∈ IGC. Using the transitive property of inter-
procedural conflicts, we also conclude that〈a, l〉, 〈a, m〉, 〈a, n〉 ∈
GC. Remaining conflicts can be derived in the same manner. In-
terprocedural register allocation is a value-to-register mapping that
would respect all the conflicts defined inLC andGC.

For convenience, we also define the concept ofcall live sets(CLS),
which identifies the set of live values at each call site.

DEFINITION 6. A call live setCLS : CG 7→ V is a set of values
such that∀u ∈ CLS(p, v, q), w : O(w) = q, then〈u, w〉 ∈ GC. 2

For convenience, sometimes we omit theu in the CLS(p, u, q)
in our illustrations. When the context is clear, and useCLS(p, q)
instead.

EXAMPLE 3. In the simple program of Figure 2,CLS(f1, x, f2) =
{a}, CLS(f1, y, f2) = {b}, andCLS(f2, z, f3) = {v, w}.

In the rest of the paper, we illustrate the local and global conflicts
using an interprocedural conflict graph represented as follows. In this
graph, each valuev ∈ V is associated with a node, each local con-
flict 〈u, v〉 ∈ LC is represented with an edge, and interprocedural
conflicts are associated with special edges connectingCLS(p, w, q)
with the set of all values of the calleeq identifying an immediate
global conflict between each valueu ∈ CLS(p, w, q) and each value
v ∈ V : O(v) = q. In Figure 2 (b), each node represents a value, and
local conflicts are represented by solid edges, and immediate global
conflicts are represented by dotted edges connecting value sets. Non-
immediate global conflict edges, such as the leftmost dotted edge, are
omitted for simplify the figure.

IV. COLOR PALETTE PROPAGATION-BASED INTERPROCEDURAL

REGISTERALLOCATION

A key idea behind our interprocedural register allocation algorithm
is to avoid the construction of the massive global conflict graph, while
leveraging the mature intraprocedural register allocation algorithm
as much as possible. We achieve this goal by using a technique
called Color Palette Propagation(CPP). Instead of directly propa-
gating across procedures the coloring constraints in terms of conflict
relation , CPP propagates constraints in terms of the available colors,
calledpalette, which is much more compact. This strategy is respon-
sible for the scalability of our algorithm.

In the sequel, we start by modifying the traditional intraprocedural
register allocation algorithm so that it can accommodate the palette
constraints. We will then present three interprocedural register allo-
cation algorithms, each following a different traversal order of the call
graph, to derive the palette constraints and drive the intraprocedural
register allocation.

A. Constrained Intraprocedural Register Allocation

The intraprocedural register allocation algorithm is no different
from the traditional coloring algorithm, except that it usespallette,
the set of available colors for each value in the program, as an addi-
tional constraint. As shown in Algorithm 1, in takes as inputs the pro-
cedurep to color, its local conflict relationLC, and a coloring order
σ. It updates relevant register assignment incolor, and also records
the set of used colors inused. According to the order given byσ, it
colors one value at a time. To color a valuev, it first removes from its
palette all the colors that have been used by its colored neighbors. It
then picks an available color from the palette, and updatescolor and
used accordingly.

B. Top-Down Interprocedural Register Allocation

One strategy is to color the procedures in the program in a top-
down fashion by traversing the call graph is a topological order. We
assume that this order is given byΣ as the input to Algorithm 2. The



ALGORITHM 1. Intraprocedural register allocator.

var palette : V 7→ 2N ; 1
var used : P 7→ 2N; 2
var color : V 7→ N; 3

4
intraColor = func ( p ∈ P , LC : V × V , σ : [ ]V ) { 5

foreach ( v ∈ σ ) { 6
foreach ( w ∈ V : 〈v, w〉 ∈ LC ∧ w <σ v ) 7

palette(v) = palette(v) \ {color(w)}; 8
color(v) = palette(v)[0]; 9
used(p) = used(p) ∪ {color(v)}; 10
} 11

} 12

ALGORITHM 2. Top-down interprocedural register allocation.

var top : P 7→ 2N ; 13
14

interColorTopDown = func ( Σ : [ ]P ) { 15
var LC : V × V ; 16
var σ : [ ]V ; 17
var CLS : CG 7→ 2V ; 18

