
Retargetable Binary Utilities

Maghsoud Abbaspour, Jianwen Zhu
Electrical and Computer Engineering

University of Toronto, Ontario M5S 3G4, Canada
jzhu@eecg.toronto.edu

ABSTRACT
Since software is playing an increasingly important role in system-
on-chip, retargetable compilation has been an active research area
in the last few years. However, the retargetting of equally impor-
tant downstream system tools, such as assemblers, linkers and de-
buggers, has either been ignored, or falls short of meeting the re-
quirements of modern programming languages and operating sys-
tems. In this paper, we present techniques that can automatically
retarget the GNU binutils tool kit, which contains a large array of
production-quality downstream tools. Other than having all the ad-
vantages enjoyed by open-source software by aligning to a de facto
standard, our techniques are systematic, as a result of using a formal
model of instruction set architecture (ISA) and application binary
interface (ABI); and simple, as a result of leveraging free software
to the largest extent.

Categories and Subject Descriptors
D.3.4 [Processors]: Retargetable compilers

General Terms
Design, Languages

1. INTRODUCTION
New products in consumer electronics and telecommunications

are characterized by increasing functional complexity and shorter
design cycle. It is generally conceived that the complexity problem
can be best solved by the use of system-on-chip (SOC) technol-
ogy. And the design cycle problem can be best solved by pushing
functionality as much as possible to software. However, the con-
ventional wisdom here that “software is cheaper than hardware”, is
not necessarily true unless the software development platform, typ-
ically includes operating system, compiler, assembler, linker, and
debugger are readily available. Unfortunately, all these tools de-
pend intrinsically on the processor architecture, which in an SOC
context is usually designed to adapt to the application. The devel-
opment platform has to beretargettedto the new processor archi-
tecture and this task is by no means trivial.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002,June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

The field of retargetable compilation has evolved to the point
where an architecture description language (ADL) can be used to
model a processor micro-architecture, and a compiler can be gener-
ated automatically from such an architecture specification. While
research in compiler generation is becoming mature, few efforts
shed light on the automatic generation of other tools. This is partly
due to the fact that these “downstream” tasks are perceived to be
trivial engineering issues compared to optimizing compiler. While
this perception has been persistent enough to be reflected in all
computer science curriculum, it is no longer valid. Take the linker
as an example, while the traditional linker does nothing but thread-
ing the object files together, the modern linker has to handle fea-
tures such as shared libraries and dynamic linking as a result of
modern operating system, static constructors and templates as a
result of modern programming languages such as C++ and Java,
and even inter-procedural optimization as a result of modern com-
piler theory. The most recent version of Free Software Founda-
tion’s binutils package, which delivers exactly the downstream
development tool suite, has a daunting size of 250k lines of C code.

Neither the manual development nor the automatic generation
of software with such complexity is reasonable to fit into an SOC
development cycle. Most companies chose toport, or reuse the
majority of an existing package, while manually rewriting the ar-
chitecture dependent part of it. The de facto standard of such a
package is the GNUbinutils package, partly due to the fact
that it is designed to be “portable”, partly due to the fact that it is
free software and accessible to everyone in the world. While this
package has been ported to virtually every known processor in the
world, it still has to be manually ported to every new processor
ever created. Unfortunately, the black magic involved and the skill
required to hack into this package is mastered only by a limited
group of people who, by postulation [1], can be gathered all over
the world and still packed in one room.

A tool that can automatically port this mature, robust and stan-
dard package then seems both ideal and feasible: the architecture-
dependent part of the package is relatively small after all. It is
not trivial however, since the interface between the architecture de-
pendent and independent part is neither cleanly defined nor well
documented.

In this paper, we focus on techniques that leads to the automatic
porting of the GNUbinutils package, which includes a suite of
downstream software development tools such as assembler, linker,
library manager, profiler, object file examiner and manipulator and
C++ dismangler.

