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ABSTRACT
Pointer analysis, a classic problem in software program analysis, has emerged
as an important problem to solve in design automation, at a time when com-
plex designs, specified in the form of C code, need to be synthesized or veri-
fied. However, precise pointer analysis algorithms that are both context and
flow sensitive (FSCS), have not been shown to scale. In this paper, we report
a new solution for FSCS analysis, which can evaluate the program states of
all program points under billions of different calling paths. Our solution
extends the recently proposed symbolic pointer analysis (SPA) technology,
which exploits the efficiency of Binary Decision Diagrams (BDDs). With
our new strategy of problem solving, called superposed symbolic computa-
tion, and its application on our generic pointer analysis framework, we are
able to report the first result on all SPEC2000 benchmarks that completes
context sensitive, flow insensitive analysis in seconds, and context sensitive,
flow sensitive analysis in minutes.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.3.4 [Programming Languages]:
Processors – compilers, optimization

General Terms
Algorithms, Languages, Experimentation

Keywords
Pointer analysis, binary decision diagrams, High-level synthesis

1. INTRODUCTION
An exciting implication of the systems-on-chip (SOC) technology is the

convergence of hardware and software: we have seen not only an increasing
migration of functionality from custom hardware implementation to soft-
ware implementation for better flexibility, but also a shift of custom hard-
ware development from hardware description language synthesis (such as
VHDL/Verilog) to software language synthesis (such as C/C++) [17, 30,
18, 12, 24]. The latter trend, while compelling, cannot materialize unless
efficient synthesis and verification methods are available for all constructs
frequently used in software programs. Unfortunately, the most well un-
derstood computation model in the hardware community, the concurrent
finite state machines (CFSM), does not match well with even a modestly
sized C program, which is better modeled as a push-down state machine
with potentially infinite states. An often-cited difficulty [8] is the pointer
construct, which manifests in any C program with decent complexity, typi-
cally processing and manipulating a large amount of data using dynamically
allocated memories. Pioneering efforts [21, 22, 19, 27] have shown that
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a prerequisite for the movement of behavioral synthesis from C/C++ lan-
guages is the solution of the pointer analysis problem, which conservatively
estimates the runtime pointer values at compile time. It has also become
apparent that for hardware synthesis to be worthwhile, the pointer analysis
algorithm has to be precise to offer better performance than pure software
implementation, and for hardware synthesis from C to be worthwhile, the
pointer analysis algorithm has to scale to large programs to necessitate the
departure from the mature HDL-based design methodology.

The quest for better precision and scalability for the pointer analysis
problem has seen two decades of history in the software community. Nu-
merous attempts have been made, the majority of which can be categorized
according to two criteria: flow sensitivity and context sensitivity. A flow
insensitive (FI) algorithm ignores the order of statements, whereas a flow
sensitive (FS) algorithm takes control flow into account and performs the
so-called strong update, or the killing of relevant old states whenever a
scalar assignment occurs. A context insensitive (CI) algorithm does not
distinguish the different calling paths of a procedure, whereas a context
sensitive (CS) does so such that the spurious states generated by the mix-
ture of actuals from different calling paths to a common procedure can be
eliminated. Scalable solutions have been reported for the flow insensitive
analysis [13], or partial context sensitive analysis [16, 11, 10, 5], but not
flow sensitive analysis. The largest program reported by any sound FSCS
algorithm, to the best of our knowledge, is limited to a few thousand lines of
C code [9, 26]1. The difficulty mainly stems from the fact that in principle,
the program states at each program state of a procedure under potentially
billions of different calling contexts have to be represented, tracked and
computed; by far exceeding the capacity of conventional algorithms. The
theoretical study reveals that the flow sensitive analysis problem for even a
single procedure program can be a PSPACE-complete problem [4].

In this paper, we report a new FSCS analyzer, based on the symbolic
pointer analysis technology recently proposed by Zhu [28], and Berndl et. al. [1].
The essence of this technology is to represent the point-to relation using
its characteristic Boolean function, which in turn can be represented and
manipulated using Bryant’s Binary Decision Diagrams (BDDs) [2]. The
technology has recently been shown to scale for FICS analysis [29, 25].
It has also been shown that it can alternatively be abstracted in the famil-
iar paradigms of relational database [15], or datalog [25]. We extend this
direction with several new contributions.