19
foreach ( p ∈ P ) 20

top(p) = >; 21
22

〈LC, CLS〉 = livenessAnalysis(); 23
foreach ( p ∈ Σ ) { // Σ is in topological order of CG 24

σ = buildElimOrder( p, LC ); 25
26

foreach ( v ∈ V : O(v) = p ) 27
palette(v) = top(p); 28

intraColor( LC, σ, palette ); 29
30

foreach ( 〈p, v, callee〉 ∈ CG ) 31
propagateTopDown( p, callee, CLS(p, v, callee) ); 32

} 33
} 34

propagateTopDown = func ( p : V, callee : V, live : 2V ) { 35
top(callee) = top(callee) ∩ top(p); 36
foreach ( v ∈ live ) 37

top(callee) = top(callee) \ {color(v)}; 38
} 39

algorithm starts by first performing standard liveness analysis to ob-
tain the local conflictLC, and the call live setCLS. For each pro-
cedurep, a coloring orderσ is derived using an algorithm such as
Chaitin’s [4]. We associate each procedurep with a palettetop(p),
representing the palette constraint propagated from its ancestors. This
palette is initially full. This palette constraint for the procedure is
translated to the constraint for each value contained in procedurep,
before the intraprocedural coloring algorithm is invoked. Once the
values of the current procedure are colored, the palette constraints are
propagated to itsimmediatecallees. At each call site〈p, v, callee〉,
the algorithm callspropagateTopDown, which first intersects the
palette ofcallee from that of the callerp, as every color unavail-
able to a caller is also unavailable to a callee due to the transitive
nature of GCs. The colors used by the corresponding call live set
CLS(p, v, callee) is then removed from the palette ofcallee, to
cover IGCs. The topological order of procedure precessing, ensures
that all callers of a procedurep are processed beforep, andp would
have an appropriate palette that takes into account all the global con-
flicts defined in Definition 4.

Note that at any point in time, only the local conflict graph of a
single procedure is processed, a crucial property that would have a
major effect on the scalability and efficiency of our proposed solution.

EXAMPLE 4. A detailed example of top-down CPP is shown in

Figure 3. Given thatf1 is the root procedure, it has a full color
palette,top(f1) = >, and the conflict graph nodes are colored with
no restrictions. When the palette is propagated tof2 , color 1 is
marked unavailable, as CLS(f1 , f2 ) = {a} is colored using color
1. Similarly, color 3 is marked unavailable on the palette propagated
to f3 . In case off4 , its palette would be that off2 , its only parent,
with colors 2 and 4 marked unavailable as CLS(f2 , f4 ) = {c, d}
is colored using those colors. Finally, the palette off5 would be the
intersection of its parents palettes, as colors unavailable to parents
are unavailable to children, with color 2 and 3 marked unavailable,
as CLS(f2 , f5 ) = {d, e} is colored using colors 2 and 3. Color 1
is unavailable for two reasons; CLS(f3 , f5 ) = {g} is colored using
color 1, also color 1 is unavailable to a parent,f2 in this case.
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Fig. 3. Top-Down Color Palette Propagation

C. Bottom-Up Interprocedural Register Allocation

Another strategy is to color the procedures in the program in a
bottom-up fashion by traversing the call graph in a reversed topologi-
cal order. This order is available in Algorithm 3 asΣ.

As in the case of top-down algorithm, the bottom-up algorithm
starts by liveness analysis, during which the set of local conflicts,LC,
is generated and the set of call live sets,CLS, is identified. Thanks
to the traversal order, when a procedurep is processed,palette al-
ready contains all the necessary palette constraints imposed by all
its callees. The intraprocedural coloring algorithm is invoked after
a coloring order is found. Once the values of the current procedure
p are colored, the interprocedural conflict relations are propagated
to its callers, again through CPP: for each call site〈caller, v, p〉,
propagateBottomUp is invoked such that theused(p), or the colors
used byp and its descendents, is removed fromused(caller), and in
addition, is removed from the palettes of all values in the call live set
CLS(caller, v, p).