The contribution of this work is three fold: First, we present a
formal, abstract model of instruction set architecture (ISA) to cap-
ture the architectural information required for retargetting. While
this overlaps the goal of ADLs, it is a complementary effort since

we can now formulate retargetting algorithms without concerning
about the ADL syntax. Our tool can hence be trivially ported to
compiler suites with different ADLs. Second, we introduce a for-
mal model of application binary interface (ABI) as a new element
of architectural model. While ABI is one of the essential informa-
tion for retargetting, it hasn’t been a subject of architecture speci-
fication in previous work. Third, to strike a balance between sim-
plicity and standard compatibility, we have developed an automatic
technique that can generate an implementation of obscure, poorly
documented interface from a cleanly defined ISA and ABI model.

In the sequel, we will first review the related work in the area
of retargetable compilation in Section 2. We will then describe
a typical binary package, highlighting its architecture-dependent
components. We will then present our model of ISA and ABI that
is relevant to binary utility retargetting in Section 4 and Section 5
respectively. Finally, we describe our retargetting tool in Section 6
with experimental result.

2. RELATED WORK
The first step towards retargetable compilation is the establish-

ment of architectural model and the definition of corresponding
architectural description languages (ADLs). The earliest forms of
ADLs are various code generator generators (CGGs) [2]. The CGGs
typically use tree pattern specifications to drive the generation of
the instruction selector. However, such specification is often tied
to a particular compiler implementation, for example, a particular
intermediate representation.

Architecture descriptions for embedded processors, for example,
the DSP processors and application-specific instruction set proces-
sors (ASIPs), have also received intense interest in the recent years.
MIMOLA [3] used a hardware description language to describe the
structural model of the processor, code selection and register allo-
cation can then performed by pattern matching. Since ILP can be
concisely represented using a structural model, some recent work
adopted a similar approach. For example, CHESS [4], [5] and
MESCAL [6] use a graph-based model, while EXPRESSION [7]
uses a network of abstract components including those that capture
memory hierarchy. Other efforts, including Flexware [8], ISDL [9]
and LISA [10], take a more traditional approach.

Many retargetable compiler suite generates assembler by merely
“threading” C code segment attached to ADL instruction specifica-
tion. Among the few exceptions that achieved a reasonable amount
of automation for downstream tools, the New Jersey machine-code
toolkit [11] can generate instruction encoding and decoding rou-
tines from an abstract ADL specification. However, its ADL does
not allow a complete specification of ABI, and leave important is-
sues such as the relocation closure organization to the application,
which is not automated at all. While CHESS [5] and LISA [12] can
generate assembler and linker, the detail of the retargetting pro-
cess is not yet described and it is not clear if the generated tool
can achieve the same level of versatileness as GNUbinutils in
terms of multiple object format and modern programming and OS
feature support. Moreover, other useful binary tools, such as library
and object file manipulators, are not supported.

3. GNU BINARY UTILITIES
Binary Utilities are tools that generate, examine and manipulate

object files. The GNUbinutils package contains two support-
ing libraries,bfd andopcodes , as well as the following tools: the
assemblergas is used to convert assembly code into object file; the
link editor ld is mainly used to group object files into executable;
the library managersar andranlib are used to create and modify

object archive files;objdump, nm, strings are used to ex-
amine the content of object files;objcopy, strip are used to
manipulate the content of object files;c++filt is used to perform
C++ name dismangling;gprof is used for program profiling.

While all tools are apparently architecture dependent,binu-
tils is designed to be portable by limiting the architecture depen-
dent function within three components, namely, the BFD library,
which all tools depend on; theopcodes library, which bothgas
andobjdump rely on, andgas itself. In addition, the BFD and
opcodes library is used by another important GNU package, the
GDB debugger. In the sequel, these three components are described
in detail.