• Superposed symbolic computation: We propose a new problem
solving strategy, which generalizes the technique responsible for the
success of recently proposed BDD-based pointer analysis algorithms.
This strategy is applied consciously to solve the FSCS analysis prob-
lem.

• Flow and context sensitive symbolic analysis framework: We es-
tablish a unique, elegant framework under which all pointer analysis
algorithms with varying precisions can be implemented and com-
pared. Employing the superposed symbolic computation paradigm,
our framework can effectively perform context sensitive and/or flow
sensitive pointer analysis the same way as context and flow insensi-
tive analysis.

• Symbolic flow analysis algorithm: as an enabler for our framework
to perform flow sensitive analysis, we devise a surprisingly simple
algorithm to pre-calculate the whole program reaching definition in-

1The readers are referred to an detailed survey by Hind [14].



formation. This algorithm computes information impossible to com-
pute and represent in the classic dataflow analysis framework, and
avoid the repeated traversal of control flow graph during the fixed
point iterations in the solving phase.

Our analyzer is the first symbolic pointer analysis algorithm capable of
FSCS analysis. It is also the first analyzer, among all previously reported,
that can perform FSCS analysis for all SPEC2000 benchmarks in minutes,
and FICS analysis in seconds. Both results are reported with full context
sensitivity, which for large benchmarks, the context count can exceed one
hundred billions.

The rest of the paper is organized as follows. In Section 2, we intro-
duce the superposed symbolic computation paradigm. In Section 3, we
formulate the problem by showing how the relevant program information
as well as the point-to information can be modeled symbolically. We de-
scribe our analysis framework in Section 4 and our flow analysis algorithm
in Section 5. We give experimental results in Section 6 before we draw
conclusions.

2. SUPERPOSED SYMBOLIC COMPUTA-
TION

The key strategy advocated in this paper, called superposed symbolic
computation, has first been used in [28] under the context of pointer anal-
ysis. In this section, we formalize it as a general strategy for solving com-
binatorial problems, in the hope that the same strategy can be extended to a
broader scope of problems. The notation and foundation algorithms estab-
lished in this section will be used throughout the rest of the paper.

Consider a discrete domain D. Since any discrete set is isomorphic to an
integer set, without loss of generality, we limit our attention to the discrete
domain V = [0, n − 1], where n = |V | is the cardinality of V . It is
well known that any set in a discrete domain can be mapped to a Boolean
function under the binary number system.

DEFINITION 1. Let V = [0, n − 1] be a discrete domain and X =
{0, 1}m be an m-dimensional Boolean space, where m = dlog2ne. The
characteristics function λS

X
: X 7→ {0, 1} of a set S ⊆ V under X is

defined as

λS
X(〈x0, ..., xm−1〉) =

�
0, if � j xj2j /∈ V

1, if � j xj2j ∈ V .

The characteristics function is simply a set membership test. The im-
portance of this construction is two-fold: First, traditionally manipulated as
collections of values, sets can now be manipulated as Boolean functions. In
fact, set union and intersection can be manipulated as Boolean disjunction
and conjunction respectively. Second, when the characteristic functions are
represented by Bryant’s Binary Decision Diagrams (BDDs), the sizes of
discrete sets are no longer proportional to their cardinality. Quite often, a
large set corresponds to a small BDD, which can be exploited to develop
scalable algorithms. Algorithms that manipulate BDDs are commonly re-
ferred to as symbolic algorithms, for their treatment of Boolean functions
as “first-class values”.

For convenience, we use the shorthand iX to denote the special charac-

teristics function λ
{i}
X

, called minterms, for sets constructed from a single
element. The set of all minterms form the basis of the family of charac-
teristics functions: They are complete in the sense that any characteristics
function can be represented as Boolean disjunction of a set of minterm;
they are orthogonal in the sense that the Boolean conjunction of any dis-
tinct minterms are 0.