Note again that here we only need to process a local conflict graph.
Also note in particular that under the bottom-up algorithm, the palette
defined byused(p) of any procedurep is guaranteed to be a contin-
uous sequence[0, M ]. Since the set can be characterized by a single
numberM , the implementation can besimplifiedto avoid the set op-
eration shown in Algorithm 3.

A major difference between the top-down and the bottom-up prop-
agation is in the way they handle multiple incoming (caller) and out-
going (callee) palettes, respectively. In case of top-down propagation,
the palette constraints come from the colors used in the call live sets



ALGORITHM 3. Bottom-up interprocedural register allocation.

interColorBottomUp = func ( Σ : [ ]P ) { 40
var LC : V × V ; 41
var σ : [ ]V ; 42
var CLS : CG 7→ 2V ; 43

44
〈LC, CLS〉 = livenessAnalysis(); 45
foreach ( p ∈ Σ ) { // Σ is in inverse topological order ofCG 46

σ = buildElimOrder( p, LC ); 47
48

colorIntra( p, LC, σ ); 49
foreach ( 〈caller, v, p〉 ∈ CG ) 50

propagateBottomUp( p, caller, CLS(caller, v, p) ); 51
} 52

} 53
propagateBottomUp = func ( p, caller : V, live : 2V ) { 54

used(caller) = used(caller) ∪ used(p); 55
foreach ( v ∈ live ) 56

palette(v) = pallette(v) \ used(p); 57
} 58

59

of all ancestors, and are applied to all values in the procedure. On the
other hand, in case of bottom-up propagation, the palette constraints
come from the colors used in all descendants, and are applied to val-
ues in the corresponding call live sets.

EXAMPLE 5. A detailed example of bottom-up CPP is shown in
Figure 4. Given thatf4 and f5 are leaf procedures, they have full
color palettes, and their conflict graph nodes are colored with no re-
strictions. At this stage,used(f4) = {1, 2, 3} and used(f4) =
{1, 2}. When processingf3 , CLS(f3 , f5 ) = {g} has a color palette
with colors 1 and 2 marked unavailable, which are the colors used in
f5 . Note that in bottom-up propagation values of different, possibly
overlapping, CLS’s could have different color palettes. For example,
CLS( f2 , f4 ) = {c, d} has a color palette with colors 1, 2, and 3
marked unavailable due to their use inf4 , while CLS(f2 , f5 ) =
{d, e} has a color palette with colors 1 and 2 marked unavailable.
The same scenario applies tof1 , where CLS(f1 , f2 ) = {a} has a
color palette with colors 1 to 5 marked unavailable, while CLS(f1 ,
f3 ) = {b} has a color palette of with colors 1 to 3 absent. Finally,
remaining nodes of any procedure that do not belong to any CLS can
be colored freely as long as local conflicts are respected.
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D. Algorithm Complexity

In this section, we derive the complexity of the overhead, with re-
spect to the intraprocedural register allocation algorithm, that our in-
terprocedural algorithms introduce. Note that thelivenessAnalysis,
buildElimOrder in our algorithms are exactly the same as the in-
traprocedural register algorithm. OurintraColor is slight differ-
ent due to the use of palette constraints, but this difference does not
change the complexity. Our overhead therefore comes only from
palette propagation.

propagateTopDown has a time complexity ofO(χ), whereχ
is the chromatic number. This is first due to the fact that the set in-
tersection in line 36 is linear to the set size, which isχ. Since the
cardinality of any call live set is bounded byχ, and the member in-
clusion operation in line 39, is ofO(1), the loop in 38-39 is also of
O(χ). Therefore, the overhead for our top-down interprocedural reg-
ister allocation algorithm is ofO(|CG|χ).

Based on the same argument, the simplified implementation of
propagateBottomUp, is of O(χ). Therefore, the overhead of our
interprocedural register allocation algorithm, where the simplified im-
plementation is valid, is guaranteed to be ofO(|CG|χ).

It is important to note that the chromatic numberχ is not a large
number in practice. It is reasonable to assume thatχ is a constant, in
which case the complexities of our algorithms becomesO(|CG|) for
top-down and bottom-up. In other words, the interprocedural over-
head is onlylinear to the number of call sites in the program. In
practice, this overhead is only a small faction of the time spent on
intraprocedural register allocation. This is in sharp contrast with the
previous approach based on global compatibility graph, which effec-
tively is of O(|V |2), due to the dense nature of the global conflict
graph. This performance gap will be affirmed by the empirical results
of Section V.