3.1 Binary File Descriptor Library (BFD)
GNU’s BFD library is a package which contains a set of common

routines to manipulate object files [13]. Due to historical reasons,
object files present with different formats, called the binary file for-
mat (BFF). The most commonly used BFFs area.out , COFFand
ELF. The general structure of an BFF contains four major parts:
a file headercontaining general information as well as pointers to
other parts of the file, a number ofsectionsholding code and raw
data,relocation tablesandsymbol tableinformation.

Since the processing of object files depends on different operat-
ing system, CPU target, and BFF configuration, the BFD package
is designed with two layers: the frontend and backend. the unique
frontend provides the interface to the application so that the differ-
ences between different CPU/OS/BFF configuration are abstracted
away. The backend layer provides the concrete implementations
for each of the CPU/OS/BFF configuration.

One difficulty in using the BFD library is its complexity. The
library itself is very large, the number of functions offered in the
front end are exceptionally many. The BFD front end was designed
in mind to allow the programmer to be able to retrieve all type of
information about any BFF, at least the existing ones. The BFD
library can be integrated with disassemblers, decompilers, debug-
gers, etc. Due to this generality and hence its bulkiness, it is diffi-
cult to use it without spending a great deal of time learning how to
use it. Perhaps because it is too general, it often contains informa-
tion that is not needed for a particular application.

3.2 opcodes Library
For each target CPUmycpu, theopcodes library contains two

C files: mycpu-dis.c andmycpu-opc.c . While the former
provides the implementation for instruction disassembling, the lat-
ter constructs a data structure that describes the assembler syntax
as well as other information for instructions, each of which is iden-
tified by a unique mnemonic.binutils defines a unique API
for what is supposed to be implemented inmycpu-dis.c . On
the other hand, the data structure definedmycpu-opc.c is rather
arbitrary. The current GNUbinutils distribution contains dif-
ferent representation for different targets.

3.3 GNU Assembler
The GNU toolgas is in fact a family of assemblers.gas is

primarily intended to assemble the output of a C compiler for use
by the linker. It can be configured to produce several alternative
object formats and for several targets.

The assembler performs three tasks. In the first step, it reads the
input file and performs preprocessing. In the second step, it parses
and assembles each input line. While the processing of most direc-
tives and all expressions are common to all targets, the processing
of some directives and all instructions are target-specific. In this
step it also inserts relocations for unresolved symbols during the

second pass. In the third step, it writes the object files including
symbolic and debugging information. For each targetmycpu, gas
provides a C filetc-mycpu.c to implement the second step. In
addition to other target-dependent code,tc-mycpu.c will also
access BFD andopcodes libraries, which themselves are target-
dependent. While the third step is both target-dependent and BFF-
dependent, all the dependency is in fact encapsulated in the BFD
library and therefore the implementation can be shared by all tar-
gets.

4. ISA MODELING
Before we can automatically generate the target-dependent parts

of the binary utilities, a model that can be used to capture the in-
struction set of the target architecture is needed. To abstract away
the irrelevant architecture information and the syntactical variances
of different ADLs, we use theformal algorithm notation(FAN) to
specify our model. The type system of FAN is based on sets, which
allows us to formulate retargetting algorithms naturally with the
architectural model.

As shown in Definition 1, our model of an ISA is characterized
by stores, fields and instructions.

DEFINITION 1. An ISA architectural model1 is a member of

ISA= tuple { 1
S : 〈〉ISAStore; 2
F : 〈〉ISAField; 3
I : 〈〉ISAInstrn; 4
} 5

where S is a set ofstores, F is a set offields and I is a set of
instructions.

4.1 Stores
The stores of an ISA model provide an abstraction for register

files contained in a target. As shown in Definition 2, a store is char-
acterized by its granularity, its size, and the set of cells it contains.
The first two definesize number of physical storage cells, each
of which has a bitwidth ofgran . The latter defines a set of log-
ical storage cells, each of which occupies a continuous range of
physical cells.