The immediate implication is that any graph E ⊆ V × V , where V
is the set of vertices, can be represented by its characteristics function,
called symbolic graph, using two Boolean spaces V0 and V1, to encode
the sources and sinks of the graph edges respectively.

EXAMPLE 1. Consider a graph with vertex set V = [0, 5], and edge
set E = {〈0, 1〉, 〈0, 2〉, 〈1, 3〉, 〈2, 4〉, 〈3, 5〉, 〈4, 5〉}. The corresponding
symbolic graph is
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With the symbolic graph representation, graph algorithms can be con-
structed exclusively using first-order logic operators, which include the fol-
lowing.

• ¬x: Boolean negation;

• x ∨ y: Boolean disjunction;

• x ∧ y: Boolean conjunction;

• ∃Vi.[x]: Existential quantification, which eliminates variables in
space Vi;

• x|Vi→Vj
: Variable substitution, which substitutes variables in space

Vi with the corresponding variable in space Vj .

Symbolic graph representation has been widely used in the CAD com-
munity, most notably in formal verification. Here the state transition graph
is represented symbolically by a Boolean relation, called the transition re-
lation. A breakthrough result [6, 3] was the efficient implementation of the
image computation operator, which as shown in Line 8 of Algorithm 1,
performs combined Boolean conjunction and existential quantification. Im-
age computation is equivalent to finding the successors of a set of vertices,
which when applied repeatedly, can lead to the efficient enumeration of all
reachable vertices (states) from the starting vertex (state).

EXAMPLE 2. Consider the execution of Algorithm 1 on the graph in
Example 1. In the first iteration, the set of all successors of vertex 0 are
enumerated by image computation, leading to 1V0

∨ 2V0
, which corre-

sponds to set {1, 2}. In the second iteration, the successors of set {1, 2}
are enumerated, which gives {3, 4}. Note that unlike conventional algo-
rithms where successors of each vertex are enumerated one at a time, the
successors of {1, 2} are enumerated collectively. This process continues
and it takes 3 symbolic steps to enumerate 5 reachable vertices. 2

ALGORITHM 1.

reachable = func( 1
g : V0 × V1, 2
) : V0 { 3

var r, i : V0; 4
5

i = 0V0
; 6

do { 7
i = (∃V0.[g ∧ i])|V1→V0

; 8
r = r ∨ i; 9
i = i ∧ ¬r; 10
} while( i 6= � ) ; 11

return r ; 12
} 13

ALGORITHM 2.

closure = func( 14
g : V0 × V1 , 15
) : V2 × V0 { 16

var r, i : V2 × V0; 17
18

i = equal(V2 , V0); 19
do { 20

i = (∃V0.[g ∧ i])|V1→V0
; 21

r = r ∨ i; 22
i = i ∧ ¬r; 23
} while( i 6= � ) ; 24

return r ; 25
} 26

The application of this powerful concept has so far been primarily lim-
ited to the model checking of finite state machines. To generalize it as a
strategy to solve a wider scope of combinatorial problems, we first note that
any structured information is in essence a relation, or a Cartesian product of
different sets. As such, the conventional data structures used to capture real
world data can be canonically represented by BDDs, after the proper con-
struction of discrete domains and their encodings. For better readability, all
expressions in our presented algorithms are typed by relations, or products
of named Boolean spaces (a set can be considered as a degenerate relation),
which in practice are simply BDDs.

In addition, we employ the key concept of superposition, which is re-
sponsible for the theoretical efficiency of quantum computers. In quantum
computing [20], different problems are encoded and superposed into a sin-
gle physical entity, such as light, and processed collectively by quantum
devices. It is a recurring pattern in practice that a large problem is solved
by decomposing it into many instances of smaller problems: all problem
instances could be solved by the same method, however the number of
instances could be exponentially many. We propose the use of BDDs as
the “physical entity” for superposition. We first represent each problem
instance symbolically, for example, capturing a graph problem by the cor-
responding symbolic graph. We then introduce a domain of problem in-
stances, as such all instances can be combined into a single Boolean func-
tion. In the end, we devise symbolic algorithms to solve the superposed
problems collectively.