V. EXPERIMENTAL RESULTS

In this section we present experimental results comparing runtime
and quality of results of our approach compared to the global solution
using benchmarks from the integer suite in SPEC2000 [17] and Medi-
aBench [11] to illustrate the scalability and efficiency of the proposed
solution.

We have implemented the proposed solution in C using appropriate
data structures as part of a complete HLS suite. The experiments were
performed on a Sun Blade 150 workstation with 550 MHz CPU and
128MB RAM, running on Solaris 8 Operating System.

Throughout our experiments, we assume a sequential execution of
target benchmarks for allocation results to serve as a reference for
alternative allocation solutions.

Table I, Figure 5, and Figure 6 show experimental results on SPEC2000
and MediaBench benchmarks. For each benchmark we list program
statistics, namely number of lines of C code and number of proce-
dures as measures of the complexity of the analyzed programs. We
report results of our CPP-based top-down and bottom-up implemen-
tations in comparison with a global interprocedural optimization, to
show the speedup in execution times and quality of results in terms
of the number of obtained registers. We also report the overhead time
over mere intraprocedural register allocation. All reported execution
times in Table I are in seconds, and NA indicates the inability to report
results due to scalability limitation of the global solution.

From the reported results we can draw the following observations:

• CPP-based solutions are scalable, capable of processing bench-
marks as large as vortex of 52,637 lines of code.

• The advantage of global optimization on tested benchmarks did
not exceed an average of 7.9% of the total number obtained
registers.



Benchmark Global Top-Down Bottom-Up

Package Appl LOC #Procs Total Overhead Total Speedup Overhead Total Speedup
Time Time Time Time Time

SPEC2000

bzip2 4665 63 108.01 0.18 16.62 6.50 0.02 16.46 6.50
crafty 19478 104 NA 11.45 573.89 NA 0.23 562.67 NA
parser 11391 297 NA 1.97 54.73 NA 0.07 52.83 NA
twolf 19756 167 NA 4.88 939.19 NA 0.16 934.47 NA
vortex 52637 600 NA 51.29 472.41 NA 0.33 421.45 NA
vpr 16984 281 NA 2.68 45.83 NA 0.07 43.22 NA

MediaBench

epic 3339 26 4.24 0.02 1.16 3.66 0.01 1.15 3.69
mpeg2d 8680 113 1275.30 0.15 6.49 196.50 0.04 6.38 199.89
mpeg2e 6801 95 3308.32 0.08 21.77 151.97 0.05 21.74 152.18
pgp 28065 256 NA 1.34 33.14 NA 0.05 31.85 NA
rasta 6951 65 108.94 0.38 32.65 3.34 0.02 32.29 3.37

TABLE I
INTERPROCEDURALREGISTERALLOCATION RUNTIME FOR SPEC2000AND MEDIABENCH BENCHMARKS
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Fig. 5. Interprocedural Register Allocation Results for SPEC2000
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• In addition to the near optimal results, with respect to global
optimization, our bottom-up CPP-based solutions provided and
average speedup of 90 on MediaBench benchmarks when com-
pared to the global implementation, not to mention the bench-
marks that could not be handled by the global solution. Note
that the speedup is in fact higher if we ignore the contribution
of liveness analysis to both results.

• Top-down and bottom-up implementations are almost equiva-
lent in runtime and quality of results, with a slight edge of the
bottom-up implementation mainly due to the absent of frag-
mented color palettes.

• The overhead of interprocedural register allocation when com-
pared to intraprocedural is in fact negligible (< 1% for the
bottom-up solution).

VI. CONCLUSION

In this paper we argued the need for interprocedural register allo-
cation in the context of HLS, pointed out the shortcomings of tradi-
tional solutions, and proposed a new interprocedural register alloca-
tion algorithm based on a new conflict propagation method. Based
on our study, we conclude that the proposed solution is effective, as
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Fig. 6. Interprocedural Register Allocation Results for MediaBench
Benchmarks

it produces near-optimal results, and is scalable, as it can complete in
seconds even for benchmarks that are much larger than those usually
considered as candidates for HLS.
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