DEFINITION 2. A store is a member of set

ISAStore= tuple { 6
gran : Z; 7
size : Z; 8
cells : 〈〉ISACell; 9
} 10

11
ISACell= tuple { 12

index : Z; 13
size : Z; 14
} 15

4.2 Fields
Fields in our ISA model provide an abstraction to concepts such

as opcodes and addressing mode. Fields are essential for defining
instruction formats, which can be shared by many instructions.

1In FAN, we use the notation〈〉A to represent a power set ofA, and
the notation[]A to represent the set of all sequences over elements
of A.

As shown in Definition 3, A field is first characterized by its
kind , which can either be an opcode (OPC), or a register (REG),
or a unsigned immediate value (IMM), or a signed immediate value
(SIMM), or a symbol (SYM). size defines the number of bits the
field occupies within an instruction.argno associates the field
to a particular operand of the instruction behavior.dest signals
if the field is the destination of the instruction.reloc indicates
the relocation type of the field, which we will define in detail in
Section 5.

DEFINITION 3. An field is a member of set

ISAField= tuple { 16
kind : {OPC,REG, IMM,SIMM,SY M}; 17
size : Z; 18
argno : Z; 19
dest : B ; 20
reloc : Reloc; 21
} 22

4.3 Instructions
As shown in Definition 4, an instruction in our ISA model is

characterized by its behavior, its assembly format and binary en-
coding format.

DEFINITION 4. An instruction is a member of set

Instrn = tuple { 23
behavior : 〈〉Signature; 24
asmFormat : string; 25
binFormat : string; 26
} 27

Every instruction is associated with abehavior, or computational
task that transform values. Because behaviors are architecture-
independent and hence can be shared by different architectural de-
scriptions, we decide not to model the detail of the behavior in the
ISA model, instead, behaviors appear as signatures. Because it is
very hard to find a canonical behavioral representation, each in-
struction is associated with a set of signatures, each of which is
one representation of the abstract behavior. Similar to a method
signature of an object oriented language, a signature in our model
consists of a class type, an identifier and a sequence of argument
types. Since the behavior of an instruction is needed only for code
selection or simulator generation, we omit the detail of instruction
behavior modeling in this paper.

asmFormatspecifies the assembly syntax of an instruction. While
a general way of syntax specification needs a LEX/YACC type of
BNF formalism, it is an overkill for this case. We choose instead
a more intuitive approach based on usage: assembly syntax of an
instruction is specified by a series of patterns starting with a com-
mon mnemonic. Another benefit of this approach is that the same
specification can be used by the retargetable compiler for assem-
bly emission. In each assembly pattern, instruction destinations
or operands, called theassembly fields, are identified by the spe-
cial character% for register fields, and# for immediate or symbol
fields. These special characters are followed by a number: when the
number value is zero, it indicates that the corresponding field is a
destination; when it is non-zero, it indicates that it is an operand and
the number specifies the argument number. The argument number
can be used by the compiler to emit appropriate register, immediate
or symbol values. It can also be used by the assembler to associate
the operands to appropriate binary fields.

binFormatspecifies the binary format of an instruction. The bi-
nary encoding of an instruction consists of a sequence ofbinary
fields. Each field may be annotated inside the parenthesis pair with
some additional information. For example, an opcode field is an-
notated with the opcode value of the instruction.

5. ABI MODELING
An ABI defines a binary interface for application programs that

are compiled and packaged for a specific OS running on a spe-
cific hardware architecture. An ABI is a protocol between different
software development tools, so that software created in different
languages and compiled by different compilers can still be linked
and interoperate with each other. An ABI is also a protocol be-
tween the application and the OS, so that the OS loader can cre-
ate the correct process image from an executable file and possibly
many shared object files. Rather than presenting a complete ABI
model, in this paper we focus only on part of the ABI that is rele-
vant to binary utilities and describe the modeling ofrelocationand
procedure linkage table(PLT). An architecture description can be
specified using this model and serve as the input to our automatic
porting tool.