We illustrate this strategy by the graph transitive closure problem, which
can be considered as many instances of graph reachability problems, solved
by Algorithm 1. Here the number of problem instances coincides with the
number of vertices, since in essence we try to find the set of reachable ver-
tices for each vertex. It is instructive to see how Algorithm 1 is slightly
modified into Algorithm 2. Here we use the Boolean space V2 to encode
the problem instances. As such, the result we are seeking, the set of reach-
able vertices with respect to each vertex, is superposed into a relation in
V2 × V0, which can also be visualized as a graph. This relation is initial-
ized by a special relation in Line 19, which can be considered as a graph
with each vertex pointing to itself. The superposed image computation op-
erator in Line 21, is hardly changed from the original one: we simply leave
the instance information untouched.

EXAMPLE 3. Consider finding the transitive closure of the graph in
Example 1 using the method in Algorithm 2. Initially, i represents a graph
{〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 4〉, 〈5, 5〉}. In the first iteration, all depth-
one closure edges are enumerated using the superposed image computation
operator, which gives {〈0, 1〉, 〈0, 2〉, 〈1, 3〉, 〈2, 4〉, 〈3, 5〉, 〈4, 5〉}, corre-
sponding to the original graph. In the second iteration, all depth-two clo-
sure edges are enumerated, which gives {〈0, 3〉, 〈0, 4〉, 〈1, 5〉, 〈2, 5〉}. Fi-
nally, all depth-three closure edges are enumerated, which gives {〈0, 5〉}.
It is striking to note that comparing to Algorithm 1, this algorithm takes
exactly the same number of steps to enumerate 11 closure edges. 2

The potential efficiency of superposed symbolic computation comes from
the fact that different problem instances may share similar problem struc-
ture, which can be automatically identified by BDDs. As such, computa-
tion can be cached and shared across different instances at a large scale. As
pointed out by [28], this follows the same principle of dynamic program-
ming.

3. PROGRAM FORMULATION
To apply the superposed symbolic computation paradigm to the pointer

analysis problem, we need to model the relevant program information, as
well as the information to solve for, in symbolic relations. We first identify
the relevant domains from which the useful relations can be constructed.

Table 1: Summary of the domains and spaces.
Domains Spaces Description
B B0, B1, B2, B3 Block
F F0 Field
P P0, P1 Path
R R0, R1, R3 Rank

In Table 3, we define several discrete domains, each of which is assigned
with one or more Boolean spaces. Domain B corresponds to the set of
all memory blocks, which includes either named blocks, such as globals,
parameters, locals, or anonymous blocks, such as heap allocated objects,
return values at the caller (denoted as rcallee), return values at the caller
(denoted as rcaller), and φ blocks to handle intermediate representations in
the static single assignment form (SSA) [7]. Domain F corresponds to the
set of record fields, each of which is identified by a number representing the
offset of the field relative to the origin. Domain P represents the set of all
memory access paths through record fields in F . Domain R, which carries
the set of program points, deserves special attention. For FICI analysis,
the domain is empty. For FICS analysis, the domain corresponds to set
of different contexts, each of which corresponds to a unique calling path
in the call graph. For FSCS analysis, the domain corresponds to the set
of all program points under different call paths. Note that each program
statement with a side effect, or altering the program state, contributes one
program point under one context. The major challenge of pointer analysis
comes from the size of R. The structure of ranks will be discussed in more
detail in Section 5.

The goal of pointer analysis is to compute the program state relevant to
pointers, which can be represented as a graph, called the point-to graph.
The vertex set of the point-to graph is simply B. An edge 〈u, v〉 in the
point-to graph indicates that under the program state, u may point to v. In
our analysis, we superpose program states at all program points together,
which leads to the superposed program state s : R0 × B0 × F0 × B1,
stating that ∀〈r, u, f, v〉 ∈ s, memory block u may point to memory block
v through field f at program point r.

EXAMPLE 4. Consider the C program in Figure 1 (a), which is mod-
ified from [16]. Here B = {g, a, h1, h2, p, q, r, t, f, h, rcallee}, where
g, a, h1, h2 are global blocks, and p, q, r, t, f, h are local blocks. The pro-
gram states computed for the end of the program, are shown in Figure 1
(b), (c), (d) for different analyses respectively. It can be observed that FSCS
leads to the smallest point-to graph, or the most precise result. 2

Unfortunately, the program state information cannot be directly derived
from the program source. The difficulty comes from indirect memory deref-
erences. For example, an assignment in the form p->f1->f2 = q-
>f3->f4 does not give any direct hint on its effect of program state, since
the value of p and q are not known. To capture assignments with indirect
dereferences, we model each assignment as a tuple in (B3 × P0) × F0 ×
(B4 ×P1). By superposition, we can thus derive the superposed transfer
function t : R0 × (B3 × P0) × F0 × (B4 × P1) from the source pro-
gram, taking into account of both explicit assignments, as well as implicit
assignments due to parameter passing and return value.

EXAMPLE 5. Consider an assignment p->f1->f2 = q->f3->f4
at program point r. Then 〈r, lr, lp, f, rr, rp〉 ∈ t, where lr corresponds
to block p; lp corresponds to the access path ->f1, f corresponds to the
field f2, rr corresponds to the block q, and rp corresponds to the access
path f3->f4. 2

Each access path in P is a unique, acyclic sequence of field accesses.
We use the path relation l : P0 × F0 × P1 to precisely define the relation
between different paths. It is important to note that an access path within a
loop may lead to infinite sequences. In the past, this has been handled by
limiting the length of the sequence, called K-limiting. Our method relies on
the use of SSA representation: since each φ instruction becomes a distinct
memory block, it effectively breaks the access cycle.

A central task of flow sensitive pointer analysis is to differentiate pro-
gram state by statement execution order, and eliminate spurious state by
performing strong update. For the former, the control flow graph for each
procedure is needed. A control flow graph defines the precedence relation
between program points. We can therefore represent the whole program
control flow graph symbolically as c : R0×R1. For the latter, we can cap-
ture all known assignments to scalars as the kill information k : B0 × R1.

The symbolic pointer analysis problem can then be formulated as the
following.

PROBLEM 1. Given the superposed transfer function t : R0 × (B2 ×
P0) × F0 × (B3 × P1), the access path relation l : P0 × F0 × P1, the
control flow graph c : R0 ×R1, the kill information k : B0 ×R1, find the
superposed program state s : R0 × B0 × F0 × B1.

4. ANALYSIS FRAMEWORK
While both the control flow graph c and the kill information k are avail-

able and they are sufficient to help derive flow sensitive program states,
we opt not to use them directly in our solver. The primary reason is that
any solver for pointer analysis, including ours, may need many iterations to
converge into a fixed point solution. In each such iteration, the control flow
graph has to be traversed for the entire program, which by itself is a very
expensive operation.

We instead propose to use the superposed reaching dataflow f : B0 ×
(R0 × R1), capturing the set of all reachable program points in R1 for
each new state generated at program point in R0 for a memory block in
B0. Note that f, superposed with respect to each program point and each
memory block, contains a rich set of information: It is interprocedural –
the relation can be defined between any pairs of program points across dif-
ferent procedures. It is context sensitive – we believe it is important for
flow sensitive analysis to be context sensitive as well, otherwise the correct
statement ordering will quickly be corrupted. It can capture strong update
– states generated at one program point x for a particular block b may not
reach another program point y, even though it is reachable through the con-
trol flow graph, as long as it can be proved the state related to the block b
will be killed on every path from x to y. We describe how to compute f in
Section 5.