Since software programs are compiled separately into object files,
each object file may contain data or instructions that reference sym-
bols defined elsewhere. Even for the reference of local symbols, the
actual address of these local symbols cannot be resolved at com-
pile time since the enclosing sections can be moved to arbitrary
locations at link or load time. The process of calculating the cor-
rect values of these external or local symbol references, called the
relocated values, and adjusting the bits within the corresponding
instructions or data, called therelocation field, is called relocation.
Typically, an object file contains an array ofrelocation entriesin a
special relocation section, each of which points to the instruction
or datum to be relocated. Depending on different BFF used, the
relocation entry may contain arelocation type, which designates
the calculation method of relocated values, and arelocation ad-
dend, which is an integer-sized storage that can help store useful
information for the calculation in case the relocation field of the
instruction or datum to be relocated is not large enough to hold the
information. While the exact source of this information may vary,
it is always an integer value that will be added to relocated value,
and hence the name.

To support shared object and dynamic linking, position-independent
code (PIC) whose instructions need no relocation should be sup-
ported. The linker usually creates aglobal offset table(GOT) that
contains pointer to all the global data that the executable file ad-
dresses. GOT entries can be considered as global data themselves
and therefore any reference to them need relocation. Similarly, the
linker may also create a procedure linkage table (PLT) for proce-
dure symbols. Due to the need for lazy evaluation, that is, not pro-
viding procedure addresses until they are called for the first time,
each PLT entry contains a series of architecture-dependent instruc-
tions that call routines defined in the dynamic linker.

The calculation of the relocated value involves the following pa-
rameters, which are either information kept in the relocation field,
or relocation entry, or values maintained by applications such as
linker or loader:

• A: the addend, which can either be stored in the relocation
field of the instruction or datum to be relocated, or the relo-
cation entry;

• B: the base address at which a shared object is loaded into
the memory during execution;

• GOT: the address of the global offset table;

• G: the offset into the global offset table at which the address
of the referenced symbol resides during execution;

• L: the place (section offset or address) of the procedure link-
age table entry for the reference procedure symbol;

• P: the place (section offset or address) of the instruction or
datum to be relocated;

• S: the value of the referenced symbol.

The relocation model for ABI specification can thus be charac-
terized by the calculation method as well as the identification of
relocation field. Definition 5 gives our simple model of relocation
type, which is on the other hand a complete one due to the specialty
of the relocation calculation expression.

DEFINITION 5. A relocation type is a member of

Reloc= tuple { 28
id : Z; 29
expCode : Z; 30
rightshi f t : Z; 31
bitsize : Z; 32
bit pos : Z; 33
complain : {IGNORE,BIT,SIGN,UNSIGNED}; 34
} 35

where id is an unique integer identifier, expCode= 〈C7,C6, ...,C0〉
encodes the expressionΣiCiPi, with P7, ...P0 being−GOT,A,B,G,
GOT,L,−P,S respectively; rightshi f t represents the number of bits
at the right side of the calculatedΣiCiPi that should be dropped;
bit pos and bitsize represents the bit position as well as the size of
the relocation field within the instruction or datum to be relocated;
complain encodes the action to take when specific type of overflow
occurs.

Figure 1 shows an example of relocation expression.
Example 1 shows the specification of SPARC relocation types.

EXAMPLE 1. SPARC relocation description.