Given the superposed program state, we can derive the superposed state
query q : R0 × (B3 ×P0)×B0, stating that ∀〈r, u, p, v〉 ∈ q, the access
of block u via access path p may give the value of v at program point r. We
can then compute the program state information by solving the following
recurrence equations.



char *g, a, h1, h2; 1
void main() { 2

char *p, *q; 3
S0: alloc( &p, &h1 ); 4
S1: p = getg( &q ); 5
S2: g = &a; 6

} 7
8

char* getg( char** r ) { 9
char **t; 10

S0: t = &g; 11
if( g == NULL ) 12

S1: alloc( t, &h2 ); 13
S2: *r = *t; 14
S3: return *r; 15

} 16
17

void alloc( char** f, char*h ) { 18
S0: *f = h; 19

} 20

(a) C source code
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Figure 1: A walk-through example.

s = apply(s, q, t, f) (1)

q = query(s, q, l) (2)

Given the current state query q, or the currently known memory deref-
erence values, (1) computes the new state by applying the transfer function
t, in other words, finding the effects of the assignments it captures. Given
the current program state s, (2) derives the state query values for memory
blocks via relevant access paths. Note that here each step is computed with
the superposed symbolic computation paradigm: For (1), in contrast to the
conventional algorithms where assignments and their effects on other pro-
gram points are evaluated one at a time, we compute them collectively with
Algorithm 3. For (2), in contrast to the conventional algorithm where the
memory dereference values are found one at a time, and one program state
at a time, we compute it collectively with Algorithm 4.

As shown in Lines 10–11 of Algorithm 3, superposed transfer function
application can be accomplished by first symbolically composing t and q.
In other words, for each occurrence of memory access 〈b, p〉 in t, we sub-
stitute it with the corresponding values defined in q. For flow sensitive anal-
ysis, the transfer function application only yields new states at the program
points where they are generated. The new state needs to be propagated to
all other reachable program points. As shown in Line 12 of Algorithm 3,
this can be accomplished by composing the state generated earlier, and the
precomputed reaching dataflow f .

As shown in Algorithm 4, superposed state query can be accomplished
by a procedure similar to the transitive closure algorithm shown in Algo-
rithm 2. The superposed image computation operator in Line 22 effec-
tively implements the following inference rule: if 〈r, b3, p0, b0〉 ∈ q, if
〈r, b0, f, b1〉 ∈ s, and if 〈p0, f, p1〉 ∈ l, then 〈r, b3, p1, b1〉 ∈ q. This
inference rule is applied repeatedly until a fixed point is reached.

5. SYMBOLIC FLOW ANALYSIS
For FSCS analysis, the distinguishable program points consist of three

components: the procedure in which it is defined, the statement (with side-
effect), or site at which it is defined, and the calling context under which it
is defined. Let the set of all procedures be M , the set of all sites be S, and
the set of all contexts be C, then R = M × C × S.

EXAMPLE 6. Consider the program in Example 4. We have M =
{main, getg, alloc}. We also have C = {0, 1}: procedures main and
getg have only context 0, whereas procedure alloc has context 0, which
corresponds to the calling path main → alloc, and context 1, which cor-
responds to the calling path main → getg → alloc. For sites, we have
S = {0, 1, 2, 3}. 2

ALGORITHM 3. Superposed Transfer Function Application.

apply = func( 1
s : R0 × B0 × F0 × B1 , 2
q : R0 × (B2 × P0) × B0 , 3
t : R0 × (B2 × P0) × F0 × (B3 × P1), 4
f : R0 × B0 × R1 5
) : R0 × B0 × F0 × B1 { 6

var q’ : R0 × (B3 × P1) × B1; 7
var g, r : R0 × B0 × F0 × B1; 8

9
q′ = q|B2→B3,P0→P1,B0→B1

; 10
g = ∃B2, P0, B3, P1.[t ∧ q ∧ q′]; 11
r = (∃R0.[g ∧ f ])|R1 7→R0

; 12
return s ∨ g ∨ r ; 13
} 14

ALGORITHM 4. Superposed State Query.

query = func( 15
s : R0 × B0 × F0 × B1 , 16
q : R0 × (B2 × P0) × B0 , 17
l : P0 × F0 × P1, 18
) : R0 × (B2 × P0) × B0 { 19

var p : R0 × (B2 × P0) × B0; 20
do { 21

p = (∃B0, F0, P0.[q ∧ s ∧ l])|B1→B0,P1→P0
; 22

q = q ∨ p; 23
p = p ∧ ¬q; 24
} while( p 6= � ) ; 25

return q ; 26
} 27



Both the intraprocedural control flow graph and the intraprocedural kill
information can be trivially computed by the frontend. The context infor-
mation, called the symbolic invocation graph, can be efficiently constructed
in polynomial time by the method reported in [29]. Combining both infor-
mation, it is easy to obtain the interprocedural control flow graph c and kill
information k.

We now consider how to compute the reaching dataflow. While it is
seemingly similar to the reaching definition analysis, the required informa-
tion is extremely difficult to compute in the traditional dataflow framework.
The difficulty comes from the fact that it is impossible to predict the po-
tential blocks to be assigned at a program point where the target address is
indirectly dereferenced (otherwise there would be no need for pointer anal-
ysis). A naive algorithm might have to enumerate all memory blocks, and
perform dataflow analysis for each of them.

With the superposed symbolic computation paradigm, we can compute
the required information collectively using a modified transitive closure al-
gorithm in Algorithm 2. The modification is needed to take care of strong
update due to the kill information k. We can accomplish this by filtering the
new dataflow discovered in each iteration by the kill information. However,
this procedure is not efficient for the following reason: For a large program,
the depth of the control flow graph, d, which roughly corresponds to the
length of the longest execution trace, can be extremely long. The procedure
devised in Algorithm 2 expands one level of at a time. Therefore, the num-
ber of symbolic steps needed to complete the algorithm is exactly the depth
the control flow graph. This can be unacceptably slow.

We instead devise a symbolic algorithm in Algorithm 5. At each iter-
ation, we perform the superposed image computation against the current
closure, instead of the original graph (Line 37). This way, if the depth of
the graph already explored is k, then one iteration later the depth of the
graph explored will be 2k. As a result, we need at most dlog2de number of
symbolic steps to complete. This strategy proves to be much more effective
for long programs.

ALGORITHM 5. Superposed reaching dataflow analysis.

flow = func( 28
c : R0 × R1, k : B0 × R1 29
) : B0 × (R0 × R1) { 30

var i, f : B0 × (R0 × R1); 31
var m : B0 × (R1 × R2); 32

33
f = i = c; 34
do { 35

m = i|R0→R1,R1→R2
; // mirroring 36

i = (∃R1.[m ∧ f ])|R2→R1
; // superposed image computation 37

i = i ∧ ¬k; // filtering with k 38
i = i ∧ ¬f ; // keep only the change 39
f = f ∨ i; 40
} while( i 6= � ) ; 41

return f ; 42
} 43

EXAMPLE 7. The computed reaching dataflow with respect to the block
g in the program in Example 4 is visualized in Figure 1 (e). An edge 〈u, v〉
in this graph indicates that if block g is assigned at program point u, then it
can reach program point v. It is interesting to note that the program point
〈main, 0, 2〉 is dangling – no assignment to g can be propagated to here,
precisely because g is assigned at this program point, or g is killed. 2

In practice, we refine Algorithm 5 with more engineering considerations
to improve performance. One effective method is to first compute the in-
traprocedural reaching dataflow, then the interprocedural reach dataflow.
Another effective method concerns the encoding of the rank. Efforts can be
made on encoding that leads to smaller BDD sizes during the flow compu-
tation.

6. EXPERIMENTAL RESULTS
Our symbolic pointer analysis tool is implemented in C, and makes use

of a compiler infrastructure to translate programs in C/Java/Verilog, into

Table 2: Benchmark characteristics and BDD sizes.

Benchmark #lines #contexts intra inter state query
flow flow

164.gzip 9074 3530 15271 166028 4370 8029
175.vpr 16984 179905 31008 418916 3719 15302

300.twolf 19756 5538 96231 1076776 2570 16338
255.vortex 67211 9.20E+10 58121 2307623 9687 102476

176.gcc 222183 1.18E+10 237681 13233784 315703 425278

an intermediate representation (IR). The analysis is performed in several
passes. In the setup pass, the IR is traversed to generate the whole program
call graph, and the control flow graph of each procedure. The maximal
strongly connected components (SCC) of the call graph, as results of re-
cursive procedure calls, will also be identified. The procedures in the same
SCCs are collapsed into a common node. In the intra-procedural analysis
pass, The IR is traversed again, following the topological order of the now
acyclic call graph. It is during this step that all relations needed for the
analysis, are constructed with BDDs.