none = 〈0,0x00,0,0,0, IGNORE〉; // none 36
sparc8 = 〈1,0x41,0,8,0,BIT〉; // S+A 37
sparc16 = 〈2,0x41,0,16,0,BIT〉; // S+A 38
sparc32 = 〈3,0x41,0,32,0,BIT〉; // S+A 39
sparcDISP8 = 〈4,0x43,0,8,0,UNSIGNED〉; // S+A-P 40
sparcDISP16 = 〈5,0x43,0,16,0,UNSIGNED〉; // S+A-P 41
sparcDISP32 = 〈6,0x43,0,32,0,UNSIGNED〉; // S+A-P 42
sparcWDISP30 = 〈7,0x43,2,30,0,UNSIGNED〉; // S+A-P>>2 43
sparcWDISP22 = 〈8,0x43,2,30,0,UNSIGNED〉; // S+A-P>>2 44
sparcHI22 = 〈9,0x41,10,22,0, IGNORE〉; // S+A>>10 45
sparc22 = 〈10,0x41,0,22,0,BIT〉; // S+A 46
sparc13 = 〈11,0x41,0,13,0,BIT〉; // S+A 47
sparcLO10 = 〈12,0x41,0,10,0, IGNORE〉; // (S+A)&0x3ff 48
sparcGOT10 = 〈13,0x10,0,10,0, IGNORE〉; // G&0x3ff 49
sparcGOT13 = 〈14,0x10,0,13,0,BIT〉; // G 50
sparcGOT22 = 〈15,0x10,10,22,0, IGNORE〉; // G>>10 51
sparcPC10 = 〈16,0x43,0,10,0, IGNORE〉; // (S+A-P)&0x3ff 52
sparcPC22 = 〈17,0x43,10,22,0,BIT〉; // S+A-P>>10 53
sparcWPLT30 = 〈18,0x46,2,30,0,UNSIGNED〉; // L+A-P>>2 54
sparcCOPY = 〈19,0x00,0,0,0, IGNORE〉; // none 55
sparcGLOBDAT= 〈20,0x41,0,0,0, IGNORE〉; // S+A 56
sparcJMPSLOT= 〈21,0x00,0,0,0, IGNORE〉; // none 57
sparcRELATIVE= 〈22,0x60,0,0,0, IGNORE〉; // B+A 58
sparcUA32 = 〈23,0x41,0,0,0, IGNORE〉; // S+A 59

+S−P+L+G +GOT+B+A

1 11000 0

==> S+A−P

=0x43

−GOT

0

Figure 1: Relocation calculation expression.

6. RETARGETTING BINARY UTILITIES
As shown in Figure 2, our retargetting tool, calledrbinutils ,

starts by compiling a target specification in an ADL into an archi-
tecture database. We have developed ageneral purposeIntellectual-
Property (IP) specification language, called Babel, to capture the
non-functional aspects (including architectural aspect) of an IP. Ba-
bel can be considered the textual form of FAN. Provided explicitly
to the user, our ISA and ABI model is captured in Babel as types.
The target information can then be captured in the form of typed
values. The type inference engine of Babel can help check the va-
lidity of the target specification. While we have used Babel for our
own experiments, target specifications in other ADLs can poten-
tially be processed by our tool since our architectural database is
independent of Babel. In fact, we have created a simple API to cre-
ate and access the target information based on the presented ISA
and ABI model.

Our tool also provides a set of template files, which help create
the C headers, C files as well as configuration scripts to be retarget-
ted. These templates include not only partial implementation, but
also the placeholders which can direct our tool to generate codes at
appropriate locations. The template files themselves, however, are
architecture independent.

The code generator inrbinutils generates files from the tem-
plate files that can be merged into the GNUbinutils source tree.
The user can subsequently configure the modified source tree and
follow the normal building process to buildall the tools.

To exercise the tool, we have specified the processor model for
both SPARC and Intel 386, which exemplify the RISC and CISC
architectures respectively. In the text that follows, we describe in
detail the important components of our tool, while using data for
the SPARC target (calledmysparc) to demonstrate the result.

Binary Utilities

Template Files

GNU Binary Utilities
 Source Tree

Architecture
Description

 ADL
Compiler

Architecture
 Database

Arch−Dependent
 Source Code
 Generator

Retargetted Binary
 Utilities

Figure 2: rbinutils block diagram.

Generated Files #line
(generated)

/bfd/config/mysparc-elf.mt 3
/bfd/archures.c 1483
/bfd/configure.host 112
/bfd/configure.in 286
/bfd/config.bfd 166
/bfd/elf32-mysparc.c 1482
/include/elf/common.h 229
config.sub 1014
/bfd/target.c 785
/bfd/cpu-mysparc.c 44
/bfd/elfcode.h 6582

Table 1: Generated and changed files forbfd .

6.1 Retargetting BFD Library
Since BFD is used by all binary tools, the first task of porting

binary utilities is to port the BFD library. This unfortunately is
a painstaking procedure since no clean interface has been defined
by BFD implementers due to historical reasons. To make things
worse, it is winded together with BFF-specific code and scattered
in many different C files.rbinutils fully automates this task by
generating an implementation of an obscure interface consisting of
type declarations, macros, data and functions, from a clean target
model. The generated implementation contains the following:

• type: It includes the definition of an enumeration type which
defines the relocation type identifiers.

• data: It contains general information about the target proces-
sor, such as word size, address size and name. It includes the
definition of a relocationhowto table, an internal representa-
tion that characterizes the relocation calculation methods of
each relocation type. It also contains an internal representa-
tion of the PLT entries to be generated.

• functions: It contains the functions for checking relocations
as well as generating dynamic sections. The dynamic sec-
tions, such as.dynamic, .hash, .got and.plt, are used by dy-
namic linker for creating process image. They are created by
the linker to hold various data, symbol table, global offset ta-
ble and procedure linkage table respectively. It also contains
the function to relocate all relocation entries of a section.

Table 1 shows the generated and changed BFD files formys-
parc target.

6.2 Retargettingopcodes Library
As described in Section 3.2, theopcodes library creates an in-

ternal representation for each instruction, which can be accessed by
a hash table keyed by instruction mnemonic. In the GNU distribu-
tion, such representation is specific to each target. Inrbinutils ,
we have created a common representation for all targets. Therefore,
the code generator can generate, in the same fashion for all targets,
the initialized C struct data which can be derived from the ISA field
and instruction definitions.

Table 2 shows the generated or changed opcodes files formys-
parc target.

6.3 Retargetting Assembler
As described in Section 3.3, the target-dependent part ofgas

involves instruction parsing, assembling and relocation generation.

Generated Files #line
(generated)

/include/opcode/mysparc.h 60
/opcode/mysparc-opc.c 1552
/opcode/configure 262
/opcode/Makefile.in 1045

Table 2: Generated and changed files foropcodes .

Generated Files #line
(generated)

/gas/config/tc-mysparc.c 2480
/gas/config/tc-mysparc.h 368
/gas/configure.in 940
/gas/Makefile.in 2763

Table 3: Generated and changed files forgas .

Current distribution of GNUgas has ad hoc parser implemen-
tations for each target, partly due to the fact theopcodes library
is add hoc.rbinutils uses a single algorithm to generate an as-
sembly line parser for different targets. During parsing, the mnemonic
of the instruction is first extracted from input assembly line. The
internal instruction description is then searched and retrieved from
the hash table maintained by theopcodes library. The remaining
texts are then matched against the assembly patterns stored, during
which symbol, immediate or register information is extracted and
stored.

After collecting all assembly fields, the generated parser encodes
the instruction according the the binary format specified in the tar-
get specification. As stated earlier, the matching between the as-
sembly fields and the binary fields are achieved by matching the
argument number in target specification. Opcodes and immediate
values can thus be directly encoded by bit masking and shifting.
Register values are encoded after retrieving its index from a reg-
ister table, which is generated according to the store information
specified in the target specification. For fields that need relocation,
as indicated in the target specification, relocation entries are added
in the object file.

Table 3 shows the generatedgas files for targetmysparc .

6.4 Retargetting Other Tools
Other tools depend only on the BFD andopcodes libraries.

For example, the linker uses BFD to handle both dynamic or static
linking. Retargetting the rest of the binary utilities is just a matter
of changes in configuration files. Table 4 shows the files generated
for ld retargetting.