Our empirical evaluation mainly concerns the scalability of the follow-
ing passes, which work exclusively in the Boolean domain. In other words,
they manipulate BDDs without referencing any information in the IR. They
include an optional flow analysis pass, if the requested analysis is flow sen-
sitive, and a solving pass where the program state is computed. We use
Somenzi’s publicly available CUDD package [23] for BDD implementa-
tion. The transfer functions for the C library functions are precomputed and
applied as necessary.

6.1 Benchmark Characteristics
We conducted experiments on a wide range of benchmarks available to

us. The experiment was performed on a Sun Blade 150 workstation with
550 MHz CPU and 128MB RAM, running on Solaris 8 Operating System.

In this paper, we report results only for large benchmarks in SPEC2000.
The characteristics of the reported benchmarks in this paper are shown in
the first two columns of Table 6.2. They ranges from 9K lines of C code for
gzip to 200K lines of C code for gcc. The largest context size, is recorded
for the vortex benchmark with 9E10, which is close to 100 billion.

6.2 Space
The space usage is best illustrated by the BDD sizes, or the numbers of

BDD nodes, of different relations. Column 4-7 list BDD sizes of four re-
lations: the intraprocedural flow, the interprocedural flow, state and query,
all collected from our FSCS analyzer. As can be expected, the BDD sizes
in general grow with the complexity of the benchmark. In particular, the
sizes of the interprocedural flow information do dominate. This has caused
noticeable slow down of analysis speed as compared to flow insensitive
analysis, suggesting future improvement might profit from reducing inter-
procedural flow size.

6.3 Runtime
With the common analysis framework described earlier, we report com-

parative results for FICI, FICS and FSCS analyses. All analyses are also
field sensitive, in other words, all different elements of a record is distin-
guished. Figure 2 gives the combined runtime of the flow analysis pass and
the solver pass, all in seconds.

We draw several observations from the runtime result. First, our FICS
analyzer is extremely fast. In fact, all benchmarks can be analyzed in sec-
onds. Most notably is the gcc benchmark, for which our solver completes
in 10 seconds. This is in contrast with the state-of-the-art solvers [11, 10,
5], which completes in several minutes. Second, our FSCS analyzer is sig-
nificantly slower. However, other than gcc, all benchmarks complete under
one minute. The gcc benchmark completes in 453 seconds. To the best of
our knowledge, it is the first time that FSCS analysis result on benchmarks
of these sizes have been reported.

6.4 Precision
It has been established by many previous works that the context sensi-

tivity and flow sensitivity contribute to the analysis precision. However,
a comprehensive comparison has rarely been reported. In this section, we
show the precision results of all types of analysis. Following the convention
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Figure 2: Run time for FICI, FICS, and FSCS analyses.
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Figure 3: Precisions for FICI, FICS, and FSCS analyses.

of [9], the metric we use is the average point-to size of indirect references at
each program point. For the purpose of comparison, the results are normal-
ized against the point-to sizes reported by the FICI analysis, the most com-
monly used, but the least precise type of analysis. Consistent with results on
smaller benchmarks published previously, the exact precision improvement
varies from benchmark to benchmark, but in general flow sensitive analysis
consistently improves precision.

7. CONCLUSION
In this paper, we demonstrate a technique of pointer analysis that leads

to a new milestone of scalability for FSCS analysis. Based on our study,
we conclude that the key strategy proposed in this paper, namely the pre-
computation of reaching dataflow information, together with our symbolic
pointer analysis framework, provides a valid path towards a scalable solu-
tion to flow and context sensitive pointer analysis. We believe this strategy
can be useful for program analysis problems in general.
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