6.5 Verification
To verify our tool, we usedgcc to compile all SPEC2000 integer

Generated Files #line
(generated)

/ld/configure.in 183
/ld/emulparam/elf32mysparc.sh 9
/ld/Makefile.in 868
/ld/config/mysparc-elf.mt 1

Table 4: Generated and changed files forld .

benchmarks includinggzip , mcf , eon , vortex , vpr , crafty ,
perlbmk , bzip2 , gcc , parser , gap andtwolf , into assem-
bly codes of the SPARC target. We then assembled, and linked
them using the assembler and linker generated byrbinutils .
We compared the generated executables with those generated by
the original GNU binutils, and the results were exactly the same.

7. CONCLUSION
In conclusion, we have argued that the complexity involved in

modern downstream tools such as assemblers and linkers have made
development or automatic generation of these tools from scratch an
impractical task. This has led to our effort which seeks to automati-
cally port an existing tools that is powerful, robust and freely avail-
able. By augmenting the specification of instruction set informa-
tion of a processor with ABI information, we are able to automat-
ically port the GNU’sbinutils package, which itself consists
of a quarter million lines of code. Our experiment shows that this
approach is both feasible and practical. In future work, we will ex-
tend the same methodology to another extremely useful and freely
available GNU development tool, thegdb source level debugger.

8. REFERENCES
[1] John R. Levine,Linkers and Loaders, Morgan Kufmann Publishers,

2000.
[2] C. W. Fraser, R. R. Henry, and T. A. Proebsting, “BURG—fast

optimal instruction selection and tree parsing,”SIGPLAN Notices,
vol. 27, no. 4, pp. 68–76, April 1992.

[3] P. Marwedel, “The MIMOLA design system: Tools for the design of
digital processors,” inProceeding of the 21st Design Automation
Conference, June 1984, pp. 587–593.

[4] A. Fauth, J.V. Praet, and M. Freericks, “Describing instruction sets
using nML,” Tech. Rep., Technische Universiteat Berlin and IMEC,
Berlin(Germany)/Leuven(Belgium), 1995.

[5] J. Van Prate, D. Lanneerand W.Geurts, and G. Goossens, “Processor
modeling and code selection for retargetable compilation,”ACM
Transaction on Design Automation of Electronic Systems, vol. 6, no.
3, July 2001.

[6] Mescal Architecture Description,
http://www.ee.princeton.edu/MESCAL/mad.html .

[7] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau,
“Expression: A language for architecture exploration through
compiler/simulator retargetability,” inProceedings of the Design
Automation and Test Conference in Europe, March 1999.

[8] P. Paulin, C. Liem, T. May, and S. Sutarwala, “Flexware: A flexible
firmware development environment for embedded systems,” inCode
Generation for Embedded Processors, P. Marwedel and G. Goossens,
Eds. Kluwer Academic Publishers, 1995.

[9] G. Hadjiyiannis, S. Hanono, and S. Devadas, “ISDL: An instruction
set description language for retargetability,” inProceeding of the 34th
Design Automation Conference, June 1997.

[10] LISA Language for Instruction Set Architectures, Institute for
Integrated Signal Processing System, ISS - RWTH Aachen, October
2000.

[11] N. Ramsey and M. Fernandez, “The New Jersey machine-code
toolkit,” in Proceedings of the 1995 USENIX Technical Conference,
January 1995, pp. 289–302.

[12] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch,
O. Wahlen, A. Wieferink, and H. Meyr, “A novel methodology for
the design of application-specific instruction-set processors (asips)
using a machine description language,”IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 20, no. 11, pp.
1338–1354, November 2001.

[13] S.Chamberlain,libbfd: the Binary File Descriptor library., Cygnus
Support, Free Software Foundation, Inc., first edition edition, April
1991.

